HEAT TRANSFER EFFECT IN SMALL ORIFICES

OBJECTIVES

To characterize the importance of heat transfer effects in the orifice flow

Geometry used in FEMLAB

3-D 2-D D ⋀ D

Equations used

Navier-Stokes equation
Conduction and Convection equation

Boundary Condition

- 1. Slip/Axial symmetry
- 2. Inflow velocity/ Temperature
- 3. Normal flow pressure/ Convective flux
- 4. No-slip/No-flux
- 5. No-slip/No-flux
- 6. No-slip/No-flux
- 7. No-slip/No-flux
- 8. No-slip/No-flux

Mesh Refinement

L/D = 0.092 - consist of 1660 elements
L/D = 1.14 - consist of 648 elements

Results

L/D = 0.092 at Re = 100

Results cont. L/D = 1.14 at Re = 1.14

Results cont.

Temperature Change vs. Re

Conclusions

 Not much heat effect on smaller orifice compare to larger orifice along with increasing Reynolds number