Miscible Fluid Flow Past a Knife's Edge

Pawel Drapala

project supervised by

Bruce A. Finlayson June 2003

Objective

- Analyze the degree of mixing and dispersion of 3 knife's edges:
 - Infinitesimally thin
 - Finite thickness
 - Finite thickness with a bump
- Plot solutions as function of Peclet number
- Compare 2-D and 3-D models

2-D Geometry

- Film ideal 1-D separation medium with no build up present
- Block a 2-D separation medium with no build up present
- Buildup separation
 is uneven and inflow
 is partially blocked

Key Equations – Peclet number

- Uses
 - Specify conditions of the fluid
- Variables
 - H length of flow outlet
 - u average outlet fluid flow velocity
 - D diffusivity coefficient
- Range
 - 0 1000

Key Equations – Variance

- Variables
 - c fluid concentration
 - u average outlet fluid flow velocity
 - H length of flow outlet
- Range
 - 0 perfect mixing
 - 0.25 no mixing

Sample Solution – "film" Pe = 1

- 4390 mesh elements
- 2385 nodes
- 29862 DOF
- The variance resulted to be 2.26×10⁻⁸
- This figure depicts results for near perfect mixing

Sample Solution – "buildup" Pe = 100

Max: 1.15

- 3242 mesh elements
- 1742 nodes
- 21917 DOF
- The variance resulted to be 0.10
- This figure depicts results for relatively poor mixing.

Results (2-D)

Degree of Fluid Mixing of Proposed 2-D Knife's Edge Models

Results (3-D)

Pe	2-D Variance	3-D Variance	$\Delta\sigma^2$
50	0.0509	0.0447	0.0062
100	0.1020	0.0914	0.0106
150	0.1279	0.1178	0.0101
200	0.1437	0.1348	0.0089
With 98% confidence, the mean $\Delta\sigma^2$ (between 2-D and 3-D models) is:			
$0.0045 \le \Delta \sigma^2 \le 0.0134$			

Conclusions

- Particle buildup on knife's edge tip aids fluid mixing and dispersion
- Changing the thickness of the knife's edge does not impact the degree of mixing
- 2-D geometries of the knife's edge sufficiently model cases in 3-D

Conclusions

- Particle buildup on knife's edge tip aids fluid mixing and dispersion
- Changing the thickness of the knife's edge does not impact the degree of mixing
- 2-D geometries of the knife's edge sufficiently model cases in 3-D

