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In the October 2002 issue of Physical Review Letters, Dieter Braun and Albert 

Libchaber were the first to publish research regarding the effects of temperature gradients 

on the migration of DNA. For the first time, the thermal diffusion constant for DNA was 

determined empirically. The purpose of this project is to use the software package 

FEMLAB® to model the DNA trapping experiment by Braun and Libchaber. 

 

Theory 

 

Thermophoresis, also know as Soret effect, describes the movement of a particle 

due to a temperature gradient. To account for the effects of temperature on the 

concentration and vice versa, non-equilibrium thermodynamics couples the energy 

equation and the diffusivity equation by the use of phenomenological coefficients (Groot, 

277). The equations take on the following form: 

 

The energy equation 

CDTkTuC Cp
22 ∇+∇=∇•ρ    (1) 

 

The diffusivity equation 

TDcDcu T
22 ∇+∇=∇•     (2) 

 

In addition to concentration and temperature equations, the incompressible 

Navier-Stokes equation is used to obtain the velocity profile of the fluid. 

 

The Navier-Stokes equation 

ugpuu 2∇++−∇=∇• µρρ     (3) 
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The density varies in the above equation varies linearly with temperature. In addition, the 

DC∇
2C term in equation (1) is assumed to be . 

 

A convective instability model can be idealized with two infinity long plates. The 

fluid is sandwiched in-between the two plates and the bottom plate is warmer then the 

top. Convection can only take place if the buoyancy forces overcome the viscous drag 

forces of the fluid (Harrison, 2). The fluid near the bottom hot plate expands, becomes 

less dense and rises to the top.  A plot of the fluid’s Nusselt number vs. Rayleigh number 

has showed that the onset of convection begins at a critical Rayleigh number of 1707.7 

(Silverston, 157). 

 

 Article Background 

 

The experimental apparatus of Braun and Libchaber research involved plasmid 

size DNA uniformly dissolved in water. An infrared laser was used to locally heat the 

solution. Rising the temperature in the spot by 2.3K° created a concentration deficit of 

27% (Braun, 188103-1). Figure 1 below depicts the experimental setup, as well as the 

overall behavior of the solution.  

 

 
Figure 1. Apparatus of Braun and Libchaber experiment. The concentrate is repealed from the heat spot 
(3), caught by convection (2), and pilled on the bottom of the container (4). 
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An obvious perquisite of the phenomenon in figure 1 is the presence of 

convection. The researchers determined that the width of the container needed to be 

doubled from 25 µm to 50 µm in order for convection to take place. 

 

The thermal diffusion coefficient is determined form experimental data by 

integrating equation (2), the energy equation, under steady state and negligible 

convection. The following relationship between temperature and concentration is 

obtained. 

 

( )0

0

TTSTe
c
c −−=       (4) 

 

ST in equation (3) is defined as DT/D, where D is the diffusion coefficient of DNA 

and DT is the thermal diffusion coefficient of DNA in water. The value of D is known 

from literature to be D = 3.4 × 10-8 cm2/s. Consequently once the value of ΔT and c/c0 is 

measured, ST and DT can be obtained. DT was empirically determined to be DT = 0.4 × 

10-8 cm2/sK. 

 

Methods 

 

A solution in FEMLAB involved solving equations (1), (2) and (3) 

simultaneously. The most convenient way to accomplish this was to express the formulae 

in terms of non-dimension numbers. Three non-dimensional numbers were used with the 

following definitions. 

 

2
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==   (5) 
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Application of the non-dimensional groups to the concentration, temperature, and 

the Navier-Stokes equations yields the following equations as they appear in FEMLAB 

(Harris, Appendix I). 

 

FEMLAB’s Convection and Conduction equation 

TTuGr ʹ′∇ʹ′=ʹ′∇ʹ′•ʹ′⋅ 2Pr     (8) 

 

FEMLAB’s Convection and Diffusion equation 

TccuGrSc ʹ′∇ʹ′+ʹ′∇ʹ′=ʹ′∇ʹ′•ʹ′⋅ 22    (9) 

 

FEMLAB’s Incompressible Navier-Stokes equation 

uTgGrpuuGr eff ʹ′∇ʹ′+ʹ′⋅+ʹ′−∇=ʹ′∇ʹ′•ʹ′⋅ 2   (10) 

 

A two-dimensional FEMLAB geometry was chosen to mimic the setup depicted 

in Figure (1). The following figure depicts the geometry. 

 

 
Figure 2. Boundary conditions for the specified geometry. All sides were insulated for both concentration 
and momentum. The temperature was set to 2.3 at the center and 0 at the edges. 

External Boundary Conditions 
Momentum and Concentration: 
insulation/no slip 
Temperature: T = 0 

Internal Boundary Conditions 
Momentum and Concentration: 
insulation/no slip 
Temperature: T = 2.3 
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The following figure depicts the geometry as it appears in FEMLAB. 

 
Figure 3. Designated geometry in FEMLAB’s mesh mode. The mesh had 301 nodes, 68 elements, and 
4845 degrees of freedom. 
 

 

The specification of boundary conditions in Figures 1 and 2 is incomplete. Both 

the concentration and the pressure are underspecified. Consequently, without additional 

modification, no solution is obtained. The following procedure was taken to correct the 

problem of under specification. Under the point menu “view as point coefficients” was 

selected. Again, under the point menu “Point Settings…” was selected. The “weak’ tab 

was selected in the resulting window. The second zero in the bottom slot was changed to 

“1-c” resulting in the concentration of 1 at the point. A second point was chosen, and in 

the same fashion a zero was changed to “-p” specifying the pressure to be 0 at the point. 

Figure 4 on the next page outlines the procedure. 
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Figure 4. Changing 0 to 1-c specifies a concentration of one at the point. This procedure ensures that 
concentration equation converges. 
 

 

Results  

 

The following sets of figures depict the solutions obtained. Both the Prandtl and 

Schmidt  numbers have been set to 5.3. The Grashoff number was varied from 1 to 301 

by intervals of 50.  
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Figure 5. Solution for the temperature equation at Grashoff number of 1.  
 

 
Figure 6. Solution for the temperature equation at a Grashoff number of 301. 
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Figure 7. Solution to the Navier-Stokes equation at Grashoff number of 301. 
 

 
Figure 8. Solution to the concentration equation at Grashoff number of 301. 
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Figure 9. The development of the concentration profile at Grashoff number intervals of 50. 
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Discussion 

 

The velocity profile in Figure 7 closely resembles the arrow diagram in Figure 1. 

The velocity exhibits a ringlike shape with maximum velocity points on left and right of 

the central heat spot. The maximum velocity at a Grashoff number of 301 was found to 

be 8.04⋅10-7 m/s (Appendix). The solution of the energy equation exhibits an initial 

uniform profile as shown in Figure 5. At higher Grashoff numbers, the temperature 

profile exhibits a more oval shape due to the influence of momentum as is shown in 

Figure 6.  

The concentration profile depicted in Figures 8 and 9 shows how the concentrate 

accumulates at the center of the bottom edge within the geometry. The progression 

towards a fully developed solution is shown in Figure 9. The appearance of the 

concentration profile changes very little beyond a Gr value of 301. The maximum 

concentration increase is 21% and the maximum concentration depletion is 30.4% at Gr = 

301. This seems to be in excellent agreement with paper, where the depletion was 27%. 

However, unlike in the experiment, the FEMLAB model does not have a uniform 

depletion in the heat spot. In addition, the accumulation of contrite is at the edge of the 

simulation is uniform, not ringlike as in the experiment. 

Braun determined that convection forces became prevalent only when he doubled 

the container width from 25µm to 50µm. Doubling the length in Equation 5 is the 

equivalent of multiplying the Grashoff number by 8. Assuming that the FEMLAB 

solution of Gr = 301 is equivalent to when Braun first observed convection in the 

experiment, a uniform concentration profile should be seen at a Gr ≈ 37. This is indeed 

the case, as seen in Figure 9.  

The following set of plot show concentration differences at the calculated Gr 

numbers. 
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Concentration Results of FEMLAB simuation
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Figure 10. The maximum concentration increase of FEMLAB simulation at various Grashoff numbers. 
 

As depicted in Figure 10, the onset of accumulation begins at a Grashoff number of 100. 

 

 

Conclusion 

 

 An attempt to model the empirical result by Braun and Libchaber has met with 

mixed results. While both the temperature and velocity profiles seem accurate, the 

concentration profile does not fully resemble the experimental results.  

Perhaps one of the biggest flaws of the FEMLAB simulation is that it takes place 

in two dimensions. A more accurate would involve setting up problem in three 

dimensions as shown in Figure 11 on next page. 
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Figure 11. FEMLAB geometry as it would appear in 3-D. 
 

 

However, the methodology behind this project shows that FEMLAB is capable of 

modeling convective instability problems. Although non-convergence is an ongoing 

challenge, future research into the area will involve models like one depicted in Figure 

11.  
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