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1 
Introduction 
 

Purpose 

The purpose of this research is to determine if convective instability can be modeled using the 

software package FEMLAB. 

 

Objectives 

This research has four main objectives.  First, a 2-dimensional simulation is set up in FEMLAB 

where two infinitely long horizontal plates run parallel to each other. The bottom boundary is 

maintained at a constant hot temperature, and the top is maintained at a constant cold 

temperature. 

 

Second, the simulation is set up so that the Incompressible Navier-Stokes equation and the 

Convection and Conduction equation are solved simultaneously for several values of the 

Rayleigh number above and below the critical value for this situation.  

 

Third, the results are tabulated.  Specifically, the Nusselt number is calculated for each Rayleigh 

number.   

 

Fourth, a plot of Nusselt number versus Rayleigh number is constructed and compared to 

theoretical expectations and experimental results.  If the plot obtained from FEMLAB agrees 

with the plot of experimental data, and they both show the same value for the critical Rayleigh 

number as predicted by theory, then it is safe to conclude that FEMLAB can indeed model 

convective instability.  

 

 

 

 

 

 

 

 



2 
Problem Description 

The problem to be solved is given schematically in Figure 1.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  A temperature drop is maintained between two infinitely long plates with fluid filling 
the space between them.  When the temperature drop is great enough, buoyancy forces overcome 
viscous drag forces.  The warm fluid will rise, and the cold fluid will sink.  At this point, the 
system has become unstable, and convection occurs. 
 

 

The bottom plate is maintained at a constant hot temperature while the top plate is maintained at 

a constant cold temperature.  Initially, heat is transferred by conduction up through the fluid from 

the bottom plate to the top plate.  The hot fluid near the bottom expands and becomes less dense.  

If the temperature difference is made large enough, the buoyancy forces overcome the viscous 

drag forces.  The hot fluid rises to the top, and the cold fluid sinks to the bottom.  Then, that cold 

fluid heats up, expands, and rises.  Thus, the convective movement continues as long as the 

driving force remains. 

 

Background 

This research is inspired by an article from the February 2003 edition of Physics Today1.  Dr. 

Albert Libchaber and one of his postdoc students, Dieter Braun, found that an infrared laser 

pointed at the bottom of a container of a well-mixed dilute DNA solution could create thermally-

driven convective flows if the container was of sufficient size.  The flow pattern generated by the 

thermal gradient piled most of the DNA on the bottom and the rest of it in a ring-like pattern in 

T’ = 0 

T’ = 1 
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the middle of the container.  Using this method, the concentration of DNA increased by a factor 

of more than 1000 in some parts of the container. 

 

Theory 

The equations necessary to study this problem include the Incompressible Navier-Stokes 

equation 

 
2u u p g uρ ρ µ•∇ = −∇ + + ∇  

 

and an energy equation,  

 
2

pC u T k Tρ •∇ = ∇  

 

which is known as the Convection and Conduction equation in FEMLAB.  The equations are 

non-dimensionalized so that the appropriate coefficients can be entered into FEMLAB.  The 

dimensionless forms are 

 
2' ' ' ' ' ' ' 'effGr u u P Gr g T u•∇ = −∇ + + ∇  

 

and  

 
2Pr ' ' ' ' 'Gr u T T•∇ = ∇  

 

where primed variables represent dimensionless quantities.  P represents the new pressure that 

takes into account static pressure as well as gravitational forces2 

 

oP p gρ∇ = ∇ −  

 

The Grashoff number is defined as the ratio of buoyancy forces to viscous forces 
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and the Prandtl number is defined as the ratio of momentum and thermal diffusivities 

 

Pr pC
k
µ

=  

 

The Rayleigh number is related to Prandtl and Grashoff numbers by 

 

PrRa Gr=  

 

For the details of the derivation of the dimensionless forms, see Appendix A, Section 1.  As the 

temperature difference between the plates increases, the Grashoff number and the Rayleigh 

number both increase.  When the temperature difference is great enough, the critical Rayleigh 

number Rac is reached.  Once Rac is achieved, convection occurs. 

 

The convective instability problem can be solved analytically, but the equations must be solved 

simultaneously.  It is an eigenvalue problem where the first eigenvalue corresponds to the 

solution where Rac is 1707.762 for the case of rigid boundaries on the top and bottom3.  This 

physical situation is the case being studied in this research.  For comparison, the Rac for the case 

of a rigid bottom surface and a free top surface, the situation most easily realized in the 

laboratory, is 1100.6.  Rac for the case where all surfaces are free is 657.51. 

 

The case of a rigid bottom surface and a free top surface was studied by Benard.  After the onset 

of convection, the top layer of the fluid formed a stable hexagonal cell structure as shown in 

Figure 1.  The structure is caused by gradients in surface tension. 
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Figure 2.  Top view of Benard cells in spermaceti.  He discovered the hexagonal cell structure in 
the early 20th century.  He originally studied molten wax4. 
 

 

The hexagonal cell structure is the most efficient structure for converting the free energy of the 

system into the kinetic energy needed for convection.  From this point of view, the hexagonal 

structure is similar to a heat engine that converts unorganized heat into useful work5. 

 

The Nusselt number is the total non-dimensional heat flux leaving the bottom surface and 

entering the top surface.  It is defined as 

 

hDNu
k

=  

 

Before the onset of convection, Nu is always equal to one because conduction dominates.  Once 

Ra is greater than Rac, Nu will begin to increase and convection heat transfer will also become 

important.  Thus, the onset of convection in FEMLAB can be determined by watching the 

Nusselt number. 

 



6 
Expectations 

The results from FEMLAB are compared to experimentally determined curves.  The data of 

Silveston, Mull, and Reiher are provided in Figure 3.   

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3.  Experimental curve of Nusselt versus Rayleigh number for six different fluids.  The 
Nusselt number is constant at one until the onset of convection around a Rayleigh number of Ra 
= 1700 + 51 (statistically determined by Silveston)4. 
 
 
Once convection begins, Nu increases with a square-root shape until becoming somewhat linear 

(on average) for large Ra values.  According to theory, a value for Rac of 1707.762 should be 

expected if FEMLAB is capable of modeling this problem. 

 

 

Materials and Methods 
The software package FEMLAB version 2.3.0.148 is used within Matlab.  Microsoft Excel for 

Windows 97 is used to compute numerical values and plot the data. 

 

Simulation Set-up Procedure 

The Boundary and Subdomain settings for each equation are provided below as well as the 

additional steps that must be taken to achieve the desired results. 

 

First, each equation is divided by its relevant dimensionless variables.  This step enhances the 

convergence of the solution in FEMLAB.  For all simulations, the value of geff is chosen to be 

one.  Thus, the equations now read 
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21 1' ' ' ' ' ' ' 'u u P T u
Gr Gr

•∇ = − ∇ + + ∇  

 

and 

21' ' ' ' '
Pr

u T T
Gr

•∇ = ∇  

 

For the Incompressible Navier-Stokes equation, impose slip/symmetry boundary conditions on 

Boundaries 1 and 4 (the left and right walls).  Then, make the boundaries periodic.  To impose 

periodic boundary conditions, set boundaries 1 and 4 as symmetry boundaries as shown in Figure 

4. 

 

 
Figure 4.  The symmetry boundaries are defined in the Mesh Parameters.  This makes the two 
boundaries equivalent.  The mesh is refined twice before the solution begins. 
 

Then, select Boundary 1 from the h-tab in the Boundary Settings window and set the main 

diagonal to 1 and the other elements to 0 as shown in Figure 5. 
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Figure 5.  The first step in creating periodic boundary conditions is to select the h-tab in the 
Boundary Settings window for Boundary 1 and set the main diagonal to 1. 
 

Next, the r-tab is selected so that the variables u, v, p, and T can be entered in order as shown in 

Figure 6. 

 

 
Figure 6.  On the r-tab, the variables u, v, p, and T need to be entered as shown (all positive).  
This ends the specification for Boundary 1. 
 

For Boundary 4, the main diagonal elements on the h-tab are set to -1, and the other elements are 

set to 0 as shown in Figure 7. 
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Figure 7.  The second step in creating periodic boundary conditions is to select the h-tab in the 
Boundary Settings window for Boundary 4 and set the main diagonal to -1. 
 

For Boundary 4, –u, -v, -p, and –T are entered in order on the r-tab as shown in Figure 8. 

 

 
Figure 8.  The variables u, v, p, and T need to be entered on the r-tab for Boundary 4 with 
negative signs in front of them.  This ends the specification of periodic boundary conditions. 
 

The no-slip condition is imposed on Boundaries 2 and 3 (the hot bottom plate and cold top plate).  

The Subdomain settings are given in Figure 9. 
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Figure 9.  Subdomain settings for the Navier-Stokes equation.  The Grashoff number is allowed 
to vary. 
 

The pressure term does not have a coefficient in front of it.  Thus, the coefficient 1/Gr1/2 cannot 

be entered into FEMLAB for it.  Fortunately, this situation is only a minor annoyance rather than 

an impediment to obtaining a solution.  For now, one can simply pretend that the pressure term is 

indeed divided by Gr1/2.  If one desires to translate from computer results to real life numbers for 

the pressure (and for the other variables u and v), one simply takes the pressure value from the 

computer and multiplies by Gr1/2 first before doing anything else.  Then, multiply by the 

definition of the pressure standard (or velocity standard) found in Appendix A.  Alternatively, 

one can think of this situation as follows:  Dividing the equations by the relevant dimensionless 

variables simply changes the definition of the pressure standard.  The relative pressure drop 

between any two points in the simulation is the same no matter what the coefficient is in front of 

the pressure term in FEMLAB.  The program does not know the pressure standard being used 

and does not care.   

 

For the Convection and Conduction equation, Boundaries 1 and 4 are set as Insulation/Symmetry 

and then made periodic as described above.  On Boundary 2, the temperature is set to 1.  On 

Boundary 3, the temperature is set to 0.  The Subdomain settings are given in Figure 10. 
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Figure 10.  Subdomain settings for the Convection and Conduction equation.  The Prandtl 
number is held constant at 8.5. 
 

The pressure is under-specified.  Thus, the Point Settings are changed in the manner shown in 

Figure 11.   

 

 
Figure 11.  Point Settings for Point 1.  One of the zeros in the Constraint field on the Weak tab is 
replaced with –p.  The same procedure is performed for the other three points as well with the 
same zero being replaced for all four points. 
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Next, the Scaling of Variables is chosen as None on the Solve Parameters General tab.  Now, 

define Gr as a coupling variable as shown in Figure 12. 

 

 
Figure 12.  The symbol “Gr” is chosen to represent the Grashoff number.  This set-up allows 
FEMLAB to solve for many different Grashoff numbers sequentially using the Parametric 
Solver. 
 

The Parametric solution tab under Solve Parameters is set up to allow FEMLAB to solve the 

convective instability problem for Grashoff numbers of 50, 100, 150…550 all sequentially while 

using the previous solution as the initial guess for the next parameter value.  The set-up is shown 

in Figure 13.  Remember to select a Parametric solution on the General tab as well. 
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Figure 13. Solving for many different values of a variable using the Parametric Solver 
dramatically reduces the total solution time. 
 
 
The simulation set-up is complete.  There is no need to specify an initial velocity or perform any 

additional steps in Matlab. 

 

Calculation of Nusselt number 

The Nusselt number is calculated using  

 

( )Pr
4.5

normal total heat flux Gr
Nu=  

 

where the “normal total heat flux” is obtained from the computer using the Boundary Integration 

command.  The length of the boundary is 4.5 units.  Thus, the result of the integration along the 

boundary needs to be divided by the length of the boundary to obtain the heat flux.  Also, 

multiplication by Pr Gr1/2 is necessary because of the way in which the equations are entered into 

FEMLAB.  For the details of the derivation, see Appendix B. 
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Results 
 
Some of the plots obtained from FEMLAB are provided below. 
 

 
Figure 14.  Surface velocity field plot for Gr = 100 (Ra = 850).  There is very little fluid 
movement, and the maximum velocity is only 0.0143. 
 
 
The fluid is just beginning to form convection cells for a Grashoff number of 200 (Rayleigh 

number of 1700) as if preparing for convection as seen in Figure 15. 
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Figure 15.  Surface velocity field plot for Gr = 200 (Ra = 1700) just before the onset of 
convection.  Most of the fluid is still moving slowly.  The maximum velocity is 0.0232. 
 
 
Once Rac has been surpassed, the fluid begins to circulate. 
 

 
Figure 16.  Surface velocity field plot for Gr = 250 (Ra = 2125).  The onset of convection has 
occurred.  Most of the fluid is moving at the maximum velocity of 0.0477. 
 
For higher Grashoff numbers, the surface velocity field plot remains essentially the same, but the 

maximum velocity continues to increase as seen in Figure 17. 
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Figure 17.  Surface velocity field plot for Gr = 500 (Ra = 4250).  The maximum velocity has 
increased to 0.0869. 
 
 
Let’s study the case when the Grashoff number is 500. 
 

 
Figure 18.  Arrow plot of velocity vectors for Gr = 500 (Ra = 4250).  The fluid moves up the 
center and splits into two streams that head left and right.  The fluid cools and then falls back 
down again.  
 
 
The width of the convection cells is most easily seen by examining a flow plot. 
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Figure 19.  Flow plot of velocity for Gr = 500 (Ra = 4250).  The height of the cells vary from 
around 0.6 to almost 1.0 units. 
 
 
Now, examine the temperature profile.  The original profile was linear as seen in Figure 20. 

 

 
Figure 20.  Surface plot of temperature for Gr = 100 (Ra = 850).  Before the onset of convection, 
the temperature profile is essentially linear. 
 
However, the temperature profile after the onset of convection is drastically non-linear as shown 

in Figure 21. 
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Figure 21.  Surface plot of Temperature for Gr = 500 (Ra = 4250).  The fluid that is forced to 
travel upward maintains its hot temperature past the 0.6 mark in the y-direction. 
 
 
An unstable branch of the solution is identified by running the simulation differently.  To obtain 

the points on the unstable branch, the parametric solver is used to solve for values of the 

Grashoff number of 100, 300, and 500.  Apparently, taking such large parameter steps in 

FEMLAB leads to the unstable branches.  The results of these three simulations are presented in 

Figures 22-24. 
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Figure 22.  Surface plot of velocity field for Gr = 100 (Ra = 850) for the unstable branch.  This 
solution served as the precursor for the other unstable branch solutions.  It has the same 
maximum velocity as the corresponding solution on the stable branch, and there is no discernable 
difference between them. 
 
 
When the Grashoff number is increased to 300, an entirely different solution is obtained from the 

corresponding one on the stable branch even though they both started from the same solution. 

 

 
Figure 23.  Surface velocity field plot for Gr = 300 (Ra = 2550) for the unstable branch.  From 
the lack of red coloring on the plot, it appears that convection has not started yet. 
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When the Grashoff number is increased to 500, the pattern seen in the previous surface plot is 

seen to have developed more.   

 

 
Figure 24.  Surface velocity field plot for Gr = 500 (Ra = 4250) for the unstable branch.  
Portions of the plot appear red, indicating that at least some of the fluid is now moving at the 
maximum velocity.  The final determination of whether or not convection has started is still the 
value of the Nusselt number, though.    
 
 

The dimensionless normal total heat flux and the maximum velocity are extracted from the 

simulation results.  The heat flux is obtained through boundary integration along the top and 

bottom plates, and the maximum velocity is read from the plots.  The Nusselt and Rayleigh 

numbers are calculated and plotted in Microsoft Excel.  The results are shown below in Table 1 

and Figure 25. 
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Table 1.  Nusselt number as a function of Rayleigh number.  The data is taken from the 
FEMLAB simulations. 

Gr Ra 
Stable Branch 

Normal Total Heat 
Flux 

Nu 
Unstable Branch 

Normal Total Heat 
Flux 

Nu 

50 425 0.074963 1.001   
100 850 0.053082 1.003 0.053082 1.003 
150 1275 0.043435 1.005   
200 1700 0.039122 1.045   
250 2125 0.043858 1.310   
300 2550 0.04648 1.521 0.031036 1.015 
350 2975 0.047625 1.683   
400 3400 0.048012 1.814   
450 3825 0.047994 1.923   
500 4250 0.047755 2.017 0.030242 1.277 
550 4675 0.047394 2.099   

 
 
 
 

 
Figure 25.  Plot of data obtained from FEMLAB.  The main branch of the solution is the solid 
line, which appears to have the exact same shape as the expected line from Figure 3.  The 
Nusselt number for the unstable branch begins to differ from one around the expected value.  
The three pink squares represent the points on the unstable branch.  The Nusselt number for the 
unstable branch remains essentially one even for the case of Gr = 300 (Ra = 2550). 
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Discussion 
 
The FEMLAB curve from Figure 25 is virtually identical to the experimental curve from Figure 

3.  The onset of convection in the FEMLAB simulation seems to occur a little before the 

theoretical value of Rac = 1707.762, but this abnormality is most likely caused by the energy 

balance convergence error.  The difference between the heat flux leaving the bottom plate and 

the heat flux entering the top plate is about 2-3%. 

 
 
Conclusions 
 
Based on the results, convective instability can be successfully modeled using FEMLAB.  In 

addition, at least one unstable branch of the solution seems to exist, and FEMLAB is capable of 

finding it. 

 
 
Recommendations 
 
The following future work is recommended to see if FEMLAB can model it: 
 

• A concentration gradient should be added to the simulation.  

• A 3-dimensional simulation for a rigid boundary on the bottom and a free surface on 

top should be created to see if the hexagonal cell structure is observed and if the value 

of Rac matches the value expected from theory for this case. 

• A thermal diffusion term should be added to determine its effect on the stability of the 

system. 

• The unstable branch(es) of the solution should be further identified, studied, and 

documented. 

• The graph should be extended to include much higher Rayleigh numbers. 
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