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1-Introduction

1.1 Purpose

The purpose of this research is to evaluate the pressure drop in various microfluidic
geometries. The pressure drop was examined in two ways; how the pressure drop varies in one
device as a function of the Reynolds number and how the pressure drop varies across different
types of geometries with the same Reynolds number. The pressure drops were evaluated and are
presented for two cases in the geometry; slip and no slip boundary conditions.

The first goal, to evaluate pressure drop as the Reynolds number changes in a device, was
solved by running models in COMSOL Multiphysics. In the models, the Incompressible Navier-
Stokes equation was solved, utilizing appropriate boundary settings over a range of Reynolds
numbers. These sets of solutions were then plotted to determine where regions of constant
pressure drop occur, making Ky values applicable.

The second goal, to compare pressure drops between different geometries, was also solved
by running models in COMSOL Multiphysics. The results of the computer simulations are
presented in table form for solutions with a Reynolds number of 0 in all devices. All devices
have an outlet average velocity of 1 and a diameter of 1 to allow direct comparison of pressure
drops.

Simulations have been compared to expected trends in literature presented in the book
Micro Instrumentation. These results are important because they will allow future engineers to
predict how pressure drops vary between different types of turns. It will also allow Ky values to

be calculated easily and give limits on the regions where Ky, values are applicable.

1.2 Expected Results

From literature results, pressure drop is expected to increase as the Reynolds number

increases. This result is expected by comparison to Figure 8.4 in Micro Instrumentation



(Reprinted Below). A table showing Ky values for different geometries at negligible Reynolds
numbers is presented in Micro Instrumentation Table 8.2 and Table 8.3. Literature and

experimental results are compared in the appendix of this report.
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a circular channel. K-L is the total pressure minus the fully developed
pressure drop in the two regions, expressed as. K| = APeycess d2/17 (V2)-



2-Problem in Detail

2.1 Equations

To solve this problem, the Incompressible Navier-Stokes equation was solved in the non-
dimensional forms.
For the Navier-Stokes equation, we start out with the dimensional form of the equation:

du

p +ou-Vu=-Vp+ uVu
t

o,

Equation 1

To non-dimensionalize this equation we then define the following quantities:

'
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Equation 2

This equation can then be arranged to give the following non-dimensional form:
M\ RewV'u'= -V p'av? ' Re = 2%
ot u

Equation 3

In the non dimensional form of the Navier-Stokes equation, the dynamic viscosity (1)) is
set equal to 1 and the density (p) is used as a stand in for the Reynolds number which is set to 0
or varied from 0.1 to 100.

Ky is a dimensionless pressure drop coefficient. For slow flow, pressure drop is linear in
the velocity and the pressure drop is given by correlations of the form:

v
Apexcass = KL @

Equation 4



For the geometries created, d, the diameter of the pipe, is set to 1,7 the dynamic viscosity
is set to 1 and{v), the outlet velocity, is set to 1. This allows the excess pressure drop of the turn
to be equal to the Ky value. The excess pressure drop is defined in equation five:

AP pecess = BP 1o = Aplargeichannel - Apsmal[ﬁchanne/
Equation 5

To find the excess pressure the pressure drop in the fully developed flow regions of the

device are subtracted from the turn. In the above equation applied to the pipe this means the

pressure drop in the large and small channels of the pipe.

2.2 COMSOL Model Setup

2.2.1 Slip Model Setup

To find the pressure drop in microfluidic geometries with slip, the inlet velocity is set to 1
and slip boundary conditions are applied to the walls of the device. The outlet of the device is
given the boundary conditions of outlet and the option pressure. The dynamic viscosity (77) is
set to 1 and the density (p) is used as a stand in for the Reynolds number. In parametric sweeps

p was varied from 0.1 to 100. To determine pressure drops at very slow flows, p, is set to 0.
2.2.2 No Slip Model Setup

To find the pressure drop in microfluidic geometries with no slip, the inlet velocity is
quadratic and no slip boundary conditions are applied to the walls of the device. The outlet of
the device is given the boundary conditions of outlet and the option pressure. The dynamic
viscosity (77) is set to 1 and the density (p) is used as a stand in for the Reynolds number. In
parametric sweeps p was varied from 0.1 to 100. To determine pressure drops at very slow

flows, p, is set to 0.

It is important when directly comparing pressure drops that the flow out of the device has
an average velocity of 1, so that a direct comparison of pressure drops can be made. Figure |

below shows a sample device and the settings applied.



Wall Boundary:
Slip/No Slip Condition

Inlet:
Inlet velocity specified.

*Slip: v=1

*No Slip: Quadratic Velocity Profile

Outlet:

Set to outlet, pressure.
Outlet <v> must average to 1 to
allow direct comparisons

Figure 1




3-Results

3.1 Parametric Sweeps

Parametric sweeps are given which characterize the pressure drop in a device as the
Reynolds number changes. The following sweeps can be used to see over what range the
pressure drop remains relatively constant and calculating and using a Kp, will give a good
approximation to the pressure drop in the turn.

Figure 2 gives the pressure drop in the Sharp Bend, 2D geometry.
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Figure 2

Notice that pressure drops between Reynolds numbers of 0 and five remain relatively
constant for slip and no slip conditions. This flat region could be characterized by a constant Ky,
value to describe the pressure drop. At higher Reynolds numbers the viscous forces become
more important and the pressure drop increases. In the slip condition solution the effect of the

larger viscous dissipation forces is much greater.




Figure 3 gives the pressure drop in the Smooth bend, 90 degrees, short radius, 2D

geometry.
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Figure 3

Notice that pressure drops between Reynolds numbers of 0 and 1 remain relatively

constant for the slip solution. The no slip pressure drop remains essentially constant across the

whole range of Reynolds numbers. These flat regions can be characterized by a constant Ky,

value to describe the pressure drop. At higher Reynolds numbers the viscous forces become

more important and the pressure drop increases. In the slip condition solution the effect of the

larger viscous dissipation forces is much greater.




Figure 4 gives the pressure drop in the Smooth bend, 90 degrees, long radius, 2D

geometry.
Pressure Drop in Smooth bend, 90 degrees, long radius, 2D
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Figure 4

Notice that pressure drops between Reynolds numbers of 0 and 1 remain relatively
constant for the slip solution. The no slip pressure drop remains essentially constant across the
whole range of Reynolds numbers. These flat regions can be characterized by a constant Ky,
value to describe the pressure drop. At higher Reynolds numbers the viscous forces become
more important and the pressure drop increases. In the slip condition solution the effect of the

larger viscous dissipation forces is much greater.




Figure 5 gives the pressure drop in the Bend, 45 degrees, sharp change, 2D geometry.

Pressure Drop in Bend, 45 degrees, sharp change, 2D
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Figure 5

Notice that pressure drops between Reynolds numbers of 0 and 1 remain relatively
constant for the slip solution. The no slip pressure drop remains essentially constant across the
whole range of Reynolds numbers. These flat regions can be characterized by a constant Ky,
value to describe the pressure drop. At higher Reynolds numbers the viscous forces become
more important and the pressure drop increases. In the slip condition solution the effect of the

larger viscous dissipation forces is much greater.




Figure 6 gives the pressure drop in the Bend, 45 degrees, long radius, 2D geometry.

Pressure Drop in Bend, 45 degrees, long radius, 2D
1000 -
w
é 100 N | | | | | | | | | | | | | | |
=] .
= + Slip
& = No Slip
£ . *
é 10 A . .
*
8‘ * o . o . . o . . * ¢
a
(5
; 1 T T 1
” 0 1 10 100
t
o
Re (Dimensionless)

Figure 6

Notice that pressure drops between Reynolds numbers of 0 and 1 remain relatively
constant for the slip solution. The no slip pressure drop remains essentially constant across the
whole range of Reynolds numbers. These flat regions can be characterized by a constant Ky,
value to describe the pressure drop. At higher Reynolds numbers the viscous forces become
more important and the pressure drop increases. In the slip condition solution the effect of the

larger viscous dissipation forces is much greater.




Figure 7 gives the pressure drop in the Round pipe geometry.

Pressure Drop in Round Pipe

1000.00 -
_ "N EEEEEEEESEESES®EH
2
(Y]
<  100.00 -
g
v
c
()
E
£ 1000 -
g o ¢ * % esip
G o *
) No Sli
g . W NoSlip
2 100 - ¢
o *
a *
* o+ 0
0.10 T T 1
0 1 10 100

Re (Dimensionless)

Figure 7

Notice that pressure drops between Reynolds numbers of 0 and 1 remain relatively
constant for the slip solution. The no slip pressure drop remains constant until a Reynolds
number of 10. These flat regions can be characterized by a constant Ky, value to describe the
pressure drop. At higher Reynolds numbers the viscous forces become more important and the
pressure drop increases. In the slip condition solution the effect of the larger viscous dissipation

forces is much greater.



Figure 8 gives the pressure drop in the Square turn geometry.

Pressure Drop in Square Turn
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Figure 8

Notice that pressure drops between Reynolds numbers of 0 and 1 remain relatively
constant for the slip solution. The no slip pressure drop remains essentially constant from 0 to 80.
These flat regions can be characterized by a constant K value to describe the pressure drop. At
higher Reynolds numbers the viscous forces become more important and the pressure drop
increases. In the slip condition solution the effect of the larger viscous dissipation forces is much

greater.



Figure 9 gives the pressure drop in the Square turn geometry.

Pressure Drop in 4:1 Planar Pipe
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Figure 9

Notice that pressure drops between Reynolds numbers of 0 and 1 remain relatively
constant for the slip solution. The no slip pressure drop remains essentially constant for Reynolds
numbers between 0 and 20. These flat regions can be characterized by a constant Ky, value to
describe the pressure drop. At higher Reynolds numbers the viscous forces become more
important and the pressure drop increases. In the slip condition solution the effect of the larger

viscous dissipation forces is much greater.



3.2 Geometry Comparison

This table presents results for the slip and no slip pressure drops of different geometries.
The results in the table have a Reynolds number of 0 (p=0, using p as a stand in for Reynolds
number). All devices presented in the table have an average outlet velocity of 1; this allows the

pressure drops in different geometries to be compared directly.

Table 1: Pressure Drops with Re=0

Description Picture Pressure Drop (No Slip) |Pressure Drop (Slip)
Bend 45, rounded 121.45 1.82
2:1 Planar Pipe 71.57 11.23
3:1 Planar Pipe 138.17 11.51
Taper 45 78.93 5.04




Tablel (continued)

Description Picture Pressure Drop (No Slip) |Pressure Drop (Slip)
Square 3:1 65.63 10.93
Round Pipe 319.19 0.36
Square Turn 14313 12.50
4:1 Planar Pipe 662.39 2417




Description

Picture

Table 1 (Continued)

Pressure Drop (No Slip)

Pressure Drop (Slip)

Sharp bend, 2D

105.11

6.28

Smooth bend, 90
degrees, short radius,
2D (centerline
radius=gap size)

103.36

0.57

Smooth bend, 90
degrees, long radius, 2D
(centerline radius=1.5 x

gap size)

100.63

0.26

Bend 45 degrees, sharp
change, 2D

90.64

3.56

Bend, 45 degrees, long
radius, 2D (centerline
radius=1.5 x gap size)

122.27

1.83




4-Conclusions

From the results presented in section three we see that it is possible to characterize
geometries with one Ky, value over a range of Reynolds numbers. This is possible because the
pressure drop remains constant over these ranges of Reynolds numbers. For most devices this
range is between a Reynolds number of 0 and 1 for the slip condition and a range between 0 and
10 for no slip conditions. Ky values may be applied over a larger range of Reynolds numbers
depending on the accuracy in pressure drop needed.

We also conclude that the pressure drop for slip conditions in curved devices is smaller
than in turns with straight pieces. This can be seen in the very small pressure drops of the Round
pipe and smooth bend geometries presented in Table 1. For no slip conditions, the pressure drop

in 45 degree bend was found to be the lowest.



5-Appendices

How to calculate Ky values from pressure drops in devices.

All devices had an average outlet velocity of 1, {¥) = 1, a dynamic viscosity of 1,7 = 1 and a

diameter of 1,d = 1.

COMSOL Multiphysics gives a pressure drop of 105.1 in the Sharp bend, 2D geometry.
Pressure drop in a straight 2D pipe that is 4 units in length is 48.

To find the pressure drop due to the turn use the Apexcess €quation applied to the geometry:

A excess Al7t0tal - Apchannell - Al7channel2

AP, yoese = 1051 —48 — 48 = 9.1

. . . Ap=48
Rearranging equation 4 allows us to come up with a K value:
. ')7(1;-‘) Rsarrangs ; .
Ape.rcsss = AL d KL = n(v) Apsxcess
K, =——9.1=091
Eo()

This result is confirmed by the literature results from Table 8.2 in Micro Instrumentation

o K| T >

Description Picture K,

—
Sharp bend, 2D 9.1
\




