Mass Transfer in Wastewater Chlorine Contact Channels

By Angelo Ambion and Dan Ho

Objectives

 Investigate chlorine loss in three open chlorine contact channels

Wind direction/speed across channels

Possibilities to conservation of chlorine

Google's Satellite Imagery

Open Channels' Schematic

Puget Sound

Channel 0 (865 feet)

Pump Station Channel 2 (1650 feet) Channel 1 (1150 feet)

90 million gallons/day

Methods

Assumptions: – Well mixed, same concentration on any plane perpendicular to flow direction Wind velocity and direction are constant - Channels are straight (curvature negligible)

Methods con't

Theory:
 – Reynolds Number

 $\operatorname{Re} = \frac{\rho v L_c}{\mu}$

Determination laminar or turbulent flow

Sherwood Number (Barry's Equation)

Determination of the average mass transfer coefficient, k

 $\frac{kL}{D} = 0.0365 (\text{Re})^{\frac{4}{5}} (Sc)^{\frac{1}{2}}$

Methods con't

• Mass flux

• Fuller-Schettler-Giddings $D = \frac{.001T^{1.75}M_{AB}^{1/2}}{P[(\Sigma \nu)_{A}^{1/3} + (\Sigma \nu)_{B}^{1/3}]^{2}}$

Determination of chlorine's diffusivity

 $E = \bar{k}MW \int_{C}^{L} C(x)dx$

Boundary Layer Theory

Perpendicular wind Thin boundary Parallel wind Thick boundary

 The thicker boundary provides more resistance to mass transfer

Results

Initial Chlorine added per day = 3200 lb

Wind Flow Direction	Perpendicular [lb/ day]	Parallel [lb/ day]
Channel 0	2600	1600
Channel 1	300	700
Channel 2	300	700
Chlorine Loss per day	3200	3000

Sensitivity of Wind Speed

Conclusions

Small amount of residual chlorine projected to Puget Sound
Wind direction has a big effect on mass transfer at high concentration

Recommendations

To increase residence time of Cl2 in the channel, put a cover over the first channel
alternatively, find ways to block winds from blowing perpendicular to the first channel