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Axial Dispersion in Nonisothermal 
Packed Bed Chemical Reactors 

Larry C. Young and Bruce A. Finlayson* 
Department of Chemical Engineering, University of Washington, Seattle, Vash .  98196 

A criterion i s  developed to predict when axial dispersion is important in nonisothermal packed-bed reactors 
with cooling or heating at  the walls. In contrast to the isothermal problem, the criterion does not depend on 
the length of the reactor, so that the importance of axial dispersion cannot be minimized by increasing the 
length of the reactor. An increase in flow rate does decrease the importance of axial dispersion. The criterion 
is applied to the experimental data presented by Schuler, et a/. ( 1  954)) for SO2 oxidation on an alumina 
catalyst impregnated with platinum, and the criterion suggests that axial dispersion i s  important. The experi- 
mental data apparently cannot be reconciled with a model excluding axial dispersion, but a model including 
both axial and radial dispersion correctly predicts the data. 

M a t h e m a t i c a l  models of chemical reactors are useful for 
predicting the conversion and temperature profiles in packed 
bed reactors. TT'hile very general models can be written donx,  
these are not often used either because of the computational 
complexity or because it, is difficult' or impossible to estimate 
the parameters in the model. We are concerned here with a 
cylindrical tube, which is cooled or heated a t  the walls, and 
which is packed with catalyst. We wish to  determine when 
axial dispersion is important in such a reactor and relate the 
results to  experimental data. 

The importance of axial dispersion is shown below to de- 
pend on the type of reactor, and reactors with cooling or heat- 
ing have a different criterion than isothermal or adiabatic 
reactors. To understand t'liis difference we first examine the 
known information about the importance of axial dispersion 
in isothermal and adiabatic reactors. 

For a first,-order reaction in a n  isothermal reactor, Carberry 
(1958), Epstein (1958) and Levenspiel and Bischoff (1963) 
provide criteria for the neglect of axial dispersion effects. 
Levenspiel and Bischoff give, in the notation of this paper 

where C is the outlet concentration from a reactor of length 
L with axial dispersion and C p  is the concentration a t  length 
L in a reactor without axial dispersion. Levenspiel and Bischoff 
and Carberry present the above result in terms of the nominal 
residence time. This notational convention is not followed here 
since the residence time is proportional to the reactor length, 
and n e  nish to  display the reactor length directly. We can 

rearrange this result to  be expressed in terms of the concen- 
tration difference. 

cap[ - (F)] << 1 (1) 

For long enough reactors, axial dispersion can be neglected, 
since the difference in  concentration approaches zero. I n  an 
isothermal reactor without the effect of axial dispersion, the 
exit concentration approaches the equilibrium concentration 
as the length is increased. The same is true for an isothermal 
reactor which includes the effects of axial dispersion. Thus 
the difference in  the exit concentration from the two reactors 
must approach zero as the length is increased. Levenspiel 
and Bischoff also present a criterion based on the ratio of the 
reactor lengths required for a given conversion in the two 
cases. This type of criterion is best suited for design purposes, 
and the ratio is not a function of reactor length. 

For adiabatic reactors Carberry and Wendel (1963) and 
HlavAEek and Marek (1966) indicate that  axial dispersion 
effects are negligible provided the length is long enough. I n  
the latter case the criterion is 

Pe,,,L/d, > 100-400 

with the number on the right-hand side depending on the 
reaction rate. h similar criterion must hold for the Peclet 
number for heat transfer. Here, too, the equilibrium con- 
version and adiabatic temperature are eventually reached 
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Reactor Model Equations 

Consider the equations governing a packed-bed catalytic 
reactor under the assumptions of constant physical properties 
and plug flow and for a reaction rate governed by the con- 
version and temperature. The dimensionless equations are 

OUTLET C IimT'ZT, 
IC. 

IimT'ZT. INLET A 
I , - - . .  

d0 z" L 

Figure 1 .  Reactor geometry 

for a reactor of sufficient length. If we consider two hypo- 
thetical reactors, one including and the other neglecting the 
axial dispersion effect, the outlet conversion from the reactors 
approach the same quantity, the equilibrium conversion, 
if the reactors are long enough. Large axial temperature and 
conversion gradients within the reactors can result in signifi- 
cant discrepancies in the internal profiles, but  the temper- 
ature and conversion at the outlet will approach the same 
values if the length is sufficiently long. 

For reactors with cooling or heating a t  the wall (nonadia- 
batic) similar results are not' necessarily expected, since cool- 
ing can quench the reaction so that  the equilibrium conversion 
is never reached for any reasonable length. Calculations have 
been made for nonadiabatic models including axial dispersion, 
but with a radially uniform profile (Carberry and Wendel, 
1963; Coste, et al., 1961). Carberry and Wendel (1963) con- 
cluded t'hat the criterion for isothermal reactors is sufficient 
and that  axial dispersion is unimportant for long reactors 
(L/d,  < 50). I t  appears that  the conclusions of Carberry and 
Wendel have found acceptance by others (HlavGek, 1970; 
Valstar, 1969); the generally accept,ed criterion is based on 
the reactor length. 

The conclusions of Carberry and Wendel are open to ques- 
tion, however. I n  their Figure 2 the concentration and tem- 
perature profiles are compared for two reactors, one without 
axial dispersion (n  + a) and one with axial dispersion cor- 
responding to  100 mixing cells (n = loo), where n is defined 
in the notation of this paper as (L/2dP)Pe,,, = 1/(2y). This 
comparison is made while keeping koeo fixed, where ko is a 
first-order reaction rate constant and eo is the residence time 
based on the inlet contlitioiis; here eo = L p j G .  Now if the 
comparison is to  be for two reactors which are identical es- 
cept for the length and the axial dispersion parameter, then 
the reaction rate constant, ko, and velocity, G/p,  must be the 
same in both reactors. Since the same value of koOo = koLp/G 
is used for both reactors in their Figure 2, L must be the same, 
too. Then the parameter 

n = (L/2dP)Pe,,, = LG/(2pD, )  

and solutions for different n correspond to  different values of 
D,, not different values of L .  The conclusion of their Figure 2 
is correct: axial dispersion is unimportant for the case illus- 
trated. It is incorrect, however, to  extrapolate those results 
to  the conclusion that  axial dispersion is unimportant when 
Ljd ,  > 50. To  test that  conclusioii it  is necessary t'o change 
koeo at the same time n is changed, since both are proportional 
t o  the length. 

We wish, therefore, to  reexamine the question of the im- 
portance of axial dispersion in nonadiabatic reactors, and we 
include the effects of both axial and radial dispersion. First, 
we write the equations and derive the boundary conditions 
for this model. Next is derived bhe criterion which shows if 
axial dispersion is important. The criterion is applied to  par- 
ticular experimental data and we find that  axial dispersion 
is important. Calculations are then made for this case using 
the general model, and the two-dimensional equations are 
solved with the orthogonal collocation method. 

+ fl'R(X, T) = 0 

( r  = 0)  

b2T bT a' b 

(2 )  
bX bT - 
br br 
- = - -  

The boundary conditions in the axial direction are not listed 
above, as these have apparently not been derived for cases 
of both axial and radial dispersion. 

The axial boundary conditions when radial dispersion is 
important are derived in the same way as when radial dis- 
persion is neglected (Bischoff, 1961 ; Levenspiel and Bischoff, 
1963; Wehner and Wilhelm, 1956). The reactor is partitioned 
into three sections (Figure 1) : inlet (- a < z' < 0), reactor 
(0 5 z' 5 L) ,  outlet ( L  < z' < a). The inlet and outlet re- 
gions are governed by the same differential equations as  the 
reactor, but the generation term is zero (R(X ,T)  = 0). The 
parameters in the differential equations (a, y,  a', y', Bi) are 
defined in the same manner as for the reactor, but are the 
values applicable to  the inlet or outlet. At  the inlet or outlet 
boundaries the fluses of mass and energy and the concentra- 
tion and temperature are continuous. 

Since the reaction term is zero in the inlet and outlet re- 
gions, the differential equations governing the inlet and outlet 
regions are linear and uncoupled. They may be solved ana- 
lytically to  give a n  infinite series involving Bessel functions. 
The form of the solution is 

m 

(3) 

n = O  

where the eigenvalues are specified by 

The parameters a, y, and Bi are taken appropriate to  the 
equations for mass or heat in the inlet or outlet; e.g., Bi = 0 
for mass. The positive sign applies to  the inlet, while the nega- 
tive sign applies to  the outlet. The term vo = 1 for the solu- 
tion for temperature in the inlet ( z  < 0) whereas o)o = 0 for 
the solutions for temperature in the outlet ( z  > 1) or for con- 
version in either inlet or outlet sections. At  the inlet or outlet 
the temperature or conversion is required to  be continuous, 
e.g. 

This equation is multiplied by  Jo(X,r)r and integrated over 
r to  give the (A , }  in terms of integrals involving v(O+, r )  and 
Bessel functions. The expressions for the { A , }  are then sub- 
stituted into the equations making the fluses continuous, e.g. 

bV dV 
bz az 

Y E  - (O+, r )  = YA - (0-, r )  
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to  give the boundary conditions solely in terms of the un- 
known solution at the boundary v(0, T )  or v ( 1 ,  T ) .  

Conversion 
bX m 

y - (0, r )  = c (1 + 4 1  + 4a.4Y'4An2) x 
bz n = O  

where the An's are determined byJl(h,) = 0 

where the X,'s are the solutions of A, = BiAJo(A,)/Jl(h,). 

b T  m 

Y ' - &  (1, r )  = (1 - 4 1  + 4ac'yc'Xn2) x 
n = l  

where the An's are found from A, = BicJo(h,)/J1(X,). 
The subscripts A and C above are used to denote parameter 
values for the inlet and outlet region, respectively. 

When there is no radial dispersion ( a  = a' = 0) the bound- 
ary conditions reduce to  the usual ones (Bischoff, 1961 ; Wehner 
and Wilhelm, 1956) 

(2 = 1) 
b T  _ -  - 0 ; -  = 0 b X  

bz bz 
These boundary conditions have previously been stated to  
apply to eq 2 (HlavBEek, 1970), but we see here that  they 
apply only when radial dispersion is unimportant in  the inlet 
and outlet ( a  = a' = 0). 

Due to  the complicated nature of the exact boundary con- 
ditions, the orthogonal collocation method (Finlayson, 1971, 
1972; Villadsen and Stewart, 1967) is used to  approximate 
the exact boundary conditions. The first collocation approxi- 
mation ( N  = 1) and an analysis similar t o  that  used to derive 
eq 4 gives the following approximate boundary conditions 

(2 = 0)  
ax 

y- = x  
bz 

The approximate boundary conditions above are equivalent 
to  those that  would be derived if all radial reAtancc to heat 
transfer were lumped a t  the wall in the inlet and outlet t t i th 
an overall heat transfer coefficient of 

1 1 To 
- f -  u h, 3k, 
- -  - 

The approximate boundary conditions are also the same as 
those which would be derived by expressing the solution with 
only the first term in the infinite series, except that  the first 
eigenvalue is approximated by orthogonal collocatioii. If de- 
sired a higher approximation (LY > l )  can be derived using the 
orthogonal collocation method (Young, 1972). R e  note that  
the conversion boundary conditions are the same as when 
there is no radial dispersion, whereas the thermal boundary 
conditions are not unless Bi = 0 or 01' = 0 in the inlet or out- 
let sections. The model which includes the effects of both axial 
and radial dispersion has previously been designated the dis- 
persed plug flow model (Levenspiel and Bischoff, 1963); for 
simplicity here we refer to it as the general model. 

Solution of Equations 

Due to the complicated nature of the exact boundary con- 
ditions (4), the approximate boundary conditions ( 5 )  are used 
here together with eq 2. The problem is seen to be a set of 
coupled nonlinear elliptic partial differential equations of the 
boundary value type in both the axial and radial directions. 
The boundary value nature of the problem would seem to 
make solution very difficult even for numerical techniques 
using the digital computer, and some investigators have used 
this fact for partial justification of simplifications (Beek, 
1962; HlavAEek, 1970). The recently developed orthogonal 
collocation method has been found t o  be very efficient for the 
solution of boundary value problems and is used here. 

Applying orthogonal collocation in both the axial and radial 
directions, we have 

j = 1  

2 4 a A  '?A 'BiA 
+ ) (T - 1) (z = 0 )  

bz 2 BiA + 3 
j= 1 

T (Z = 1) (5) 24ac'yc'Bic 
bz 2 Bic + 3 

+ 
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where i = 2, 3,  , . . , .If + 1; k = 1, 2, . . . , N ;  X j i  = X ( r J J  zi); 
T j ,  = T(r3 ,  zi); and Rki = R(Xki ,  TkJ .  The matrices B(’) and 
A(’)  approximate the axial Laplacian and first derivative, while 
the matrices B(‘) arid A(’) approximate the radial Laplacian 
and first derivative. The mat’rices are easily calculated with 
the algorithm described elsewhere (Finlayson, 1972; Villadsen 
and Stewart, 1967). The boundary conditions a t  r = 0 are 
satisfied by tlie trial functions, which are orthogonal poly- 
nomials in r 2  defined bj- the weighting function w = 1 - r2  
and described elsewhere (Finlayson, 1971, 1972). 

From examination of eq 6, it  is seen tha t  orthogonal colloca- 
tion reduces the problem to a set of coupled nonlinear algebraic 
equations which are easily solved using the digital computer. 
The solution algorithm is outlined here, while details may be 
found elseir-here (Young, 1972). 

1. The boundary conditions are linear, so the temperature 
and conversion on the boundaries may be written in terms 
of tlie values a t  the interior points. The values on the bound- 
aries are then eliminated from the equations for the interior 
points. The above simplifications reduce the problem to the 
following forin 

2 .  The collocation points are then renumbered and the 
above matrices are rearranged to  reduce the problem to the 
folloiviiig form 

.Y. 41 
P,$j + PRi = 0 

J = 1  
s. .If 

3 = 1  
P,j‘Tj + B’R, = Wi 

3, Either the n’ewton-Raphson or Picard iteration method 
is then applied to solve the above equations. The Kenton- 
Raphsoii method converges rapidly but requires the inver- 

.If) x (S X) matrix for each iteration, while 
the Picard method requires the inversion of two (&L’. X )  X 
(S . 

From the above discussion it is seen that  the axial disper- 
sion effect can be included without undue difficulty when the 
orthogoiial collocation method is used. It is common practice, 
hoviever, to  neglect the axial dispersion effect’ (Beek, 1962; 
Fromeiit, 1967; HlavBEek, 1970). If this assumption is used 
then y and y’ are set to  zero in eq 2 and boundary conditions 
(j), and the governing equations reduce to  

matrices aiid converges more slowly. 

dX b T  - = 0 - = -BiT 
br ’ br (r  = 1) 

(7) 

A’ = 0, T = 1 ( Z  = 0) 
Equations i are a set of coupled nonlinear parabolic differ- 
ential equations of the boundary value type in the radial direc- 
tion, but of the initial value type in the axial direction. Since 
eq 7 are initial value problems in the axial direction, the equa- 
tioris may be integrated by standard methods, for example 
the (~rank-Sicolson method, or by the orthogonal colloca- 

tion method as described elsewhere (Finlayson, 1971 ). For 
comparison with the general model, eq 7 are solved using 
orthogoiial collocation in the radial direction arid a11 improved 
Euler integration scheme in the axial direction. The model 
governed by eq T has commoiily been referred to as the two- 
dimerisional model but here it is designated the radial model 
to distinguish it from the general model. 

The Importance of Axial Dispersion 

The radial model has been used extensively in the liter- 
ature, but except for the theoretical calculations of Feick 
and Quon (1970), the general model has not been used. Even 
Feick and Quon (1970) assumed no radial dispersion in the 
inlet and outlet’ sections. The reasons for ignoring the general 
model are appareiitly twofold : (1) axial dispersion has gen- 
erally been considered unimportant (Reek, 1962, Froment, 
1967; HlavBEek, 1970); (2) the general model is somewhat 
more complicated and has been considered too formidable 
to solve (HlavBEek, 1970; Lapidus, 1961). 

The first criterion we develop depends 011 the conditions 
a t  the inlet to  the reactor. Due to  axial dispersion the tem- 
perature and concentration take values a t  z = 0 which differ 
from their inlet values (at z = - m ) .  When axial dispersion 
is ignored, the temperature and concentration a t  z = 0 take 
the inlet values. Thus the two models give different results 
a t  the inlet. This difference can persist throughout the reactor 
if it is heated or cooled, because the equilibrium values of 
temperature and conversion need not be approached. The 
spatial distribution of temperature is all important. By con- 
trast, however, in the isothermal or adiabatic reactor this 
difference must decrease if the length is sufficient, since the 
same equilibrium values are finally reached whether or riot 
axial dispersion is important. The criterion for reactors with 
cooling or heating is therefore different from that  for iso- 
thermal or adiabatic reactors and is derived as follows. We 
make several assumptions in order to obtain analytical re- 
sults. K e  wish to  solve one problem with axial dispersion 
and one without. Radial dispersion is neglected in both prob- 
lems, on the ground that  the effect of radial dispersion is 
similar in both cases. The reaction rate expression is liiiear- 
ized as follows. For the mass balance, R ( 9 ,  T) = (1 - X)Ro, 
where we have written Ro = R ( X ,  T)l,,o; for the energy bal- 
ance, R(X,  2‘) = Ro. The mass balances are then: Problem l 

+ PRo(1 - X) = 0 d2X dX 
?dZZ--dz 

dX 
d z  

y - = X  ( z = O )  

d X  
d z  

y - = O  ( z = 1 )  

Problem 2 

X p ( 0 )  = 0 
The energy balances are: Problem 1 

dZT d T  
d t  dz 

7’ 7 - - + P’Ro = 0 

(10) 7 ’ -  d T  = T -  1 (2 = 0) dz 
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Problem 2 

Tp(0) = 1 

The solution to  eq 9 is 

X p  = 1 - exp(-PRoz) 

and the solution to  eq 8 is given by Wehner and Wilhelm 
(1956). 

For y small the parameter a used by Wehner and Wilhelm 
is given by 

u = (1 + 4yPRr~)”~ v 1 + 2yPRo 

and the solution to  eq 8 a t  the inlet reduces to  

X = l -  1 

1 + rPRo 
The error a t  the inlet is then 

X - X p  ‘V 7PRo 

The same analysis for temperature gives the solutions as 

T p  = 1 f P’RG 

T = 1 + r’P’R0 + P’Roz - y’p‘Roexp[(z - 1)/7’] 

The difference in the temperatures a t  z = 0 for y’ small is 

T - T p  = Y’P’R~ 

I n  both cases the error is proportional to  yPRo or Y’P’Ro. I n  
physical variables we have the necessary condition that  axial 
dispersion is unimportant 

This criterion i s  to  be used as follows. If eq 12 are satisfied 
then axial dispersion is unimportant at the inlet. If either 
inequality is violated, axial dispersion is important a t  the in- 
let. In  t h a t  case, axial dispersion could still be unimportant 
a t  the outlet. This is the case if the equilibrium concentration 
and temperature were approached, in spite of the heating 
or cooling. If, however, equilibrium values are not approached 
(for example the cooling might be sufficient to quench the 
reaction), then the spatial distribution of temperature is very 
important to  the exit concentration, and axial dispersion must 
be included in the model. Equation 12 says the neglect of 
axial dispersion would lead to errors a t  the inlet, and these 
are propagated down the reactor. If either inequality 12 is not 
satisfied, the analyst has two choices. If he is concerned only 
with the exit conversion he can calculate using a model which 
neglects axial dispersion. Any results which do not approach 
the equilibrium conversion would be suspect and would have 
to  be recalculated with a model including axial dispersion. 
Alternatively, he could calculate all results with a model in- 
cluding axial dispersion. Also, if the concentration and tem- 
perature distributions in the reactor were important (for 
example, the peak temperature), then the model must in- 
clude axial dispersion if inequalities 12 are violated. 

Notice that  neither eq 12 depends on the length of the 
reactor. The y and y’ are inversely proportional to the length, 
while p and 0’ are proportional to the length. Thus the prod- 
ucts yo and y‘p‘ are independent of length. Carberry and 
Wendel (1963) made calculations for various y while holding 
P constant. This is equivalent to  changing the effective dif- 
fusivity, as discussed above. For P constant, Carberry and 
Wendel do find that  axial dispersion is unimportant for small 
y ,  and this result is consistent with eq 12. For their Figure 2, 
y = 1/200, PRO = ko8o = 0.2 so that yPRo = 0.001 << 1 is 
satisfied. Thus in the case treated by Carberry and Wendel 
axial dispersion is unimportant a t  the inlet, as they found. 

Discrepancies in  the temperature and conversion profiles 
can also occur, even though eq 12 are satisfied, if the maximum 
axial temperature or conversion gradient occurs at a point 
other than the reactor inlet. Due to  the extreme nonlinearity 
of the problem, for the interior of the reactor i t  is difficult 
to  derive a rigorous criterion such as eq 12. An indication of 
the importance of axial dispersion in the interior of the re- 
actor can be obtained by comparing the fluxes in the two 
cases, with and without axial dispersion. If axial dispersion 
is to  be negligible, then the absolute difference in the fluxes 
for these two cases must be negligible. 

Clearly the differences in  the temperature and conversion 
for the two cases must also be small. Vsing this fact and re- 
quiring the inequality to  hold for all z we obtain 

I \dP/ I 
(13) 

Since Peclet numbers do not vary widely for most packed 
bed reactors, eq 13 indicates that the importance of axial 
dispersion is primarily dependent on the magnitude of the 
maximum temperature and conversion gradients. Xote that  
eq 13 is consistent with eq 12 for the special case of the reactor 
inlet. Xote also that  the length of the reactor does not appear 
in eq 13. 

The criterion based on inlet conditions (eq 12) can be ap- 
plied a priori, while eq 13 requires knowledge of temperature 
and coilversion gradients. This information can be obtained 
either from experimental data  or may be approximated from 
numerical computations using mathematical models which 
neglect axial dispersion. 

We now address the question of the importance of axial 
dispersion in cases of heat transfer and no reaction. The case 
of heat transfer is important since the heat transfer param- 
eters (k,, h,) are normally determined esperimentally by 
heating or cooling of the bed, and the solutions to the reactor 
modeling equations are often very sensitire to these param- 
eters (Froment, 1967; Valstar, 1969). The experimental 
method for heat transfer parameter determination normally 
involves a gas flowing a t  some temperature (To), and a t  some 
point ( z  = 0) the wall is heated or cooled a t  a different tem- 
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I)er;iture (Tu). The radial temperature profile is then mea- 
suied a t  the outlet of several beds of different lengths. Wakao 
: i i i d  Yagi (1959) have considered the importance of axial dis- 
i)elaioii in this problein but used the boundary conditions of 
Wehiier and Wilhehn (1956), which neglect radial dispersion 
i i i  the iiilet aiid outlet regions. Phillips, e t  al. (1960), coii- 
sidered both axial and radial dispersion, too, but used the 
boundary coiiditioii T' = To a t  z = 0. 

Here we niodel the problem by assuming two semiinfinite 
regioiis: a11 iiilet region, - m < z < 0, and a n  outlet or cooling 
region, 0 < 2 < m . I n  the inlet region the wall is maintained 
a t  n temperature To, and in the cooling region the wall is 
cooled a t  a different temperature, T,. We make the addi- 
tional assumption tha t  the parameters (y', CY', Bi) are the 
same in both regions. Under the above assumptions thegovern- 
ing equation for the cooling region is 

( r  = 0)  
bT - = o  
br 

dT - -  - -BiT (r  = 1) br 
lim T = 0 

For the inlet region the differential equation is the same, but 
the boundary conditions are 

z+ m 

- = o  ( r = O )  
bT 
br 

lim T = 1 

The two additional conditions needed in the axial direction 
require the continuity of flus and temperature. 

z+ m 

T(O-, r )  = T(O+, T )  

bT bT 
bz bz 
- (0-, r )  = - (O+, r )  

In  the cooling region the solution to  the above problem is 
given by 

a, = d1 + ~ c Y ' ~ ' X , ~ ;  X,J1(Xfl) = BiJo(X,) 

For small y' the  parameter a, N 1 + 2a'y'X2. Ahsuming 
the approximation to  a is valid, we subtract the above solu- 
tion from the solution which assumes no axial dispersion (y '  
= 0), aiid obtain the error in temperature by neglecting axial 
dispersion. 

h simpler result may be found by using the first collocation 
approximation in the radial direction and a similar analysis 

3 
325 I- 

\ 
\ \\I \ 

300 
0.0 0.2 0.4 0.6 0.8 I .o 

r '/ r, 
Figure 2. Experimental and predicted inlet temperature 
profiles: - -0- -, experimental (cooling only, no reaction); 
-, theoretical B,D,E (with reaction) 

For both cases the results for large z are similar. Since ex- 
perimental data  are usually measured a t  large z ,  the approxi- 
mate  result using orthogonal collocation can be used to  deter- 
mine whether asial dispersion is important. 

Xotice that  the error is inversely proportional to the prod- 
uct of the Peclet numbers, decreases exponentially with z, 
and the error a t  the center of the reactor is (1 + ' i2  Ri) times 
larger than that  near the wall. The error decreases with z 
since the axial gradient of temperature decreases with z .  Thus 
the case of heat transfer Jvithout react'ion is somewhat like 
that  of isothermal or adiabatic reactors: if the packed bed 
is long enough the fluid attains the wall temperature, irrespec- 
tive of whet'her axial dispersion is importaiit or not. Thus 
length is relevant in determining if asial dispersion is im- 
portant in heat transfer studies. 

For example consider a reactor with the following param- 
eter values: (TO - T,) = 15O"C, Peh,, = 1.5, Peh, ,  = 7.0, 
Bi = 5, d,/ro = 0.20. The error in temperature a t  a bed depth 
of 30 particle diameters is 1.48"c for the center of the reactor 
and 0.42"C a t  the reactor wall, v,-liile a t  a depth of 100 par- 
ticle diameters the errors would be 0.33 and 0.09"C for the 
center and will, respectively. The parameters used iii the 
above example would not be unusual, and the effect of this 
error on the predicted heat-transfer parameters could be 
significant. 

Equation 15 or 14 can be used to test any particular esperi- 
mental situation, but we leave to  future xork the determina- 
tion of a criterioii based on errors incurred ii i  estiniating k ,  
and h ,  wheii iieglecting axial dispersion. 

Application to an Experimental Reactor 

Smith (1970) has presented the results of a theoretical and 
experimental study of a sulfur dioxide oxidation reactor. The 
radial model was used for the theoretical prediction, and 
errors as large as 257, were found between the experimental 
and predicted average conversion. This experimental reactor 
is studied here in a n  effort t o  determine the causes of this dis- 
agreement aiid to  correct the theoretical aiialysis accordiiigly. 
In order to  compare the model predictions with the experi- 
mental results, we must first point out some important fea- 
tures of the experimental method. 

The experimental results were first published by Schuler, 
et al. (1954). The experimental method involved the mea- 
surement of the outlet temperature profiles and average con- 

Ind. Eng. Chem. Fundam., Vol. 12, No. 4, 1973 417 



0.0 0.2 0.4 0.6 0.8 1.0 

Z'/L 
Figure 3. Comparison of radial model prediction with ex- 
perimental data, using experimental inlet temperature 
profile: 0, experimental conversion; - theoretical 
prediction C,J,K,L; - - - - - - -' smoothed experimental data; 
0, experimental temperature from smoothing of radial 
profiles 

version for five bed depths, i.e., for five reactors of different 
lengths. The model calculations are affected in the following 
way. 

1. Since the general model is a two-point boundary value 
problem in the axial direction, the reactors of different lengths 
must be modeled separately in order to  compare the calcula- 
tions using the general model with the experimental reactors. 

2. The radial model is a n  initial value problem, so the cal- 
culations using it are not affected. One calculation provides 
the solution for all different bed depths. A reactor with a short 
length is just the first part of a longer reactor. 

The inlet temperature profile was measured for the case of 
cooling with no reaction, and i t  was found that  the tempera- 
ture varied radially. The experimental data are shown in 
Figure 2. The reason for this observed inlet temperature pro- 
file is a n  interesting question, since if there were no axial dis- 
persion, the inlet boundary conditions in eq 7 should hold 
and we would espect a uniform inlet temperature profile like 
that  of D in Figure 2. It appears that  the discontinuity in wall 
temperature a t  the inlet causes strong enough asiaI temper- 
ature gradients so that  axial dispersion is important near the 
wall, but the temperature a t  the center of the reactor is un- 
affected. We see that  we are presented with somewhat of a 
dilemma as to  the correct inlet temperature that  should be 
used with the radial model calculations. Both the uniform 
and experimental inlet temperature profiles are used with the 
radial model to  assess the significance of this discrepancy. 
When the general model is used this discrepancy is not en- 
countered, since the dispersion boundary conditions (5) are 
used, and the temperature profile is predicted rather than 
assumed. 

The esperimental reactor has previously been studied by 
other investigators (Almond, 1959; Ohki, et al., 1966; Richard- 

Table 1. Data Used and Parameters Estimated 
dp  = 0.0032 m 
TO = 0 . 0 2 6 m  
L = 0 . 1 5 m  
To = 400°C 
T, = 197°C 

C, = 0.24  kcal/kg "C 

P B  = 1080 kg/m3 
AH = -23,400 kcal/kg-mole 

G = 1710 kg/m2 hr 
P/CO = 480 kg/kg-mole 

1. Radial effective thermal conductivity 
k ,  = 0.32 + 0.42  kcal/m hr "C 

CY' = 0 . 1 8 + 0 . 2 3  
Peh,r = 4 .0  - 3 . 0  

2. Axial effective thermal conductivity 
k ,  = 0.92  + 1 . 3 5  kcal/m hr  "C 

y' = 0.015-  0.022 

h, = 51 
Bi = 3.1- 00 

PehJ = 1 . 4  + 0 . 9 5  

3. Wall heat transfer coefficient - 00 kcal/m2 hr "C 

4. Radial mass Peclet number 
Pem,, = 9 . 6  

CY = 0.074 
5. Axial mass Peclet number 

Pem,r = 2 . 0  
y = 0.010 

6. Generation parameters (including a heat and mass 
transfer resistance between the fluid and the catalyst) 

p = 46.4 kg (cat.) hr/kg-mole 
p' = 47.1 kg (cat.) hr/kg-mole 

R ( X ,  T )  = 0.00853 (T,' - 7") kg-mole/kg (cat.) hr "K 
= 0.730 (X, - X) kg-mole/kg (cat.) hr 
- - (1 .0 - X 8 ) d l . 0  - 0.166X, - 2.20X,/Ke, 

(kl + k,X")2 \ - .  - ", 

K,, = exp[ T8 ' - 1 1 , 0 2 1  

k l  = exp[11'0700K Ts ' - 1 4 , 9 6 1  X 

[kg (cat.) h r /kg-m~le] ' /~  

kz  = exp[ cK - I ,3311 x 
T, ' 

[kg (cat.) hr/kg-mole]'/' 
7 .  The parameters for the inlet and outlet regions are 

assumed to  be equal to  the corresponding parameters of 
the reactor 

7' = ?'A' = YC' 
a' = CVA' = CVcf 
Bi = BiA = Bic 

son, 1963). Almond considered axial dispersion in a n  effort 
to  achieve agreement; however, the correct boundary con- 
ditions were not used, and agreement was not achieved. Rich- 
ardson performed calculations for a number of cases of radially 
varying parameters, including a velocity profile model, but 
apparently did not include the effect of axial dispersion. Rich- 
ardson also considered the effect of the parameter values on 
the prediction, but good agreement was not achieved. Ohki, 
et al., used a modified mixing cell model to  obtain only fair 
agreement with experiment. It is pointed out that  all of the 
above mentioned investigators used the experimental inlet 
temperature profile as in Figure 2. 

Model parameters and the rate espression are given in 
Table I. The model parameters were calculated from avail- 
able data and a number of correlations (Schuler, et al., 1954; 
Smith, 1970; Yagi and Kunii, 1957, 1960; Yagi, e l  al., 1960). 
The value of the heat transfer parameters varied depending 
on the correlation, data  source, or estimation of physical 
properties. For this reason, the range of these values is given 
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Figure 4. Comparison of general model prediction with 
experimental data: - , theoretical A. Experimental 
temperature at z’/L of: X, 0.086; 0, 0.146; A, 0.292; 0, 
0.708; .,0.946; experimental conversion, 0 

in Table I, and these parameters are considered adjustable 
within these limits. 

The rate expression shown in Table I was derived by a n  
analysis of the reaction rate data  given by Olson, et al. (1950). 
Since the assumption of differential reactor behavior could 
not be justified, the data  were reanalyzed using the general 
model together with a nonlinear regression technique. The 
parameters of the general model and the external diffusion 
parameters were estimated from available information. The 
four parameters in the rate expression were then determined 
by minimizing the weighted sum of the squared error between 
the predicted and experimental average outlet conversions. 
Although the parameters of the general model were not known 
accurately for the reactors of Olson, et al. (1950), it  mas found 
t h a t  the predicted reaction rate parameters were not extremely 
sensitive to  this uncert’ainty (Young, 1972). The rate expres- 
sion given here includes the effect of external diffusion and is 
significantly different from the data  given by Smith (1970). 
Smith’s data  embody the assumption of differential reactor 
behavior; however, the differences in these rate expressions 
were found to  make little difference in the predicted temper- 
ature and conversion profiles (Young, 1972). 

We now apply the criterion for determining whether axial 
dispersion should be important. From the data  in Table I, 
we see tha t  the reactor is 48 particle diameters long. Using 
the criterion based on the length to particle diameter ratio, 
we would expect axial dispersion to have a very small effect. 
Using the criterion developed above, eq 12 and Peh,z  = 0.945, 
we find a n  approximate error of 0.034 and 15OC in the inlet 
conversion and temperature, respectively. The errors in con- 
version and temperature predict a n  error of 28% in the re- 
action rate a t  the inlet. .hi error of this magnitude cannot be 

r7ro 
Figure 5. Comparison of radial model prediction with ex- 
perimental data, uniform inlet temperature: --, theoreti- 
cal D. Exper,imentaI temperature for z’/L of: X, 0.086; O, 
0.1 46; A, 0.292; QO.708; 0,0.946;  experimental conver- 
sion, 0 

Table II. Parameters Used in Calculated Results 
n’Bi 

~ Inlet temp 
Bi + 3 Calculation CY‘ B i  7’ 

A. 0.220 10.0 0.0218 0.169 . . .  
n 0.220 1 0 . 0  0.0218 0.169 , . .  

c 0.220 1 0 . 0  0 .0  0.169 Espt l  
D 0.220 1 0 . 0  0 . 0  0.169 400°C 
E 0.220 10 .0  0.0149 0.169 . . .  
F 0.241 7 . 0  0.0218 0.169 . . .  
G 0 203 1 5 . 0  0.0218 0.169 . .  
H 0.179 50.0 0.0218 0.189 . , .  

J 0.190 1 0 . 0  0 . 0  0.146 Exptl 
K 0.160 1 0 . 0  0 . 0  0.123 Espt l  
L 0.210 5 . 0  0 . 0  0.131 Espt l  

a Calculation of separate reactors of different lengths. 

neglected. Thus we expect axial dispersion to be important; 
however, the two criteria for the importance of asial disper- 
sion can also be evaluated by solution of the governing equa- 
tions for the two reactor models. 

The calculated results are shown in Figures 2-8, while the 
parameters used are given in Table 11. In Figure 3 the results 
calculated using the radial model and the esperimeiital inlet 
temperature are shown. The heat transfer parameters are 
adjusted in a n  effort to  achieve agreement with the esperi- 
mental results, but no adjustment of these parameters gives 
reasonable agreement with the experimental result,?. In Figure 
4, the results calculated using the general model are found to 
be in good agreement with the esperimental results. Only 
the temperatures near the hot spot depart significaiitly from 
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Figure 6. The effect of the axial dispersion terms. Curves 
6 and E have axial dispersion; curve D does not 

the experimental values. The calculations shown in Figure 5 
are performed using the radial model and a uniform inlet 
temperature profile, and these results are found to  be in good 
agreement with the experimental results. From the results 
shown in Figures 3, 4, and 5 it is apparent that  poor results 
are obtained when the experimental inlet temperature profile 
is used in the radial model. 

Of interest in the general model calculation is the cal- 
culated inlet temperature profile shown in Figure 2 .  It is seen 
that  the predicted inlet temperature is 415OC near the center, 
as  predicted by the criterion for neglecting axial dispersion. 
The temperature near the wall is much lower than 4OO0C, as  
was found experimentally for the case of cooling with no 
reaction. Since the experimental profile was measured for no 
reaction, the profiles would not be expected to  agree, but it 
is found that' the behavior near the wall is in qualitative agree- 
ment with the experimental results. The criterion for neglect- 
ing axial dispersion predicts the errors in conversion and tem- 
perature accurately a t  the inlet and near the center; however, 
the decreased temperature near the wall is not predicted by 
the criterion. Axial dispersion is also important due to  the 
rapidly changing wall temperature a t  the inlet. 

Since the axial effective thermal conductivity is only known 
within the range shown in Table I, it is important to  know the 
sensit'ivity of the prediction to  variations within this range, as 
shown in Figure 6. Also shown are the calculations for ne- 
glecting axial dispersion altogether. The prediction is affected 
by the value of y', but the effect is small compared to that  
found by neglecting asial dispersion altogether. 

We summarize the evidence for the importance of axial 
dispersion in this reactor. Figure 6 shows that  the calculated 
results change if axial dispersion is included. Figure 4 shows 
that  the calculated results using the general model agree well 
with the experimental data, and the radial temperature profile 
a t  the inlet has the correct shape (Figure 2 )  even though no 
experimental results exist for direct comparison. Figure 5 

50, z I I I I 

I I I I 
a2 0.4 06 0.8 I .o 

Z/L 
Figure 7. The effect of gathering data on different length 
reactors: 0, experimental data. Curve 6 is for one long 
reactor; curve A i s  for a series of reactors of different 
lengths; both 6 and A include axial dispersion 

shows that  good agreement can also be obtained using the 
radial model with a flat radial temperature profile. Such a 
profile, however, is inconsistent with the experimental mea- 
surements, see Figure 2 ,  which show a radial variation even 
when there is no chemical reaction. The radial model using the 
experimental profile cannot be made to fit the data  (Figure 3). 
Thus we can rule out the possibility that  the radial model is 
adequate and the inlet temperature profile is caused entirely by 
cooling, since in that  case the radial model would fit the data  
in Figure 3 for some choice of parameters. The reason tha t  
the radial model with a flat (and unrealistic) temperature 
profile gives good agreement, too, is because the errors in- 
curred at the wall are partially offset by opposing errors which 
occur on the center line. 

In  Figure 7 the significance of the experimental method is 
assessed. The data  were taken at the outlet of five reactors 
differing only in length. The calculations presented in Figure 7 
are performed using the general model. Curve B represents a 
single reactor of length 0.1514 m, whereas curve d represents 
the outlet values for calculations for reactors of five different 
lengths. The difference between curves 4 and B illustrates the 
errors possible when measuring the data in such a manner. 
It appears that  if axial dispersion is important, the conversion 
and temperature out of a reactor of length L1 will be different 
from the conversion and temperature a t  length LI when mea- 
sured in a reactor of length Lp > LI. It is also clear from 
Figures 6 and 7 that  an increase in reactor length will not 
decrease the importance of axial dispersion. As the reactor 
length is increased in the various calculations represented by 
curve d of Figure 7, the  temperature profile does riot approach 
that  predicted for a model without axial dispersion. This 
is because axial dispersion affects the temperature a t  the inlet 
whereas increasing the length merely affects the cooling in the 
last part of the reactor. 
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Figure 8. Sensitivity of the prediction to radial heat transfer 
parameters at constant CY' Bi/(Bi + 3) or constant U de- 
fined by eq 16 

It has been commoii practice to  measure heat transfer co- 
efficients by measuring the temperature out of packed beds of 
different lengths. The data  are then interpreted as  if they 
applied to  a single bed with the longest length. It is clear 
that  if axial dispersion is important the temperature profile 
developed at the inlet (see Figure 2) will influence the heat 
transfer data  unless the inlet region is ignored. If the experi- 
mental reactor is used to  study heat transfer without reaction, 
eq 15 says that  significant (2.3OC) errors will occur for the 
longest reactor, if axial dispersioii is neglected. This is re- 
flected in the inlet temperature profile, too (Figure 2). Thus 
axial dispersion iilfluences heat transfer data in this situation, 
although the effect is minimized if temperature profiles are 
only used for long reactors, as is often the case. 

The radial heat transfer parameters could not be deter- 
mined accurately, as shown in Table I. It has previously been 
shown by others (Froment, 1967; Valstar, 1969) that  the solu- 
tion to the governing equations is usually sensitive to  the 
values of the radial effective thermal conductivity and the wall 
heat transfer coefficient. The reason for this phenomenon is 
due to  the fact that  these parameters determine the overall 
heat loss from the reactor, which generally has a large effect 
on the reaction rate. It has previously been shown (Finlay- 
son, 1971), that  the first collocation approximation in  the 
radial direction is equivalent t o  lumping all radial resistance 
t o  heat transfer at the wall, with an overall heat transfer co- 
efficient of 

1 1 TIJ - +- 
U h, 3k, 
- -  - 

I n  Figure 8, calculations are presented in which the radial 
effective thermal conductivity and wall heat transfer co- 
efficient are varied, but  the parameters are changed in a 
manner so that  the overall heat transfer coefficient defined 
by eq 16 is held constant. Although the individual param- 

eters are varied over a wide range, the results are not strongly 
affected, especially the average conversion. From these re- 
sults, i t  appears that  the above relationship gives a good quali- 
tative idea of the overall heat loss from the reactor. 

The calculated results are, of course, dependent on the 
accuracy of the numerical approximation. I n  the calcula- 
tions using the general model, six interior collocation points 
were used in both the axial and radial direction. The cal- 
culations performed using the radial model employed six 
interior collocation points in the radial direction and 250 steps 
in  the improved Euler scheme for the axial direction. Other 
computations suggest that  the results are accurate within 

As stated above, the solution algorithm for the general 
model employed the Sewton-Raphson or Picard method to  
solve the nonlinear algebraic equations. When the initial 
guess in the solution algorithm was a constant conversion and 
temperature everywhere in the reactor, the solution was ob- 
tained in an average of five iterations using the Xewton- 
Raphson method and twelve iterations using the Picard 
method. The calculation time in both cases was primarily 
due to  the matrix inversions required. Computation time 
was approximately 23 and 10 sec for the Newton-Raphson and 
Picard methods, respectively, on the CDC-6400 computer. 

1%. 

Conclusions 

Both axial and radial dispersion are important in the experi- 
mental SOz-oxidation reactor. 

A criterion is developed, eq 12, to  decide if axial dispersion 
is important at the inlet to  a reactor which is heated or cooled. 
Even if eq 12 is violated, if the temperature and conversion 
approach their equilibrium values at the exit, then the in- 
fluence of axial dispersion will not be great on the exit con- 
version and temperature, although i t  can affect the spatial 
distribution of those quantities. The criterion (13) can be 
used throughout the reactor in a n  a posteriorii fashion. After 
calculating without axial dispersion, eq 13 can tell one if axial 
dispersion should have been included. 

Orthogonal collocation is an efficient numerical method for 
solving the equations governing a reactor with axial and 
radial dispersion. 

Nomenclature 

= matrix representing radial fir.;t derivative 
= matrix representing axial first derivative 
= matrix representing radial Laplacian 
= matrix representing axial Laplacian 
= Biot number, hwr0 /kT  
= concentration, kg-mole/m3 
= heat capacity, kcal/kg "C 
= particle diameter, m 
= radial effective diffusivity, niz,!hr 
= axial effective diffusivity, m2ihr 
= mass flow rate based on empty tube area, kg/mZ 

= wall heat transfer coefficient, kcalim2 hr "C 
= heat of reaction, kcal/kg-mole 
= i t h  order Bessel's function 
= first-order rate constant, m3/kg (cat.) hr 
= A4rrhenius function in  rate expression, [kg 

= Akrhenius function iii rate expression, [kg 

= equilibrium constant 
= radial effective thermal coiiductivitp, kcalim 

= axial effective thermal conductivity, kcal/'m 

= reactor length, m 

hr 

(cat.) hrjkg-mole]'/2 

(cat ,) Iirlkg-mole ] ' / J  

hr "C 

hr "C 
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M 

N 

Peh,, 
Peh,r 
Pe,,, 
Pem,2 
r = radial position, r r / ro  
r’ = radial position, m 
R ( X ,  2‘) = apparent reaction rate, kg-mole ’kg (cat.) hr 
T 
T’ c 
X 
z = axial position, z’/L 
2’  = axial position, m 

GREEK LETTERS 
a 
a’ 
B = PPBL/(GCo) 
P’  
Y = pD,/(GL) or dp/(LPem,A 
7, = k,/(LGC,) or d,/(LPeh,A 
A* = eigenvalues 
P = density, kg/m3 
PB 

SUBSCRIPTS 
A 
C 
0 
P 
r 
S 
W 
2 
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