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Fréchet differentials are introduced to decide when a classical variational principle exists for a given
nonlinear differential equation. The formalism is applied to the steady-state Navier-Stokes equation
and the continuity equation, and no variational principle exists unless uX (VX u) =0 or u- vu=0. The
concept of an adjoint equation is extended to nonlinear equations and a variational principle is derived

for the Navier-Stokes equation and its adjoint.

I. INTRODUCTION

Variational principles may succinctly summarize
equations of motion, allow insight into the effect of
parameters, and provide a means for approximating the
solution. For some problems minimum and maximum
principles may hold, leading to reciprocal variational
principles which provide a means for obtaining upper
and lower bounds on a variational integral. In other
problems, however, the variational principle is only a
stationary principle and no minimum or maximum is
achieved. In still other problems a variational principle
may not hold at all. Given a differential equation and
boundary conditions, it is an important question to
decide if a variational principle exists for that problem.
The search for variational principles encompassing fluid
mechapics provides a varied history. The first principle,
by Lord Kelvin,! applies to an incompressible, inviscid
fluid in irrotational flow. The variational principle
minimizes the kinetic energy, and a reciprocal principle
holds as well.2® If the fluid is compressible, but still in
steady-state motion, the Bateman-Dirichlet principle
holds,* and reciprocal variational principles are applic-
able, with the variational integral being the kinetic
energy plus one-half the pressure. Various modifications
of this principle occur for various equations of state
and in infinite regions.2?

The time-dependent equations of an inviscid, com-
pressible fluid also have variational principles. The
Lagrangian form of the equations is treated by Herivel?
and Eckart,® and the variational integral is the kinetic
energy minus the sum of internal and potential energy.
If the equations are treated in their Eulerian form, the
variational principle is due to Herivel,® when modified
using Lin’s constraint to permit rotational flows.27
Eckart® had earlier presented such a principle for irrota-
tional flows when the internal energy depends only on
the density, and Seliger and Whitham® derive a principle
which incorporates some of the constraints in the repre-
sentation for velocity. Stephens! considers the equa-
tions in canonical form for the energy-momentum
tensor, while Penfield" treats the equations in rela-
tivistic form.

In all of the above principles, the fluid is inviscid.
The inclusion of Newtonian viscous terms in the equa-
tions of motion leads to difficulties except in special

cases. If the inertial terms are absent, then the Helm-
holtz-Korteweg principle applies to the steady-state
flow of an incompressible fluid, and the viscous dissipa-
tion is minimized in the variational principle.”? If the
fluid is non-Newtonian, variational principles may
hold,’®# but still when the inertial terms are absent
in the equations.

Thus, we have the interesting situation that varia-
tional principles exist when inertial terms are important
and viscous terms are not and when viscous terms are
important but inertial terms are not. Attempts to
derive variational principles when both inertial and
viscous terms are included have so far failed. Brill4
noticed that the Helmholtz~Korteweg principle could
be generalized to include in the equations the inertial
term V(3u-u), but not the full inertial term,

uVu=V(iu-u)—ux(vVxu). (1)

Millikan® gave the definitive treatment of the exist-
ence of a variational principle for the steady-state
Navier-Stokes equation for an incompressible fluid.
By means of a detailed, lengthy argument, he concluded
that a variational principle could not be found unless
u-Vu=0 or ux(Vxu)=0. By the use of Fréchet
differentials, we are able to shorten Millikan’s proof
considerably, as well as illustrate a general method for
deciding if a differential equation can be derived from
a variational principle. We then extend the concept of
an adjoint equation to nonlinear equations, and derive
a variational principle for the steady-state Navier—
Stokes equation and its adjoint equation.

II. FRECHET DERIVATIVES

Fréchet derivatives.are introduced to help answer
the question of whether a differential equation is the
Euler-Lagrange equation of some variational principle.
The discussion follows and extends that of Tonti’.?
although the important theorem was proved by
Vainberg.!

Consider the analogy of a vector field. A vector v is
derivable from a potential v=V¢ if V xv=0, If this
is true, then the integral

[ vix=s-a (2)
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depends only on the end points, not on the path of
integration. Equation (2) then provides a method of
testing a vector field to see if it is the gradient of a
scalar function. The integration is performed over two
different, infinitesimal paths between two points, and
if the integral is independent of the path, the velocity
is the gradient of a scalar function.
Next consider a nonlinear differential operator

N(u)=0.
The Fréchet differential in the direction ¢ is given by
N —N ]
Nul¢= lim M =[_ N(u+€¢)] , (3)
>0 € Oe =0

where N,' is called the Fréchet derivative (taken with
respect to u). The gradient of a functional is defined
similarly. Given a functional

F(u)=[L(u) dV
the Fréchet differential in the direction ¢ is given by
im {[F(u+tep)—F(u)])/e}=[LS¢ dV.
D
Integration by parts to remove the derivatives operating
on ¢ gives

lim {[F(u+ep)—F(u)]/e}=[L, ¢ dV

>0
= [¢N (u) dV+boundary terms. (4)

The operator N{(u) is the gradient of the functional
F(u). '
To test if an operator N («) is the gradient of a func-
tional we must see if the integration in Eq. (4) is the
same when taken over the two infinitesimal paths.

(@)  woutep—uteptn
() u—utw—outeptn.
Thus, we need
IN(u)ep AV~ [N (ut-ed )y dV
=[N(u)wp dV+ [N (u+wp)ep dV
Dividing by v and taking the limit as ¢, 70 give
[ON/$ AV = [Ny dV. (5)

If Eq. (5) holds, the operator N,’ is symmetric, and
Vainberg!® proves that 'this is a sufficient condition for
the operator N () to be the gradient of a functional.
The functional itself is (except for possible boundary
terms)

Fu)= /u/lN(}\u) 1% (6)

and the variation can be shown to belt:3

SF=[N(u)dudV.
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The fact that N(u) is the Euler-Lagrange equation for
a variational principle with F(%) as the functional is
readily apparent from the last equation.

Next consider the vector differential equation

i3 e 55 15 58 ) =0

with #,=wu,(x1, 23, 23). The subscripts or superscripts
represent Cartesian components and a comma denotes
differentiation. Thus,

Au,
Uy j= — .
! 6x,~
It is shown elsewhere!®3 that the conditions for the
analogous equation (5) to hold, and hence for the

operator f* to be the gradient of a functional, are

afl afa
T =, (7)
au,'jk auz_,-,,
aft of oft )
MR Ay S Ay 8
aug,,' 6u;,;+ kaul,jk ( )
of o _ o of
= =2 v, vV . 9
u, du; Jauz,j+ ! koul.;k ( )

To test a differential equation, then, we merely evaluate
Egs. (7)-(9) to see if they hold. If they do, then a
variational principle exists for the differential equation.
We next apply this procedure to the Navier-Stokes
equations.

III. NAVIER-STOKES EQUATION

We consider the steady-state Navier-Stokes equa-
tion for an incompressible fluid. Thus, we assume the
fluid is Newtonian:

pu-Vu=—Vp+4uviu, (10)
V.u=0. (11)

Forces derivable from a potential can be included in
the pressure term. We know that if either u=0 or
u-Vu=0 a variational principle is possible. We use
Fréchet differentials to decide if a variational principle
can be found when neither of these conditions holds,
although we first apply the formalism in the case when
u-vu=0.

Consider the four-vector w=(u, p) and the four
equations

= '—w4.a+#wa,ﬂﬂy

f4=w,3,p=0. (12)

Greek indices run from one to three and Latin indices
go from one to four; repeated indices are summed over
their range. If a Fréchet differential is to exist for the
set (12), it is necessary that Eqs. (7)-(9) be satisfied.
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The derivatives are

of .
= pdagdys, zero otherwise,
371)5,-,5
aft of _
A =0qp, f = —84p,  zero otherwise,
OWa 8 0wy g
oft
dw,

Equation (7) is easily satisfied. Equation (8) is
ot afe

371),,,3 6w4,ﬁ

af =

= (—aaﬂ)

and is zero for other indices; it is thus satisfied. Equa-
tion (9) is satisfied since all terms are zero. The func-
tional is determined from Eq. (6) to be w; ff which
gives

J=—% utta tta,s AV [puy,y dV+boundary terms.

This is the variational integral in the Helmholtz-
Korteweg principle with a Lagrange multiplier intro-
duced to account for the constraint V-u=0. The
functional J is minimized; thus the viscous dissipation
is minimized.
The same result applies if wj is interpreted as w;=
p+%1u-u, giving Brill’s result.4
Next consider the full equations (10).
fa= _wd.a+#wa.ﬂﬂ+APfaﬁ'yf'y&cwﬂ'we.b;
Ji=wg,=0. (13)

We take wy=p+3u-u and 4 is a constant, introduced
for convenience, which takes the values 0 or 1. The
various derivatives are

afe .
= Ubapdys, zero otherwise,
01s, s
(9 a
f = A peqs€eysivs,
0w,y
l afa afd 3]‘4
‘ T = ays =aﬂ7; o _01
0wy, y dwg, 4 04,y
af= .
r —— = A peapy€yscWe 5, zero otherwise.
| awﬁ

Equation (8) gives, for /, s=1, 2, or 3
Ap(eaﬁcfz'yﬂ'*'fﬂﬁee('ya )wb =0.

If we take a=1 and =2, then e must be 3, giving

Ap(essesps+ esseayws ) =0,
or Awy=Aw,=0. =3 gives Aw;=0. Thus, we obtain

Au=0
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as the equation which must be satisfied if the Fréchet
differential is symmetric and a variational principle
exists. This gives only a trivial result unless 4 =0, We
conclude then that a variational principle exists for the
steady-state Navier-Stokes equations (10) only if
ux(Vxu)=0,

If the inertial term is written in the form u:vu and
we apply the conditions Egs. (7)-(9), we find that no
variational principle exists unless u-vu=0,

We next consider the introduction of a weighting
factor, since this sometimes changes an operator to a
symmetric form.1

Jo*=g(Wm, Wm ) [ —wt,aFpwa 881 A peapyeysewswe s ], (14)

A= h(Wm, Win,n) Wa e (15)
Now the various derivatives are
a fi 4
f = g8 s, zero otherwise,
0wg s
af« fa ag
L = + A pgeaneygity,
dwg g 0wg,y
of fe o
o= =Pt -
We,y £ 0wy 4
aft oh
=hd Wa .o
0wg,y or e, dwg,,’
af oh
=Wa,a T,
6w4,., 6w4,.,
afe 9
_f' = A pgeagyeysce st f— =£ ’
Jwg g dwg
af* f= og aft oh
T = —7T T ~Waa T
owy g ow’  dw; ow;
Now Eq. (8) requires, for I=s5=1,
i
Apgflqifv'ylw'q'*' - =Fvﬁ(g515)
14 awl,.,
ag 9g
=pu (@ w,,.,.,—}- m wm,e.,) .
(16)

Since g is independent of @, ey, and Eq. (16) must hold
for all functions wm, it is necessary that dg/dw,, =0.
Then, g depends only on w.. However, Eq. (16)
requires the coefficient of wm,y to be zero; i.e., dg/dwn=
0. Thus, g is a constant. Similarly, Eq. (8) for I=4,
s=p,j=" gives

oh
hégy+We,o ——

=—(—gbgy).
3w (—£84)
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Choosing 87~ gives 0h/dwg =0 and then k=g. Thus,
both g and % are constants and no improvement results
from the weighting function.

We have shown that Eq. (13) is the Euler-Lagrange
equation of a variational principle only for 4=0, i.e.,
ux Vxu=0. This result holds for equations in the
form of Eq. (13) even if u=0. For an inviscid fluid,
however, we know the inertial terms can be included
in a variational principle. The resolution of this paradox
lies in the form of the equations. For the inviscid fluid
consider the equations and variables ordered as follows.

(wy, we,w3) =1, putpVa—pBVS—pyVa=0,

wy=p, Lu-u—U—Pd—p/p+u-va
—Bu-VS—yu:vag=0,

ws=S, —pT+pu-Vpe+pEpV-u+pu-vp=0,

we=a, pu-Vy+ypV-ut+yu-vp=0, (17)

wy=a, —pV.u—u-Vp=0,

wg=h, —pu-vVS=0,

we=vy, —pu-Va=0.

Then, the application of Egs. (7)—-(9) shows that a
variational principle should exist for this system of
equations. The variational integral is, of course, the
usual one.*

The use of Fréchet differentials gives a straightfor-
ward method of deciding if a set of equations has a
variational principle. The formalism, and results, de-
pend on the form of the equations. A variational
principle holds for Eq. (17), but not for Eq. (13) with
p=0, A=1, even though both sets of equations refer
to the same physical problem.

IV. ADJOINT VARIATIONAL PRINCIPLE

For linear self-adjoint problems a variational prin-
ciple exists. For linear, nonself-adjoint problems a
variational principle exists for the problem and its
adjoint.!® We define an adjoint equation for nonlinear
operators, and use this concept to derive a variational
principle for the Navier—Stokes equation and its adjoint.

Replace Eq. (5) with

[¢NJ/odV=[¢N.'¥ dV+[B(x,$) dS, (18)

where the left-hand side is integrated by parts to
eliminate derivatives operating on ¢ and the term
involving B comes from the integration by parts. The
term B is evaluated on the boundary and the exact
form depends on the differential operator N (#).

The right-hand side then defines the Fréchet deriva-
tive, N,’, which is adjoint to N,’. We then define the
adjoint operator

N*(u,v)=N,"v. (19)
If N/=N,’ the Fréchet differential is symmetric and

o
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a variational principle exists. If not, we can construct
a variational principle for N (#) and N*(u, v) together
from the functional

I{u,v)=[vN(u)dV.

The Euler-Lagrange equations are then N(#)=0 and
N*(u,v)=0, which can be seen by taking the variation
with respect to both % and v and using Eq. (18). We
next apply this procedure to the Navier—Stokes equa-
tions.

The variational principle is generated by considering
the functional

I(wi’ w.-*):fw.»*f" dVy (20)

where f* is given by Eq. (10) and f* by Eq. (11).
Integration of Eq. (20) by parts gives the adjoint
equation, and addition of appropriate boundary terms
accounts for natural boundary conditions. We can thus
be led to the following principle:

Make I(u, u*) stationary subject to the constraints

wa,a=0, 'wa,a*zo in V, (21)
Wa= La, wa*=ga* on Sl} (22)
Walla=g, we*n,=g* on Sy, (23)

I(u, w*)= / [pwa*wgwa s+ 21 dyg dyg™] AV
83 32

— / gatwg dS— /gg*(wg—w.,n.,ng) ds.
83 82

In these equations we use

daﬁz%(wa,ﬂ_*"wﬂﬂ); Top= zl‘da-ﬁ;

for both primary (w,) and adjoint (w,*) variables. The
functions, g, g*, gs, gs* are specified functions of position
on the boundary.

The incompressibility constraints are included by
introducing Lagrange multipliers A* and A, and sub-
tracting from the variational integral the term

/ (AN*0g.0F AWe o™ | dV.
Variations with respect to we, w,*, A*, and A then give
the Euler equations
Wy :

(24)
(25)

PWsWa s+N o 2udap,p=0,
dw.*:

ON*:

pws*wg «— p(Wa*10p) s— 2udag g*+N ¥ =0,

We,a=0, 0N Wa,o*=0.

Equation (24) is, of course, the Navier-Stokes equa-
tion, while Eq. (25) is the adjoint to it. Note that the
adjoint operator depends on both primary and adjoint
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variables, but is linear in the adjoint variables. This is
a feature of the way it was derived using Eq. (18).
The Lagrange multipliers A and A* can be interpreted
as the pressures. The essential boundary conditions are
Eq. (22)-(23) while the natural boundary conditions
are

2unydg,y—Ang—gg=0
or on .53,
nyTyg—Ang=gg

2u(dagng— dygngnma) — gg=0
or "~ on S,
18T ga~— T gynghyna=gs

2ungdag*+pwa weng—Nn,— go* =0
or on Ss,
Hg Taﬂ*+ Pwa*wﬁnﬁ—' )\*na = ga*

2p(dag*ng— doysngnamg)
FpWatta(We* — wy*nymg) — gg* =0
or on S,.
nnga* - Tg,*nﬂnyna
+ pwWarty (we*— Wy nmg) = gs*

The boundary conditions on S; are determined by
writing, e.g.,

dwe™ = (8w,* — Swg*nghe ) +ows*ngne,

and then noting that §(ws*ns)=0 on S, by condition
(23) and only the tangential component, dw,*— dwg*ngn,,
is an arbitrary variation on S.

We note the problem involving w, is just the Navier—
Stokes equation with general boundary conditions to
permit the velocity to be specified on S;, the normal
component of velocity and tangential stress are specified
on S, and the stress is specified on S;. The functions
g* and gg* are specified functions chosen at will, since
the adjoint problem has no physical meaning. In other
linear problems these nonhomogeneous functions can
be chosen in such a way that the variational integral
represents some quantity of physical interest.’® Here,
that does not appear to be possible. We have thus
constructed a variational principle for the Navier—
Stokes equation and its adjoint, Eq. (25). The result
is formal, however, because the adjoint equation has
no physical interpretation. Slattery? used an approach
related to that used here, in that he introduced non-
linear adjoint equations, but the use of Fréchet dif-
ferentials aids in the choice of variational integral and
makes systematic the question of the existence and the
generation of the variational principle.

V. CONCLUSIONS

Fréchet differentials can be used to answer the ques-
tion of the existence of a variational principle for non-
linear operators. The Navier-Stokes equation cannot
be derived from a classical variational principle in-
volving only the velocity unless one of the terms
ux(Vxu) or u-Vu is zero. An adjoint equation can
be defined for nonlinear operators using Fréchet dif-
ferentials. A variational principle can then be found for
the Navier-Stokes equation and its adjoint equation.
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