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Upper and Lower Bounds for

Solutions to the Transport Equation

BRUCE A. FINLAYSON and L. E. SCRIVEN

University of Minnesota, Minneapolis, Minnesota

The collocation method and a maximum principle are used to generate pointwise, improvable
upper and lower bounds for solutions of the transport equation. This new method of analysis
is applicable to the unsteady state transport equation with a specified velocity field as well as
to other problems which have a maximum principle. An application to unsteady state transfer

to a fluid in ideal stagnation flow illustrates the method.

Because analytical solutions of the equations of change
for realistic mathematical models are so rare, the engineer
must of course rely often on approximate solutions in ana-
lyzing transport pﬁenomena. The method of weighted re-
siduals (I to 3) is a very general class of error-distribution
approximating schemes with features the engineer finds
attractive; but, unfortunately, the method suffers from the
deficiency that usually no error bounds can be placed on
the approximate solution. In a succession of approximate
solutions there may be no stage at which it is possible to
state how good the approximation is, even though a proof
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of ultimate convergence may be available. This paper out-
lines a method of approximate solution which combines
the collocation method, which is one version of the method
of weighted residuals, with a maximum principle to pro-
vide pointwise, improvable upper and lower bounds for a
scalar field such as temperature or concentration. The
method is limited to those problems for which a maximum
principle has been proved, but these include a large class
of problems of concern to the chemical engineer—in par-
ticular, the unsteady state transport equation with a
known velocity field.

The idea of combining an approximation method with
a maximum principle has been applied previously by
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Nickel (4) and by Collatz (5). Nickel proved a maximum
principle for the laminar flow of an incompressible fluid
in a two-dimensional boundary layer. He then constructed
comparison functions which are lower bounds on the veloc-
ity, but he was unable to provide upper bounds on the
velocity for this nonlinear, steady state problem. Collatz
(5) used a maximum principle for elliptic partial differ-
ential equations to obtain upper and lower bounds for
the solution of Poisson’s equation. He used trial solutions
which contained two adjustable parameters and there was
no way to improve the results systematically. The pro-
cedure presented here differs from that of Collatz in that:
(1) the construction of comparison functions is syste-
matic, (2) any number of parameters may be used, and
(3) the results are systematically improved with succes-
sive approximations.? A noteworthy feature is the optimi-
zation of bounds by solving linear rogramming problems.

Following a brief statement of the underlying theorems,
the method is outlined and then applied to a specific prob-
lem. Finally, the general merits of the method are dis-
cussed along with areas for future research. An appendix
gives detailed statements of the pertinent theorems.

OUTLINE OF METHOD

Maximum Principle
Consider the following initial value problem:

2u

dxi0x;

Lw = 3 a(x0)

Li=1 .

3 ou ou
+g; b (X,t)—ax—i-i-c(x;t) --5=f(x,t) (1)

and

u(x, t=0) = ¢(x) (2)
in some region of physical space V and

u(x’ t) =41(x3, t) (3)

on §, the boundary of V. This problem includes as a spe-
cial case, which is treated below, the unsteady state trans-
port equation with a known velocity field. The dependent
variable u is then interpreted as either temperature or
concentration. The maximum principle for this problem,
due to Il'in et al. (6), states in essencet that if for some
function w(x, ¢)

Lw)=0,xinV, t>0

(4)
wi(x, t=0)=0, xin V
and
w=0 xon$§ (5)
then
w(x,t) =0 xinV, t>0 (6)

Suppose there is a function v which satisfies the following
conditions:

L(v) —f=0 xinV, t>0
o(x,t=0)=4¢ xinV (7)
o(x,t) =y xonS$S, t>0

Then the new function w = v — u, where u is the un-
known solution to Equations (1), (2), and (3), satisfies

t Of course the method used here is applicable to more general e%ua-
tions than are treated by Collatz. Unsteady situations are considered here
and there are no restrictions on the velocity field other than it be known.

1 See the Appendix for a rigorous statement of the theorem. The max-

imum principle for this problem was first proved in a slightly different
form by Nirenberg {8).
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the conditions of the theorem [Equations (4) and (5)]
and hence

w=0 xinV, t>0 (8)
Then

v=y xinV, t>0 (9)
and v is a pointwise upper bound on u. Clearly, the solu-
tion u need not be known. The conditions on v in Equa-
tion (7) are sufficient to make v an upper bound on u,
and Equation (7) does not involve the solution u. What
the maximum principle does not reveal is how to
obtain a function v which satisfies Conditions (7); that is
the job of the engineer.

It should be noted that the maximum principle remains
valid if each inequality is reversed in Equations (4) and
(5). Consequently, if a function is found that satisfies
Conditions (7) with the inequality reversed, then that
function is a lower bound on . Moreover, at any point
where the upper and lower bounds coincide (and hence
the exact value of u is known), the respective first deriv-
atives are also upper and lower bounds for the first deriv-
atives of the exact solution (this is shown in the Appen-
dix). For example, if the comparison functions satisty the
boundary conditions as in Conditions (7), then the flux
at the boundary can be bounded above and below. This
feature is exploited in the example treated below. The flux
at the boundary is often of primary concern in practice, of
course,

Construction of Comparison Functions

Approximate methods provide a source of comparison
functions for use in establishing the bounds mentioned in
the preceding section. Any approximate solution can be
tested, and if Conditions (7) hold at each position and
time, then the approximate solution is an upper bound.
On the other hand, if similar conditions hold but with
the inequality reversed, that is, if the residual L(v) — f
Is everywhere non-negative, then the approximate solu-
tion is a lower bound. The following method ensures that
Conditions (7) are satisfied (and likewise for the case
in which the inequality is reversed).

One assumes a trial solution of the form

N
u® =u, + 2 ciy
i=1

(10)
and forms the residual (I to 3)

N
R[u*]1=L{u*]—f=R, + 2 cR;
i=1

(11)

where R, and R; depend on the u,, u;, and L. If the origi-
nal problem is solved by the collocation method, one has

N
Ro+ 2 C.'Ri=0 at

i=1

(x,t) = (x4, j=1,2,...,N (12)
This is a system of N equations for the N unknown con-
stants ¢;, When they are obtained the values of ¢; deter-
mine the approximate solution given by Equation (10). If
Equation (12) is satisfied, the residual as a function of
position oscillates around zero, taking on positive and
negative values in the neighborhood of the collocation
points. But then Conditions (7) are not satisfied, and so
the approximate solution is not necessarily either an up-
per or lower bound.

To rectify this situation, one rewrites Equation (12),
replacing zero by a small negative number —e¢ on the
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right-hand side:

N
Ro 4+ 2 CiRiz —€

i=1
(x)t)z(xj:t]')ajzlaz;"-’N (13)

Now if Equation (13) is satisfied, the residual as a func-
tion of position oscillates around —e and might conceiva-
bly be negative at all positions and time. Were this true,
one would have

N
Rrkz R, =0, xinV, t>0
i=1

(14)

and Equations (7), (8), and (9) would ensure that the
approximate solution is an upper bound on the actual
solution. A lower bound might be found in similar fashion.
Whether the possibility is realized depends on the mag-
nitude of ¢ and the location of the collocation points,
which are both arbitrary matters of choice. While this
implies a need to hunt for fruitful choices, the effort and
potential frustration of an uncoordinated search can be
avoided by a stratagem that is a novel and important part
of the new method.

Rather than insisting that the residual have a fixed
value —e at N collocation points, one requires only that
it be no greater (in the algebraic sense) than —e at a
number of positions and times:

N
R, + 2 ciRi=—¢ at

i=1

(1) = (xpt;), j=1,2, ... M (15)

This represents a system of linear constraints on the con-
stants ¢;. Such restrictions remind one of linear program-
ming problems, and it turns out that a similarity exists
which can be exploited to good advantage.

Indeed, there is a linear programming problem which
corresponds to minimizing the upper bound (and another
corresponding to maximizing the lower bound, as is clear
by analogy): minimize the so-called profit function

N
Q = 2 Ciui(xo; to)
i=1 - (16)

while satisfying the constraints, Inequalities (15). The
signs of the c; are unrestricted, but one can express these
constants in terms of a doubled set:

Ci = Ci’ —_ Ci”, Ci’ = 0, Ci” =0 (17)
There are now twice as many constants, but they are all
positive. The solution to this linear programming problem
minimizes the approximate solution at the point (X0, £o) .
If the residual satisfies Inequalities (14), the approximate
solution is an upper bound. In this way one arrives at the
best set of ¢; which satisfies Inequalities (15), instead of
blindly solving Equation (13).

The procedure, then, is to maximize the “profit function”
Q for a given ¢, subject to Inequalities (15). The result is
then tested at all points (x, t); if R[u*] =0 everywhere
in' V for t > 0, then u® is a comparison function. Further-
more, u® is so constituted that it is the “best” comparison
function in that it is better than any other approximate
solution of the form of Equation (10), as long as u,, u;, ¢,
and the collocation points are the same. As the number N
of approximating functions increases, one knows that the
upper bound (at the point x,, t,) can never increase, be-
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cause the (N — 1) approximation is contained within
the Nt approximation for cy = 0. In this way, one can
construct a “best” comparison function, and can syste-
matically improve the results.

Naturally the results depend on the value of e It can
be shown (3) that the profit function Q is a monotone
function of ¢; consequently e should be as small as possi-
ble. However, if it is made too small, and ¢ = 0 is obvi-
ously too small, no upper bound results, as indicated in
the discussion following Equations (12) and (13). The
method is to find a value of ¢ that leads to a comparison
function and then to decrease ¢ as much as possible. The
feasibility of doing this is demonstrated below.

APPLICATION

As a test problem, consider the following unsteady state
convective transport problem, which has already been
solved by several versions of the method of weighted re-
siduals by use of various criteria (2). A liquid in potential
flow and initially at temperature T, impinges upon a flat
free interface. At time zero, the temperature of the inter-
face is raised to T;; the flow field remains the same. The
problem is to predict the unsteady state temperature dis-
tribution and heat flux at the interface (or similar quanti-
ties for the equivalent mass transfer problem).

The velocity field is taken as

u = a(xi— zk) (18)

where a is the stagnation flow parameter. The dimension-
less transport equation and boundary and initial condi-
tions are (2, 3)

oT

L[T] = VZT—Npeu' VT—'a—t=0
T(x,0) =0

(19)
T(z=0,t) =1

T is bounded for large x

The physical situation should be examined carefully for
guidance in the choice of approximating function. It is
clear that immediately after the step change in interfacial
temperature, the region in which the temperature has
changed significantly is confined to a small region adjacent
to the interface—a thermal boundary layer. As time pro-
ceeds, this region of influence becomes larger. Within it,
the temperature decreases in value monotonically from
unity at the interface to substantially zero at the edge of
the thermal boundary layer. Commonly used polynomial
functions with variable “boundary-layer thickness,” or
thermal penetration depth are suitable here. The particu-
lar forms of trial solutions used below resemble closely
those employed earlier in solving the same problem by
means of various versions of the method of weighted re-
siduals (2).

Upper Bound
For the upper bound on heat flux, the trial solution is

5[5l

0 >

z <
] 8 ‘
T*(z,t) = 2
R

(20)
The restrictions
1+3a =0, 8(0)=0 en
ensure that T*® satisfies the boundary and initial condi-
tions, while the equations
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N
ia =0, Ei(i—l)aixizo (22)
i=1

s

i=1

ensure that the derivatives in the differential equation are
continuous at z = « §; these derivatives are then continu-
ous for z > 0, ¢ > 0. The function §( t) is chosen to satisfy
ds?
—dT+4Npe 32=a (23)
with « a constant as yet undetermined; this choice is sug-
gested by previous work (2). The residual is

28°R[T*] = 28°L[T*] =

LY sl oy

2=k §

0 >

and the heat flux at the interface is

NwalT*] = — 22 Np 12 [1 — exp (— 4Npet) J-12
Va
(25)
N
T* is bounded above by 1 + «¥ 2 lai|. If a, &, and a;
i=1

are so chosen that
R[T*]=0, t>0 (26)

then all the hypotheses of Theorem 4 (Appendix) are ful-
filled; therefore, T* is a lower bound for the exact solu-
tion T and, furthermore, the approximation to the heat
flux at the interface is an upper bound on the exact value.
The independent variables in Equation (24) appear only
in the combination 4 = z/8; consequently Equation (26)
must be satisfied as a function of only one variable, v,
rather than two, z and ¢ It follows that the collocation
maximum principle method is simply

z=0,

2a
minimize Q = — —~_ (27)
Ve

subject to the conditions at M points u = u;
N
A= 3 [aup 4+ 2(i—1)] iguf=.
i=1

Oéu]'ék,

i=1,2...,M (28)

as well as Equations (21) and (22). For simplicity the M
collocation points are distributed evenly between zero
and «. To ensure essential continuity the residual at u =
x must be zero, rather than ¢; then the additional condition

dA/du=-—¢ at u =« (29)

guarantees that Equation (28) holds in the left-hand
neighborhood of u = «.

Calculations were performed on the Control Data 1604
computer at the University of Minnesota, For a given set
of parameters (a, &, e, N, M), the linear programming
problem was formulated, solved, and the results tested to
see whether Inequality 26 was satisfied. If it was, € was
decreased and the calculations were repeated; if not,
was increased before further calculations. In this way the
lowest value of ¢ was found for which the corresponding
solution is a pointwise lower bound on temperature.

Lower Bound

To obtain upper bounds for temperature, two different
trial solutions can be used:
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N
T,* = =i/ (30)
or
N
T,* = ae= i+ D2/5c) (31)
with
N
2 a; = 1
= (32)

The function §(¢) is again chosen to satisfy Equation (23)
and the condition §(0) = 0, with a_to be determined, The
residuals are again functions of « = z/8 alone, The heat
flux at the interface is

4Np, < i -1/2
NNu,1 = 2 a; [1 — exp (— 4Npet)]
@ =1
(33)
4Np, <
Nivuy = 23 (i Dai [1— exp (—4Npet) 12
® =1 )

(34)

The values of « and the ¢; must be so chosen that
RIT*1<0 i=1or2 (35)

for all positive u. Inasmuch as T;* is bounded below by
— 3a;| for u = 0, the conditions of Theorem 4 are satisfied
and T;* is an upper bound for the temperature; the ap-
proximate heat flux at the interface is then a lower bound
on the exact value. The problem is to maximize

N N
Q= 2 g or Q=3 (i+1)a
i=1 i=1
(36)
subject to the constraint in Condition (35) and to Im-
equalities (37).

Condition (35) must be satisfied on the semi-infinite
interval 0 =< u = . It is not practicable, however, to
distribute collocation points on such an interval. But it is
possible to ensure that R[T;* (u)] = 0 for all values of u
greater than a certain cut-off value u®; in this way the
distribution of collocation points can be restricted to a
finite interval. As proved elsewhere (3) the linear restric-
tions

N N
S (i+la=—¢ j=23, ..,N, S G+ Da=e
i=; i=1

’ (a7)
do ensure that R[T,®* (u)] = 0 for u = u®, where

N
2 2 (i+1)2g;
i=j

maximum
u® =

1=j=N

N
@ 2 (i+1) a (38)

(A similar result applies to T1*.) The value of u* de-
pends on the solution g; of the linear programming prob-
lem. Trial and error can be avoided if the M collocation
points turmn out to have been spread over a range running
from u = 0 to a value greater than u*. In this example
u® = 2(N + 1) /a was usually satisfactory as a working
cut-off value.

For a given set of parameters (o, ¢, N, M ) the linear
programming problem and the problem of refining ¢ were
handled in tie same way as above.
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Fig. 1. Upper and lower bounds on temperature, « = 4.

Results

The upper and lower bounds for temperature are pre-
sented graphically in Figure 1. Complete numerical re-
sults are available in tabular form elsewhere (3). The
best estimates obtained for heat flux at the interface are
0.864 Np,!/2 [1— exp (— 4Np,t)]~1/2

= Nyu = 1.145 Np.'/2 [1 — exp (— 4Npt) ] 1/ (39)
or

Nyu = (1.00 £ 0.15)Np,/2 [1 — exp (— 4Npct) ]~ 12
(40)

From Chan’s solution the exact value of the constant mul-
tiplier is known to be 1.128 (2). Typical estimates for the
temperature are

T = 0.748 = 0.030 at z = §/4
T = 0.512 + 0.040 at z = §/2 (41)
T =0.195*0.050 at z=§

In fact the relative error varies from % 4% at z = §/4 to
* 25% at z = 8§ (the percentage increasing still more
with depth). These estimates for temperature could prob-
ably be improved by using the value of temperature at the
desired point as the profit function, Q, rather than the in-
terface heat flux, as was done in this investigation; actu-
ally the temperature estimates are incidental here.

Discussion of Results

The results presented are more extensive than would
usually be required, but interesting conclusions can be
drawn which might simplify or shorten the computations
in other applications of the collocation maximum principle
method. :

Epsilon. The effect of epsilon on the heat flux estimate,
shown in Figure 2, obeys the theoretical prediction: the

1.20| /"’o\ﬂ", %2
+=0——"0 O'Nes, Mg
h-O——"o/o
1o Y— EXACT SOLUTION =4, K52
NeB,Mui2
.00~
x
o}
-
w
0.90—
O—o
\ a=2,N=3, M=6
080 o\
070 1 1 1 1 ! L 1 1
[o] 004 008 al2 [0X.]
€

Fig. 2. Dependence of flux value on epsilon.
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TABLE 1. HEAT FLUX DEPENDENCE ON THE
NUMBER OF APPROXIMATING FUNCTIONS

N M —2a1/a
a=4, k=2, e= 0,125
4 4 1.8251
5 4 1.2148
8 7 1.1924
a =4, k=2, e = 0.0156
8 12 1.1490
9 12 1.1477

interface heat flux is a monotone function of e¢. More
sophisticated procedures for locating the minimum admis-
sible value of ¢ could be used (3).

Number of approximating functions. The upper bound
on flux decreases as N increases, as is shown in Table 1.

The situation is more complicated when exponentials
are used in the trial function. The Nt* restriction in In-
equalities (37) is

(N + 1)ay = —c (42)

so that ay = 0 is not allowed. Consequently, the Nt ap-
proximation is not contained within the (N — 1)t ap-
proximation; accordingly the flux may possibly decrease
as N increases, thereby giving a less desirable lower
bound. When the foregoing restriction is replaced by an
= (, the best solution occurs when ay = 0. In addition, if
N is too large, Inequalities (37) become incompatible
with Inequalities (35). This is unfortunate, because it
limits the trial solutions to two or three terms, at least in
this case, and the dramatic improvement obtained in the
upper bound on flux evidently cannot be duplicated for

‘the lower bound.

Residual. Figure 3 illustrates the oscillatory dependence
of the residual on relative position u. The collocation
points are marked to show that the minimum of the re-
sidual occurs at roughly the midpoint between two collo-
cation points,

Computer time. As a rough indication of the amount of
computation time needed for this method, sing-four dif-
ferent functions T® were generated and tested within 1
min. on the Control Data 1604 machine with a Fortran
program. Some of these functions proved not to be com-
parison functions, but it obviously does not take long to
generate a great many solutions.

These results suggest that the collocation maximum
principle method is a reasonably efficient means for con-

- structing upper and lower bounds for solutions to the un-

steady state transport equations. The limitations of the
method are discussed in the following section.
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Fig. 3. Dependence on residual on position,
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CONCLUDING REMARKS

The maximum principle (Theorems 1 to 4 in the Ap-
pendix) has some interesting consequences which are not
related to any approximate solution. For the unsteady
state mass transport equation with a first-order chemical
reaction, namely

3
— Ly[e] =a—:-+ V+(uc) = VD Ve—Ke= 0, K< 0
(43)

the solution can be compared to that without chemical
reaction. If

a /
—L[¢] = a_tc+ V(ue’) — VD V¢’ =0 (44)

then the solution without reaction ¢* is an upper bound
on that with reaction ¢. Because

Lyfc—¢'] = — K¢’ (45)

and ¢’ = 0, the right-hand side is always positive. The
maximum principle states that if

Lylc—c]1=0 (48)
then
c—c¢' =0 (47)

Consequently, the concentration is everywhere less than
it would be without the chemical reaction. This result
holds irrespective of the relative importance of the con-
vective, diffusive, and reaction Pprocesses.

The collocation maximum principle method requires
three important items: (1) a maximum principle, (2)
methods for maximizing a quantity subject to certain con-
straints, and (3) methods for proving that a function is
positive in the entire space-time domain. The Brst item
limits application to those problems for which a maximum
principle has been proved. This includes many practically
important unsteady state transport problems, but onl
first-order chemical reactions can be included and the
boundary conditions must be of the first kind (Dirichlet
problem), However, a zero-order generation term can be
handled. For the second item the simplex method of linear
programming provides an efficient and well-established
procedure for solving the maximization problem. The third
item probably limits the usefulness of the method to a few
dimensions, t}(l)r as the number of dimensions increases, it
becomes more difficult to prove that the residual is posi-
tive at every position and time. Numerical searching
schemes can be used, but computation time multiplies rap-
idly with the number of dimensions. But since only one
good solution is needed, this might be acceptable in some
circumstances. The calculations presented here also sug-
gest that better results are obtained for finite domains than
for infinite domains. The requirement that the residual be
negative for all z > 0 introduces restrictions that limit im-
provement of successive approximations. The choice of
functional form of trial functions remains an open matter;
choices other than those made here might yield better
results than have been presented.

Future research might well include attempts to (1)
prove a maximum principle which allows nonlinear chem-
ical reaction terms, (2) to improve the choice of trial
solutions for semi-infinite and two-dimensional domains,
and (3) to apply the same procedure to the conventional
boundary-layer equations—possibly the most important
area. Nickel (4), who proved a maximum principle for
the boundary-layer equations for velocity, constructed
lower bounds on velocity, but there is no evident way to
improve his results nor as yet to obtain an upper bound.
The same ideas presented here, combined with Nickel’s
maximum principle and nonlinear programming, might
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lead to such an upper bound with a possibility of syste-
matically improving the results. Further research is sug-
gested to explore this Eossibility. For one thing, any in-
formation on the relia ility of the commonly used von
Karmén-Pohlhausen approximation scheme (method of
moments} is likely to be valuable, In general, as the engi-
neer with each successive generation of high-speed com-
puters attempts to get approximate solutions to more and
more difficult flow and transport problems, the potential
value to him of information about error bounds increases.
In some cases it may pay for him to look thoroughly into
the subject while still ina planning stage.
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NOTATION

a stagnation flow parameter
a; ungetermined constants

A defined by Equation (28)

¢ adjustable constants (or functions)
concentration

molecular diffusivit

unit vector parallel to interface

unit vector perpendicular to interface
first-order reaction rate constant
general differential operator

number of collocation points

number of approximating functions
Nusselt number

Peclet number

profit function; see Equation (18)
residual

boundary of V

temperature

time

dummy dependent variable; also z/8
velocity

domain of physical space

dummy comparison function
position (z, y, z)

distance in direction of i

distance in direction of k

I

ZzgoRmge

&

L T T O

ol
<

BRXEg QR * w0

k

@
=
]
1
-

etters
parameter in trial solution; see Equation (23)
thermal penetration depth

positive number

parameter in trial solution

known initial condition

known boundary condition
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APPENDIX

A maximum principle for parabolic partial differential equa-
tions has been proves by IT'in, Kalashnikov, and Oleinik (6).
The pertinent theorems are repeated here; the notation, while
complicated, is necessary for the correct statement of the
theorems. Let

D = a bounded domain in an (n 4 1) dimensional Eu-
clidean space, contained between the planes ¢t = 0 and
t=T

D = closure of D

D, = intersection of D with the plane ¢t = 0

S = closure of the set of boundary points of D, for which

t#£0and t£T

S = points of § that do not belong to t = 0

T' = union of S and Do

H = all points of an (n + 1) dimensional Euclidean space

_ for which0 <t=T

H = closure of H

G = semi-infinite domain in an (n 4 1) dimensional Eu-
clidean space for which 0 < ¢t=T and which is par-

B tially bounded by S;

G = closure of G _

Go = intersection of G with the plane t = 0

Sz = closure of the set of boundary points of G for which
t£0andt«T .

54 = points of 83 that do not belong to t = 0

Ty = union of S3 and G,

x = (xlx X2, X3 )-

Suppose that ay, by, ¢, f are real and take finite values, and
that

N N
8ij = aj, 3 Gijeoj > 0if 3 2> 0
=1 i1

1

Finally, the function u(x, £) is said to be a solution of
L(u) = f (A1)

at (x,t) if u(x,t) is continuous and has continuous derivatives
ou/oxi, ou/adt, d2u/dxdx; (4,§ = 1,2, 3) satisfying (Al).

Maoximum Principle

The maximum principle for parabolic differential equations
is (6):

Theorem 1: Suppose that the function u(x, ¢) is continuous
in D, that those of its derivatives which enter into the operator
L are continuous, and that it satisfies the inequality L(u) = 0
in D — T, where c(z,¢) < M and M is some constant. Then
u(x,t) = 0in D if u(x,¢) = O on T.

The theorem for infinite domains is similar (6):

Theorem 2: Let u(x,¢) be continuous and bounded below
in H: u(x, t) > —m, m > 0. Suppose that the function u(x, t)
has continuous derivatives in H as far as they occur in the
operator L and that L(u) = 0. Let ai;,bi,c satisfy the follow-
ing relations:

laiglx, 8)] < M2 4 1), |bi(x, £)| < M\/72 + L c(x, t) ?Al\g)

3
where 12 = 3 x;2 and M is a positive constant. Then u(z, t)

i=1
=0 everywhere in H if =0 for t = 0.

Now, as might be anticipated, a similar theorem holds for
a semi-infinite domain:

’I;heorem 3: Let u(x, t) be continuous and bounded below
in G: u(x,t) > —m, m > 0. Suppose that the function u(x, t)
has continuous derivatives in G as far as they occur in the
operator L and that L(u) = 0 in G— T2. Let ai;,bic satig{y
Equation (A2). If u(x,¢t) = 0 on T, then u(x,t) = 0 in G.

This theorem can be proved in exactly the same way that
Theorem 2 is proved. The semi-infinite domain is replaced by
an arbitrarily large one and Theorem 1 is applied.

Consider the problem
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L(u) = f(x,t)inG

u(x,t =0) = ¢(x)inG (A3)
u(x,t) = ¢(x,t)in S

where ¢ and y are given continuous functions and |ai| <
M(r2 4+ 1), |bi] < M(r241)12, and ¢ < M, where M is
a positive constant. The function u(x, ¢) is said to be a solu-
tion if it satisfies Equation (A3), if it is continuous, and
if it has continu_o_us derivatives 9u/dx:, du/ot, 02u/dxidx; (i, j
=1, 2 3)_in G; in addition 4 must be bounded above and
below in G. A function v(x,¢) is said to be a comparison
function if it satisfles the same requirements as 4 except that
Equation (A3) is replaced by either

L(vy) = f L(w) = f
[ nc
vu(x,0) = ¢ or vx,0) = ¢
(A4)
vu(x,t) = ¢ vi(xs,t) = ¢ on S

vy is bounded below v; is bounded above

Theorem 4: The function v; is a lower bound and vy is an
upper bound for the solution of Equation (A3). If v; = v,
at any point (%o,t) in G, then the first derivatives of v; and
vy are lower and upper bounds, respectively, for the first de-
rivatives of u.

Proof: Consider wy = vy — 4, w; = 4 — v;. Then
L{wy) = 0 L{w) = 0
in G
wy(x,0) = 0 wi(x,0) = 0 (A5)

wy(xs, t) = 0 wi(xs,t) = 0  onS,

The functions wy and wi are continuous in G and have
continuous derivatives in G as far as they occur in L, since wy
and w; are the differences of functions with these properties.
The functions w, and w; are continuous on S as well as for
x in G, t = 0. Even though u, vy, and v; are not necessarily
continuous at ¢ =0, x on S [since ¢(xs) may not equal
¥(xs,0)], their differences are continuous at t =0, x on S.
Consequently, w, and w; are continuous in G~ The functions

wy and wi are bounded below in G so all the conditions of
the theorem are satisfied. Consequently

wy = 0 w; =0 inG;

hence

(A6)

Uy = U u = y

and vy is an upper bound for 4, whereas v; is a lower bound
for u. If vy = vy at (%o, %), then 4 = v} = vy at (xo, to),
Hence

u(%o, to + At} — u(zo, to) = vi(x0, to + At) — v1{%0, ta()A7

Since u and v; are continuous in G, this inequality holds uni-
formly with respect to ¢ at (o, t,). Hence

ou lim  u(xo, to + At) — (%0, t5)
—6; Tty At 0 At
- m  vixo, to + At) — vi(xo, o) _ du 2oty
At 0 At at
(A8)

Similar results hold for spatial first derivatives.
As a result of Theorem 4, the functions vu and 1 provide
pointwise error bounds for u, that is

1 1
t——(utv) | <—(vu—v) inG (A9)
2 2
The method described above provides these comparison func-
tions, vy and v;.
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