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REACTOR/TRANSPORT MODELS FOR DESIGN:
HOW TO TEACH STUDENTS AND PRACTITIONERS
TO USE THE COMPUTER WISELY

Bruce A. Finlayson
University of Washington
Seattle, WA 98195-1750

Brigette M. Rosendall
Bechtel Technology and Consulting
San Francisco, CA 94119-3965

Abstract

As computer-aided design becomes more prevalent in the process industry, it is essential that graduating
engineers have the breadth to know the capabilities of CAD as well as the skepticism to interpret
computer results wisely. Current day students are caught between an educational system that focuses on
analytical solutions to simplified problems and CAD programs that provide generality and power that
can be overwhelming. Students are only too willing to accept computer results at face value, which
could be disastrous in a commercial environment. An important aspect of current day education should
be to instill in students and practitioners a critical examination of results from their CAD program. This
paper presents experience with CAD tools in an educational environment as well as an industrial

environment,
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Introduction

The question is broader than educational, however. There
is a growing body of applied mathematicians, too, who are
trying to quantify or analyze the risk of using models
(Wheeler, 1999). They are mainly looking at the risk of
models (like global warming) where there may be no way
to test them, but the models are used for public policy
decisions. There are several questions that must be asked
of models:

1. What is the risk of leaving out some phenomena
that need to be included? Chemical engineers minimize
this by comparing their predictions to experimental results.

2. Supposing the model includes the appropriate
phenomena, there are four basic questions to answer:

a. Is the discretization (or method) correct, so
that solutions converge to the right answer?
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There can be false bifurcations and the shocks
can be in the wrong place, as shown below.

b. How sensitive are the results to the data used?
(i.e., do a sensitivity analysis)

c. How accurate are the results? (Error
assessment)

d. Did you make any mistakes? This is a hard
one to get students to worry about; some of
them have a tendency to throw things
together, say they are done, and move on to
something else.

This paper gives examples of how these questions are
answered primarily for applications to reactor and
transport models. Examples will be taken from problems
solved mostly by undergraduates using (i) MATLAB or
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Excel, as the 'numerical analysis engine’; (ii) a special
reactor program, the Chemical Reactor Design Tool,
CRDT; (iii) application of CRDT to an industrial design
problem of a radiant furnace; and (iv) computational fluid
dynamics (CFD). In order to keep the paper within
reasonable bounds, all questions will not be answered for
each example.

Undergraduate Transport Problems Solved with
EXCEL.

The first example is for heat transfer in a cylinder; the
thermal conductivity depends on temperature, and there is
internal heat generation. The problem statement is:

1d k(T)—]=—ZG(]—r2)
Tdr

k=k0+a(T—T0)

dT

7l =0, T =Tyatr=R

We pose two questions: what is the heat flux at the
boundary of the cylinder? What is the peak temperature?
The first question is answered with a little thought: at
steady state all the energy generated inside has to be
coming out. In this case, the heat generation rate varies
with position, so a simple integral must be evaluated.
These questions illustrate an important lesson: think first!
The second question can’t be answered as easily. We
solve it here with the finite difference method, but we do
the programming in steps to make it easier to check our
results.
The non-dimensional version of the problem is

Id 20189 =261 -2
Sy r'(l+ B)df-ZG(l r“)
do

=| =0,08(1)=1

ar'|..o

Next the primes are dropped for convenience. There are
various ways this equation can be solved; here we
differentiate it and collect terms.

e

(1+a8) =-2G6 (-1

£, 1d0 o 22 ?
dif  rdr dr]

A special equation is needed at the origin, since the
radial position goes to zero there. We use I’Hospital’s
Rule

and get a different equation for the first node.

&0

(1+a0)2— =-2G
dar

r=0

If the finite difference method is applied to Eqn. (1)
we get

26+9 06.,,-6._
(l+a@)[ 1 Yixl I]).’.

r 24

Oe1= 61 | 2 .
G[T =-2G(1-r,- ), ]i=(l-1)A' (2)

Eqn. (2) (plus appropriate equations at the first and last
node) provide a set of nonlinear equations to be solved.
These are solved using the iteration feature in Excel
spreadsheets. The equation is rearranged into a formula
for the i-th node

1 A
9t= 5{ 6t+1+9(—1+3’:(91+1_01-1)+
2 2 2
+[2G (1 —ri)Ar +0.25a(6“1—6(_1) ]/(l+a9‘)}

and this equation is placed into one cell.

Bl:=0.5*%{A1+C1 +0.5%*$B$4*(C1 - A1)/B2+
+[2.*$B$5*B8 + 0.25*$BS7*(C1 - A1)A2]} /B3

where B2 is r; (calculated foreachnode),B3is 1 + a6,
B4is Ar,B5is A%, B6is G,B7is a,andB8is 2*G*(1 - rz).

Blis0,,Alis6,_,,Clis 6,

The equation is copied into surrounding cells, and the
iteration capability is turned on. After a few seconds the
answer for 6 at each node is shown in each cell. If a busy
undergraduate with several classes, a part-time job, and a
social life did that, would you accept the results as likely
correct? I wouldn’t, so let’s see how to approach the
problem in a way to improve the chances that the answers
will be right. Solve a simpler, but related, problem first.
Solve the problem with a = 0, G = 0, first. We know the
answer is O(r) = 1, and we make sure the program gives
that answer. Then include the constant G, i.e. with the
right-hand side = G. Now the exact answer is a quadratic
function of r, and you can derive it and see that the
computer gives the same result. (For this case, since the
solution is a quadratic function of position, and the finite
difference method is second order, the exact answer is
obtained at the nodes; that won’t be true in general; see the
information on error assessment below.) Next put in the
right-hand side=-2 G (1 -r ) Put this in one cell, and
put specific values in the cells on either side. Do hand
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calculations to see that the value of 6; is correct. Putting
0+ = 6.1 = 0.5 makes the result

8,=={1+2G (1-H) A%}

N —

and it should give that answer to many (say 9) significant
digits. However, even this isn’t a good enough test. Since
the values of the two adjacent nodes were the same, this
check would not catch an error in which the formula used
0i41 in place of 8;_y. Thus, different values need to be
used. In this step, one has to be sure that all terms are big
enough to affect the result. Adding something that takes
the value zero doesn’t really check the formula, for
example. Using Ar = 10-6, G = 1 doesn’t test the right-
hand side.

Next, add in the variable thermal conductivity. Do
this in one cell, put values in adjacent cells, and do the
hand calculation to check. Once that check is satisfied,
copy the formulas to all the cells, turn on the iteration
feature, and wait for convergence. You can make one
final check, using the results and putting them into the
equation for one node, but if there is an error it will be
hard to find at this stage; it is much better to have made all
the prior steps correctly.

These are the steps you use to prevent mistakes in
your work, which is one source of error. However, finite
difference equations are approximate; the discretization
step will introduce some error. How does one test that?

First test: do the truncation error analysis. Substitute
the Taylor series

6 o0 +88| y,L08°|  Lo| &’ doa’

RS PR TH PP FE LI T
de| , LA’ dLoa’|  deoa’

5} =0 -=| A —_— - — —_—

-1 =0 dr|ir+d;-7 Tl P TRl P oy |i+

into the finite difference form of the equation. What you
find is

&6 1d6

20=20,+ — +O(Ar2)+ —|+
i i

d’ | rdr

2
2G (1 —rz) + (]:—ae)a(j—eli) +O(Ar2)

!
(1+ab)

Thus, the error term is proportional to A r2. AsAr—> 0,
the equation we solve is closer and closer to the exact
equation. Second, is our application of the method
correct? We think it is — due to the checks above, but if it
is, we expect errors to go as A r2, too (Keller, 1972).

Second test: We know the exact heat flux, so we
could check that and see that our values approach the exact
value with an error A r2. Consider first the case with a =0

(i.e. making the problem linear). We know the exact
solution for the flux, and in this case we can derive an
exact solution for the temperature at the center. The flux is
calculated with a one-sided formula that is second order in
A r (Finlayson, 1980, p. 68). Table 1 shows the results,
and the errors clearly are proportional to A r2.

Table 1. Solution for Center Temperature and
Heat Flux, Compared with the Analytical

Solution; Generation Rate = 0.5 G (I - r2), G=

0.5, a = 0 (linear problem).
Ar T(0) Error in| q(1) Error in

T(©0) q(l)

0.2 1.191161 | 0.00366 | 0.274476 | 0.0195
0.1 1.188431 | 0.00093 | 0.256498 | 0.0065
0.05 1.187734 | 0.00023 | 0.251672 | 0.0017
Exact 1.187500 0.250000
Extrapol. | 1.187502 0.250063

Third test: We next solve the problem with a= 1 and
G = 0.5. Now we have a problem for which we don’t
know the exact solution (at least we’ve not tried to find it).
The problem is nonlinear with variable heat generation.
However, we can still do the same tests as before. The
truncation error analysis was done above. Next we solve
the problem on one grid and do a hand calculation to
insure that the correct equation is being solved. Then, we
solve the problem on finer grids and make sure the results
are proportional to A r2. Table 2 and Fig. 1 shows this
clearly for both center temperature and heat flux at the
boundary. Extrapolation of the last two points using a
straight line

O

gives the value _1=1.091651. We use this as the answer
and calculate the approximate error shown in Table 2.
Clearly the error decreases by about a factor of 4 as the Ar
is halved, as required. The extrapolated heat flux is
0.250078, which is about 0.03% in error from the value of
0.25.

Now we have the answer. We claim the temperature
is correct to = 0.0001 (0.01%), and the heat flux is
accurate within 0.0016 (0.64%). What does our claim
depend upon?

(1) The finite difference equation is correct — the
discretization error analysis showed that.

(2) The equations have been put into Excel
correctly, based on a careful organization of
our work and comparison with calculations.

(3) The discretization error has been estimated,
and we can assign a number to it.
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(4) In the case of heat flux, we can compare the
result to an overall energy balance, which
gives us the exact solution.

That is a good analysis, and it applies to problems
without an analytical or 'exact' solutions, and to non-linear
problems. For comparison, the extrapolated values are
also given in Table 1, for the case when we do know the
exact solution. The extrapolated values are very close to
the exact answer.

Table 2. Solution for Center Temperature and
Heat Flux; Generation Rate = 05G (1 -r2),G =
0.5, a = I (nonlinear problem).

Ar T(0) Approx. | q(1) Approx.
Error in Error in
T©) q()

0.2 1.093282 ] 0.00160 | 0.274123 | 0.0240

0.1 1.092066 | 0.00042 | 0.256499 | 0.0064

0.05 1.091754 | 0.00010 | 0.251683 | 0.00016

Extrapol. | 1.091651 0.250078

0.03 -

0.025

0.02|

T(0)-1.089
q(1)-0.24
axtrapolatod
emmnpolswu

—
F —
0.015| —

o 0.008 0.01 0018 0.02 0.025 0.03 0035 0.04 0.045
oAr

Figure 1. Center temperature and boundary
heat flux as a function of mesh size; Generation
rate=05G(1-r2),G=0.5,a=1(nonlinear

problem).

Undergraduate Transport Problems Solved with
MATLAB.

The next problem illustrates how one solves for
sensitivity of the model to input data. Consider the two-
dimensional heat transfer problem shown below. This is
solved with the PDE toolbox in MATLAB (PDE Toolbox,
1997) which uses the finite element method. One must set
the domain, identify boundary conditions, decide what
terms need to be in the equation, let the computer generate
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a mesh, and solve the problem. The first mesh tried gave
the following resuits.

°’T _
&yz
T=1 on x=0, for all y; y=0, for all x

pr=2T,
ax”

0

T=0 on y=1 for all x

ar =0 onx=l,forall y
on

T=0.5 in the center block

09

08

07

0.8

0.5

0.1 0.2 0.3 04 0s 0.6 0.7 08 [&:] 1

Figure 2. Heat transfer problem solved with
[finite element method; (a) Mesh, (b) Temperature
contours.

The mesh needs to be refined (this is done by the click of a
button in the PDE toolbox), and the new results are given
below. These two cases indicate that the discretization
errors are small enough and the finite element results are
reliable. We could make this more precise, if desired, by
looking at the solution at specific points obtained for the
two solutions. It is harder to show the rate of convergence
with mesh size, though, when using an automatic mesh
generator. To check whether you have solved the right
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equation, the only real check you have is to look at the
graphical user interface (gui) and see what are the
coefficient values. In this case, one assumes that the
program solves the equation it says it does, and even that
can be checked by solving problems that others have
solved reliably.

0.9

0.8

a.7

0.8

0.5/

0.4

0.3]

0.2

0 0.1 0.2 0.3 04 0.5 X3 0.7 0.8 0.8 1

Figure 3. Heat transfer problem solved with
finite element method; refined mesh; (a) Mesh,
(b) Temperature contours.

Here, though, look at the sensitivity to the temperature
in the center block, using a sensitivity equation since that
approach can also be used for parameter estimation.
Differentiate the equation and all boundary conditions with
respect to T.

J VZ oT
L [V°T=0]=> V25 =
dTo[ ] aT,

ﬂio [T=1]=> % =0onx=0,forally

andy =0, forall x;

a aT

— [T=0]=> — =0 = 1 fi

&To[ 1 3T, ony orall x

d [aT afaT

—_— | — = = —| — =0 =|,f l )
3T, | o ] &n[&TO onx orally

dTio [T=0.5]=> % = 1 in the center block

So, now solve for z = T/ 3T cepter-

sz=0

z=00nx=0,forally;y =0, forallx; y =1 forallx
% =0onx=1,forally

on

z = 1 in the center block

The result is in Fig. 4.

09

D8f

0T}

0.6}

=05}

0.4}

0.3

Figure 4. Contours of sensitivity to center-block
temperature.

Now we know the temperature at every point, and
how sensitive it is to the center temperature. The largest
value of z along the line x = 1 is for y = 0.5. It is clear that
the maximum sensitivity is at the middle of the right-hand
side, so that is where we would place thermocouples. If
we had heat transfer data we could determine the middle
temperature by evaluating the model, comparing with data,
forming an objective function (the absolute difference
between calculational and experimental results), and use
an optimization program to find the minimum. Since we
have the derivative of the solution with respect to the
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optimization parameter, we can use an optimization
routine that requires derivative evaluation. The same
technique works with ordinary differential equations. So,
now we have a technique for seeing how sensitive the
result is to some part of our model.

False Bifurcations Obtained with the Method of Lines

The next example illustrates the importance of
understanding the method one uses when discretizing in
space. Many computer programs for modeling transient
phenomena provide an ODE solver. The user then writes a
routine that is essentially the method of lines. The
example chosen here shows how that user-supplied routine
can give results which look like bifurcations and chaos,
but in reality are the result of not using a small enough
time-step for the type of discretization used. This is
particularly troublesome because the program can be
absolutely correct, yet the results can look like nonsense.
Thus, the testing procedure described above would not
uncover an error, because there isn’t one; yet, the results
can look extremely weird.

Consider the diffusion equation with reaction, called
the Fisher equation.

If a finite difference method is applied to this equation
using an explicit, first-order method, the result is

n+l un u" ) un + u"

i Y i-1" i i+]

yr =D > +au (1-u})
Ax

u

Following Mitchell and Bruch (1985) we transform the
equation using

vn_ a At un
Y leadr !

The result is

n+l n n n n n
v; =b(v,-_]-2v,-+v,-+1)+aui(]—v,»)

where
a=14+adt b=DA/A?

First solve this problem without diffusion, i.e., b = 0;
the equation is then called the logistic equation (Mitchell
and Brunch, 1985). It is solved for a variety of a or time
steps, and the solution as t approaches infinity is plotted in
Fig. 5. These solutions are obtained by starting from
different initial conditions. Clearly for high values of a,
or aA t, it is possible to get more than one solution. Next
add diffusion; solutions for one value of a, and many

values of b. The boundary conditions are no flux at x =0,
the value of v(1) = 0, and the initial condition is
everywhere zero except at x = 0, where it is 0.6, 0.3, and
0.8 in successive runs to obtain all the solutions.

0.9} ¢ *
P
o8t 03 g
*4
[)
(x4 3 B
ot
o6l I ' .
-
o + *
Sosf *i ‘*"‘ln ) g
u - -

Figure 5. Solutions of logistic equation obtained
Sfrom different initial conditions.

’*.fl'
L

06k 4 & o+ o+ & ¥ & & %+ & + 1

¥(0.300)
©
o
T
»
s

Q 0.05 0.1 0.15 02 025
b

Figure 6. Solutions of the Fisher equation
obtained from different initial conditions; finite
difference method; a= 2.5, a At= 1.5, Ax=
05,0sxs].

Results are shown in Fig. 6 for a = 2.50 (thus aAt =
1.50), Ax = 0.5, and various b, i.e. various D. There is a
clear bifurcation at b = 0.125. If one plotted the solution at
infinite time versus both a and b, one can imagine Fig. 5
projecting out from the paper at the origin, b = 0, and a
very complicated geometric pattern can be imagined.
However, let us use a smaller At by a factor of 4,
corresponding to a = 1.375, and a smaller Ax by half,
corresponding to A x = 0.25; the results are in Fig. 7. The
value of At/Ax2 is the same in the Figures 6 and 7, so that
situations with the same b are for the same physical
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situation. Fig. 7 shows that the bifurcation has
disappeared! Thus, it was a result of the discretization. If
one reduces A t without changing Ax (a = 1.375), then the
bifurcations also disappear. Thus, the bifurcations in this
case were a result of using the method of lines and a
discretization (in A x and A t) that was too big.

Now Mickens (1989) argues that such discretizations
as used here can lead to false bifurcations (as demonstrated
above), and that a better form of the equation is to evaluate
the reaction term at different times, or at different spatial
positions, e.g.

n+l n n 2n n
uoo-u Uiy — ety +Uyyp n n+l
=D +au; (1-u.,;)

At sz i i+l
0.5}
0.4)
goar
g- K X X XX X X X XXX XX I XXXXEXIXXIX
5

0.2}

0

Figure 7. Solutions of the Fisher equation
obtained from different initial conditions; Finite
difference method; a = 1.375, a At= 0.375, Ax

=025,0sxs I

This is similar to what the Galerkin finite element method
does. The Galerkin method gives (Finlayson, 1980)

n+l n
+ lui-l»l — Uiy _
6 At

n+l n n+l n
1 Yoy — Uiy . 4% —Y

6 At 6 At

n

n n
U, j=2u; +u
i-! i i+ O, n n n

+ S (i +4u; +u;y)

AXZ

o3 2 2 n
-5 Lo ) + 20 pu + 6 (uf)* + 200w,y + (u,-”)z]

There is a variant of the Galerkin method, which
makes the term multiplying the time derivative diagonal,
too. It is called a lumped, Galerkin method. (The term
lumped means that the left-hand side has been made
diagonal by adding all coefficients and putting them on the
diagonal). This form of the problem, plus the
transformation to v, gives

n+l n n n a
Vi =b(vi_1-2v‘-+v,-+l)+8(v?_,+ 4V?+V:-'+I)+
a n 2 n on ny2 non n
—1—2[(V'_I) +2V"_1vi+6(vi) +2V'~ V"+I+(Vi+l)2]

Calculations with the lumped Galerkin method are shown
in Fig. 8 for the same parameters used in Fig. 6. The
bifurcations now occur at a much larger value of b, b =
0.2.

08 y r T —
075}
07
a
065)-
go.etzxxxlxxxxx:xlxxx:x:x
Sossf
o5} t
0.45
04
. .
0.35 0.05 01 015 02 0.25

b

Figure 8. Solutions of the Fisher equation
obtained from different initial conditions;
Galerkin method, lumped; a= 25, aAt= 1.5 A
x=050sxs 1

0 5 10 15 20 25 30
x

Figure 9. Spatial Variation of the Solution of the
Fisher Equation Obtained from the Finite
Difference Method; a= 2.5, a At= 1.5, b=
0.20,Ax=050sxs |

Lest one think this is a trivial matter, the solutions for
one of these cases with bifurcations is shown in Fig. 9.
The first response to seeing such a result is to seek to find
an error in the computer code. Yet there isn’t one. Thus,
one must be very careful when using the method of lines;
it is possible that more advanced integration methods will
eliminate these false bifurcations, too. Of course, there are



Reactor/Transport Models for Design: How to Teach Students and Practioners to Use the Computer Wisely 183

many situations for which bifurcations are real (Varma, et
al., 1998). One must do careful analysis to distinguish the
difference.

Incorrect Shock Movement with Method of Lines

Another area where careful numerical analysis is
needed is a problem whose solution exhibits shocks.
Consider adsorption in a packed bed with rapid mass
transfer so that the fluid and solid adsorbate are in
equilibrium. The equations are

9 4oV §+(1-¢)%’-=0,

n =f(c) =

I+Kc
Let
O(C)=£(C+ l!)=l+];¢g=
=I+LL
¢ (1+Kc)

and transform the equations to

—V—O
o(c) +é‘

This equation underlies models like those used by Strube
and Schmidt-Traub (1998) after the equilibrium
assumption has been made. Usually, special techniques
are used to solve this equation (Finlayson, 1992; Poulain
and Finlayson, 1993; Anklam, ef al., 1997) in order to
maintain a shock if one occurs. However, even those
methods can be led astray if the equation is not solved in
the correct form (Poulain and Finlayson, 1993).
If one solves the equations in the form

k, V & _
o(c) dx
or
C
&, M)
% ox =0, M) fa(u)

then an explicit, upwind method is

C;z+l=C{I_M[M(¢) M(C_])]

No matter how this equation is solved, the wave speed
of a shock is (Poulain and Finlayson, 1993)

shock speed _ M (c)-M (")
|4 -

If one solves the equation in the form

g o _ 1-¢ ac
6t+v 0, g(c)=c| 1+ s T+Ke

then the solution method is more complicated (given g(c),
one must find c), and the wave speed is

shock speed _ -
Vo g(e)-g(ch

These differ by 9 % (0.547 vs. 0.500).

One can show (Poulain and Finlayson, 1993) that as
one reduces A t and A x, the solution based on method 1
converges to its wave speed, and those based on method 2
converge to its wave speed, but the two wave speeds are
different. As shown by Leveque (Leveque, 1992) it is
necessary that the Rankine-Hugoniot shock speed be
consistent with a conservation law. This is satisfied for
method 2 but not for method 1. The conservation law for
method 2 is just an overall mass balance including the
fluid and adsorbed fluid. However, the more likely
method of solution, method 1, leads to the incorrect
solution, even when A t and A x approach zero. Thus,
even when one has an ODE solver available, one must be
careful how the partial differential equations are treated.

Reactor Problems Solved with the Chemical Reactor
Design Tool (CRDT).

The next examples are for modeling chemical reactors
with a computer code that the user accesses only through a
graphical user interface (gui). Thus, it relates most closely
to the present day use of computers by engineers who have
not programmed the computer themselves. The CRDT has
been described in detail (Rosendall and Finlayson, 1994)
and applied to three industrial chemical reactors
(Rosendall and Finlayson, 1994, 1995) Briefly, it permits
a user to design chemical reactors including the realistic
transport effects that are frequently present. When
attempting to solve real problems, students are faced with
difficulties which are primarily bookkeeping and
manipulation rather than conceptual. Phenomena that
might be important, and might be hard to include in a
student-written program are:

* multiple reactions (leads to lots of bookkeeping,
OK if reactor is not too complicated)

» the temperatures of the catalyst and the fluid may
be different (requires solving sets of nonlinear algebraic
equations along with the reactor model)

* internal mass transfer (requires solving two-point
boundary value problems at every node)
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» there may be cooling at the wall (leading to radial
dispersion and partial differential equations).

Textbooks usually treat only simple systems such as
batch, CSTR, or plug flow reactors, usually for only a few
components. The inclusion of the above effects are time-
consuming to include, and hence are seldom included even
though the phenomena are sometimes important. This
leads students to think that it is acceptable to leave out
important phenomena just because they can’t easily do the
computation when it is included.

The CRDT can solve reactor equations with up to 20
components plus temperature when the reactors are CSTR,
batch, plug flow, axial dispersion, or radial dispersion
reactors. Phenomena included are:

» intraparticle heat and mass transfer is important
* significant mole changes occur
» significant pressure changes occur

These effects are especially important for selectivity,
especially in non-isothermal cases, and this makes the
models useful for pollution prevention by not making
unwanted products. The user supplies a FORTRAN
routine that evaluates the reaction rate, chooses the type of
reactor and phenomena to include, and provides the
parameters needed for that application. CRDT solves the
problem and provides output files for plotting. Batch and
plug flow reactors involves solving ordinary differential
equations as initial value problems, and the capability to
do that is in most numerical analysis packages today. One
feature added by CRDT is the addition of intraparticle heat
and mass transfer resistance: the user includes this by
pressing a button, and coupled nonlinear differential-
algebraic equations are solved. A sophisticated program
will be invoked to identify if there are multiple solutions to
any of the intraparticle problems. It uses linear
programming techniques to get a good initial guess for the
iterations, and to test for multiple solutions. This same
capability is in all the reactor modules. Axial dispersion
reactors can, of course, have multiple steady state
solutions without any intraparticle resistance, and these are
predicted as well. Finally, radial dispersion reactors
require solving multiple partial differential equations.
This is clearly beyond the capabilities of most
undergraduates, at least for complicated problems. So, the
program is very powerful. How do you know you’ve
solved the problem correctly?

The first test is the reaction rate. The interface with
the main CRDT must be correct. Because of the generality
of the program (especially due to intraparticle resistance),
the reaction rate subroutine has to be correct for every
possible set of concentrations and temperature, even those
unexpected in the eventual solution (they arise
occasionally in iterative methods). So what did we do?
We designed a program, test_rate, that uses the user’s rate
subroutine but interacts in the same way the program does.
The user can run interactively with various inputs and

obtain values of the rates of reaction. These can be
checked with hand calculations to insure that the
subroutine is correct under all conditions. The second test
is to run sample cases (with a simpler reaction rate
expression) to compare with analytical results. This is a
most important step, since it assures the student that they
are using the code as intended.

The third test is empirical. Run the CRDT with
different sets of numerical parameters and make sure that
the results do not depend on arbitrary choices of the
numerical parameters. For example, when solving
ordinary differential equations using either RKF45 or
LSODE, the user sets an error criterion. Thus, the user
needs to run the CRDT with at least two different error
criteria to make sure that the results do not depend on the
numerical analysis parameters. For partial differential
equations, since the program uses the method of lines,
either finite difference or orthogonal collocation is used to
reduce the partial differential equations to sets of ordinary
differential equations. We have the same tests for the error
criterion for the ODE solver. However, we also have
discretization error associated with the spatial
discretization. For example, you can fix the number of
finite difference grid points, solve with an ODE solver,
reduce the error criterion, and solve again. The answer
will be a more accurate solution of the ordinary differential
equations, but not necessarily a more accurate solution of
the partial differential equations. There may still be
discretization error in space. So, one then finds solutions
with N = 4, 8, 16, etc., and for each of these uses several
error criteria in the ODE solver. One finds that as the
number of finite difference points increases, the error
criteria must become smaller to get any solution at all.
Sometimes the discretization analysis is such that the error
term has a positive term times A t plus a negative term
times A x2. Thus, by choosing a 'magic' mesh and step
size, one can even make the error zero; just don’t change
anything or look at any other value! Thus, figuring out the
solution to partial differential equations and the errors in
the numerical method when both A t and A r are decreasing
can be difficult.

As an example of the kind of things CRDT can do,
consider a reactor to oxidize SO;. The reaction is

1

SO
2+2

0,<=>80;

and the reaction rate is written in terms of partial
pressures.

172
o kyp;py—kyp3p;
Rate of oxidation = 773

P

31000 53600
T Inky = 22757 - =5

Ink;=12.07 -
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The first index is for SOp, then O, SOz, and Nj.
After writing a 10-line FORTRAN program and testing it
with test_rate, the user is ready to use CRDT. In this
paper the focus is on whether radial dispersion is important
and how that is determined. Once the 10-line reaction rate
program is written, the only thing the student has to do to
handle radial dispersion is click a button, provide radial
dispersion parameters, and choose either the finite
difference or orthogonal collocation method. For a
typical case (Hill, 1977; Rosendall and Finlayson, 1994)
the radially-averaged concentration versus length is shown
in Fig. 10.

The 2D profiles of SO3 and temperature are shown in
Fig. 11. One feature of the CRDT, since it is an
educational program, is to let the user see the magnitude of
various terms in the equations. Fig. 12 shows the radially-
averaged diffusion and convection terms. The convection
term is naturally negative for the reactants and positive for
the products. Note particularly that the diffusion term is
small compared with the convection term (thus suggesting
a 1D model is OK) except for the last part of the reactor
where the reaction is stronger. Other results (Rosendall
and Finlayson, 1994) show that the reactor model
including radial dispersion can be 15% shorter than the 1D
model, to achieve the same conversion. Thus, the CRDT
allows one to quantify the results of the assumptions made.
With students it is important to keep asking for numerical
values, rather than just vague generalities, so that they
learn to figure out what phenomena is really important
based on quantitative criteria.

“
9‘x10

8
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Figure 10. Reactor to oxidize sulfur dioxide,
finite difference method radially, N = 5, 4th-5th
order Runge-Kutta method axially.

Figure 11. Reactor to oxidize sulfur dioxide;
Temperature; (b) Sulfur trioxide.

The effects of radial gradients, heat and mass transfer
limitations, and total molar and pressure changes would be
most important in cases involving multiple reactions where
selectivity is important, either for economic reasons or
because one of the products is a pollutant. Thus, it is of
interest to examine the effect of radial heat transfer for a
case involving several reactions. The problem selected is
the reaction of propylene and chlorine to form allyl
chloride (Smith, 1970; Carberry, 1976).

The reactions are simplified here to include the
three main ones, involving the formation of allyl chloride,
1,3-dichloropropene, and 1,2-dichloropropane.

allyl chloride

Cl, + CH,=CHCH,Cl — CHCI=CHCH,Cl + HCI

allyl chloride 1 3~dichloropropene

Cl, + C3Hg — CH,CICHCICH,
1 ,2—dichloropropane
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Figure 12. Reactor to oxidize sulfur dioxide;
radially averaged convection and diffusion terms;
(a) Convection; (b) Radial dispersion.

The total molar change will be small. However, the
reaction rates depend on temperature and concentration as
follows.

15,840
=4, eXP( RT ) Ca,Ceyp
23,760
ry= A 2 exp( _T ) CCI C'allyl chloride
7920
ry=As exp(- 2) Ca,Cop

Thus, temperature will have a big effect on selectivity.
At high temperatures, allyl chloride is favored, but at
lower temperatures more 1,2-dichloropropane is formed.
Typical operating conditions are 500 °C and 40 psia
(Fairbairn, et al. 1947), and the reaction is carried out in
the gas phase which is flowing in an empty tube. Most
published models are one-dimensional; they ignore radial
gradients of concentration and temperature on the grounds
that they will be small in turbulent flow in a pipe because
the velocity is flat. Using the Colburn analogy, it is
assumed that the radial gradients of temperature are also

small. Of course, the turbulent velocity profile is not
exactly flat, and a small temperature difference radially
can cause a reaction rate difference, which causes a
concentration difference, which in turn affects the
temperature. Thus, it is of interest to find out how strong
those effects are.

The problem is solved in CRDT. The feed rate of
propylene to chlorine is taken as 2.5 (industrial ranges are
1.7 to 3.8), and the parameters are chosen to agree with
those in Carberry (1977). The equations for a 1D model
are

F,
=Da;RA;, Fi=FjgatV =0

d_.

T=T,atV =0

, where F and C ps ArC standard
sps

molar flow rates and heat capacities

while those for a 2D model are

dF;
W =a; V°C; + Da,RA;
EFCPJ :‘Z‘ —aTV2T+Da”,RT
Jﬂ
oT
—E =Blw(T—TC )atr=l

The additional parameters needed for the 2D model
are taken as

o VDC o Vk ; whR
i 732 Ly e w= T,
R°F, R*F.C,S k

and here a = 0.022 and ay = 1. The Biot number at the
wall is chosen so that the heat losses at the wall are
equivalent in the 1D and 2D models, by taking (Finlayson,
1980)

L=_‘_(L+_')
St 20p \ Bi, 3

Here, By, = 0.27. For the 2D model, the velocity is
taken as the same average value as in the 1D model, but
with a one-seventh power with respect to radius, which is a
reasonable representation for turbulent flow in a pipe.

The results are shown in Figures 13-15. Figure 13
shows the radially-averaged concentration of chlorine
versus the length of the reactor (chlorine is the limiting
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reagent).  The adiabatic result shows almost complete
conversion of the chlorine, but the 1D and 2D models have
about 5% of the initial chlorine unreacted. There is little
difference between the 1D and 2D models when
comparing the radially-averaged values. Thus, the radial
effects are not large for this case. The radially-averaged
temperature is shown in Figure 14. The adiabatic case
approaches the adiabatic temperature rise (which in itself
depends on selectivity, hence the transport conditions in
the reactor). The 1D and 2D models give about the same
radially-averaged temperature profile versus length.
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Figure 13. Average concentration of chlorine.

Despite this agreement of the radially-averaged values,
there do exist profiles of the components in the radial
direction. The outlet profile of chlorine is shown in Figure
15 for the 1D and 2D models. (The small dip near the
centerline is due to the interpolation process.) While there
is about a 40% change in the concentration of chlorine
from the center to the wall, the average values are close
(within 6%). In some cases that may be significant enough
difference when trying to react the chemical completely.
This example shows how a 2D model can be done
relatively easily once a 1D model has been constructed,
and the effects of temperature and velocity profile are
easily included. The CRDT is constructed to make this
easy to do; the hard part is getting the numbers for the first
model - the other models are within a click of a button.

Using the Chemical Reactor Design Tool (CRDT) with
CFD programs.

The next example illustrates how one can use the CRDT in
conjunction with CFD programs. The CFD model is of an
industrial radiant furnace (Berkoe, et al., 1998). The
commercial CFD code, CFX version 4, was coupled to a

one-dimensional model for the cracking reactions
occurring inside the process tube passing through the fire-

——-  adicbabc
1D modol with cooling
2D modol with cooling

105 |
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Figure 14. Radially-averaged temperature.
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Figure 15. Chlorine concentration at exit.

Box. This model allows for the prediction and evaluation
of detailed heat flux, temperature profiles, and flow
distribution within the furnace. The CFX model accounts
for

* 3D heat transfer due to radiation, convection,
and conduction

»  Combustion

* 3D fluid flow, including the effects of
compressibility.

The one-dimensional, tube-side model includes

*  Momentum balance for the process fluid

* Cracking reaction kinetics leading to
vaporization

*  Temperature dependent physical properties

*  Heat transfer from the furnace side.

A typical situation is shown in Fig. 16.
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Figure 16. Industrial radiant furnace geometry.

The 3D furnace model and the 1D process tube model
are coupled through the heat flux. The equations
governing the process tube model are:

mC dr

Acs" 7 =ha(To=T)+ (~8H, )R

] dF; dp, 2 du
'A—C;‘—ki=‘U‘R,E‘=p(gy%+u Fr+uz)

f 14 ( 4 )
=L 0.051 +0.19 —
Fr 2‘11+”Rb + R,

The reaction is

Resid(l) ->0.742 HCGO(l) + 0.742 LCGO(g) +
+0.725 Naphtha(g) + 1.82 LG(g)

Since some of the products are vapor, physical properties
for the two phase mixture were taken as an average

_ fraction vapor + fraction liquid
My Hy

o L

The process tube model is coupled with the CFD
model through a FORTRAN routine that the CFD model
calls. The same principles discussed above apply here:
one must check the FORTRAN program, and then one
must test the use of the FORTRAN program in the CFD
model to insure that it is being used correctly. But, how
good is the 1D model? One can do all the testing and find
the computer work is satisfactory, but if a truly 2D process
tube model is necessary incorrect results will be given by
the 1D model. This is an ideal application for CRDT,
since once the 1D model is done, the 2D model is easily
solved. Unfortunately, the CRDT is limited to one phase,
so a special purpose program was written to compare 1D
and 2D models, using the same approach taken in CRDT,
namely using the orthogonal collocation method
(Finlayson, 1980) to model radial dispersion of energy and
mass. For the purpose of this test, only one tube was
modeled, and the pressure was taken as constant in that
tube. The boundary condition at the tube wall was that an
applied flux was specified (i.e. the 1D and 2D models
were tested outside of the CFX program).

For the test done here, the term h (T, - T) is replaced
by q, the average heat flux in the furnace. For the 2D
model the equations are changed to

mC
»dT 13(, dT
—22L 29 (L) s (-aH, )R
A 9z r&( rar)+( ren)
JF, P
L_l =£i(Dr—.)+le
A, dz ror
T s0,&]  -o0-4Z| g% -0
o P I alrer T | or

This 2D model is not the complete story, since the wall
temperature is excluded, but it is sufficient to test the need
for a 2D model.

First consider the standard tests for the importance of
radial dispersion. Mears (1971) gives a test (derived for
packed bed reactors) that is based on the principle that
radial variation of temperature and concentration is
unimportant when the radially averaged reaction rate
differs from the local reaction rate at the wall by less than
1%. This is definitely not satisfied here, since the
difference between the wall temperature and fluid
temperature can up as large as 100 K. Another rule of
thumb is that radial variations are important if the Biot
number, Bi,, = h R/ k, is greater than 10 (Rosendall and
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Finlayson, 1995) Here it is typically 500. Thus, both
standard a priori tests (admittedly derived for packed
beds) say radial variations are important. However, it is
the author’s experience in modeling chemical reactors that
if the temperature profile is approximately quadratic, then
a one-term orthogonal collocation solution gives results as
good as a six-term collocation solution (including all radial
variations), and the one-term orthogonal collocation
solution is the same as the 1D model. The only difference
is that one is solving for the temperature at the collocation
point rather than the average temperature. That is indeed
what happened.. 17 shows the temperature profile for the
1D model and the temperature profile at two radial
positions for the 2D orthogonal collocation model. While
there is a radial variation in temperature, the average
properties are very close to each other. Thus, the 2D
model is quite appropriate for this industrial radiant
furnace model.
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Figurel7. Temperature in one tube, Comparing
a 1D and 2D model.

Use of CFD Programs by Undergraduates

When undergraduates use a CFD program, the same
principles discussed here apply. One needs to verify your
use of the code by solving problems with known solutions.
The first author usually has them do problems where we
can use a mesh from an example problem. At the
University of Washington we use the finite element
program FIDAP, from Fluent Corporation, since that is
available for a research study. In CFD, however, there are
two important questions that the students have no
experience with: upwinding and turbulence modeling.

Shown in Fig. 18 are two cases, one an accurate one
[derived using methods from the book by Finlayson
(1992)] and one using upwinding. In the simplest case, an
upwinding finite difference derivative would use:

du Ui — Uiy ¥— U

dx 2Ax | Ax

The net effect of this change is to minimize unwanted
oscillations in the solution and allow the solution to be
obtained much faster. Yet, to the student, it is simply a
word entered onto a data set when using a CFD gui. If the
upwinding is used for a conserved quantity (as in Fig. 18)
then the effect of upwinding is to spread the material out,
lowering the peak value. If the phenomenon depends on
the concentration in a non-linear way, then obviously one
will get incorrect results. For example, in chemical
flooding of an oil field, the phenomenon depends on
reaching a certain concentration level, The use of
upwinding could cause the model to never reach that level.
Every user of CFD needs to know this.

11

Good solation
b ) 101 points.

Solution with
upwinding
21 points

Figure 18. Concentration profile for flow
through a packed bed. One curve uses upwind
differencing (and is faster to calculate); the other
uses the random choice method.

At the University of Washington we have an
Undergraduate Fuel Cell project, whose goal is to design
and build an amusement-park sized fuel-cell powered
locomotive. This is an interdisciplinary, multi-campus
project. The design of the fuel cell plate is complicated,
since it is necessary for the fuel to go along very small
channels, looping back and forth. One design question is:
how small should the cross section of those channels be?
If they are smaller, then the velocity is larger, and the mass
transfer is better, which is desirable. However, if they are
smaller, the pressure drop is larger, which is undesirable.
The pressure drop at the corners of the loops is also
important. One example, provided by Karen Fukuda, is
shown in Fig. 19. In this example the flow is laminar, but
the flow around the ends of the loops, and the pressure
drop, can be obtained

Another case where the CFD capabilities exceed the
knowledge base of students is when turbulent flow is
modeled. Many programs, including FIDAP, use a k-¢
model of turbulence. The parameters needed for the
model have been measured in special situations, such as
wall shear, free shear, etc., and must be used carefully in
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2D and 3D situations that have more than one type of
shear flow.

Figure 19. U, velocity for one-phase flow in fuel
cell plate (due to Karen Fukuda).

Use of Natural Boundary Conditions in the FEM

One advantage of the finite element method is the use
of natural boundary conditions, and these allow students to
solve problems in semi-infinite geometries without having
to extend the mesh to infinity. The example chosen here
is the solution to the nonlinear Poisson-Boltzmann
equation that arises in colloidal chemistry.

1 .
szp = - X.smh(A P)

For the case of a charged sphere inside a cylinder with
zero potential, the solution using natural boundary
conditions is shown in Fig. 20. The boundary condition
along the top surface is just no applied flux (the natural
boundary condition for the Galerkin method). Notice that
the contours need not be perpendicular to the boundary, as
they would be if we enforced a condition @ y/d n =0 or
=0. While this is true far from the sphere, a much larger
domain would be necessary to reach the position where
this is true. The same principle applies to Stokes flow
around a sphere or cylinder - one doesn’t have to use a
mesh covering the entire space to eliminate the effect of
the wall; one just uses natural boundary conditions and
specifies no applied mass flux on those outer boundaries.
For additional information about the use of natural
boundary conditions, see Finlayson (1992).

Figure 20. Potential around sphere in a
cylinder; governed by the Poisson-Boltzmann
equation, A= 2.3.

Conclusions

The power of computers and computer software has
made it possible for students to solve problems that could
only be imagined a few years ago. This paper has shown
that this requires educators to change their emphasis from
the mathematics of solving the problem to the tools needed
to derive a nonlinear model and assess the numerical
errors. Blind acceptance of computer results benefits no
one except your competitors.
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