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COMMUNICATIONS TO THE EDITOR

The Effect of Property Variations on the Convective Instability of Gases

DEMOSTHENES S. ROJA and BRUCE A. FINLAYSON

The onset of convection in a fluid layer heated from
below is governed by equations which are usually simpli-
fied by using the Boussinesq approximation: the fluid is
incompressible; the viscosity, thermal conductivity, and
specific heat are constant; and the variation of density with
temperature is neglected except in the gravitational term
that drives the motion. This assumption is certainly justi-
fied for liquids which usually have property variations of
less than 19%. In gases, however, property variations often
are as large as 5%, and in some liquids, such as silicon oil,
the viscosity variation can be even higher.

Palm (7) and Segel and Stuart (9) showed that when
viscosity variations were taken into account, the Rayleigh
number, according to linear theory, was modified by the
following formula:

Ngq (Av )2
=1-—0048 { — 1
(Nra)o vo (1)

Thus the correction is second order in the dimensionless
viscosity variation. Busse (I) has shown that the correc-
tion is second order when variations in any of the physical
properties are allowed. Equation (1) was derived for the
case of a fluid layer bounded by two free surfaces on
which the temperature is fixed. Only in the case of the
viscosity have the numerical values of the second order
coefficients been reported.*

Instability analyses are being used more frequently in
the chemical engineering literature (5, 6, 8, 11 to 13) in
situations which require assumptions, similar to the Bous-
sinesq approximation, for ease in analysis. The effect of
assuming certain terms constant is not always clear, but it
is reported below for the convective instability of gases
contained between two rigid boundaries. A conventional
linearized analysis is employed (2) and calculations are
made by using the Galerkin method, which also provides
guidelines to decide when property variations are im-
portant.

The fluid properties are allowed to vary with tempera-
ture according to a linear relation

a; = ayp + bi(T — Ty) (2)

where i = 2, 3, and 4 correspond to viscosity, thermal con-
ductivity, and specific heat, respectively. The temperature
dependence of the thermal conductivity causes the tem-
perature profile at the quiescent state to deviate from a
linear dependence in vertical distance. With the tempera-

® Some numerical results are available for first-order corrections to
fluid properties which give rise to second-order corrections to the Ray-
leigh number (14 to 16). These analyses did not consider second-order
corrections, which also give rise to second-order corrections to the Ray-
leigh number.
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TaBLE 1. COEFFICIENT aj;
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~.

aij i g aij i i aij

1 1 —0.0019 1 2 0.023 2 5 —0.066
2 2 —0.052 1 3 0.059 3 4 0.059
3 3 0.027 1 4 —0.0030 3 5§ —017
4 4 —0.0019 2 3 —-011 4 5 0.06
5 5 —014 2 4 0.023

ture specified at z = = 14 (where z is the dimensionless
vertical distance), the quiescent state temperature is given
to second order in the small parameter b; by

T“(z):%_[ __l_(ba,Bd)z]z

8 azo
_(b:id)‘z_z_ (i’jd)zf‘g- (3)

This temperature distribution induces spatial variations
in viscosity, thermal conductivity, specific heat, and density
which affect the convective motion.

The theory applies to gases, in which case the equation
of state is given by the perfect gas law

p/p = RT (4)

and for liquids, in which case the density varies according
to Equation (2) with i = 1. After linearizing the momen-
tum and energy equations, assuming separation of vari-
ables, agreeing to consider only stationary instability, re-
taining only second-order terms in b;, and recognizing that
the fluid remains essentially incompressible and pressure
variations are always small compared with temperature

Ao
variations provided gbyd/a;R\/Ng, << 1 and g/gC, <<
1, we can reduce the dimensionless momentum and en-
ergy equations to

*
VH(ut VW) + 223 (D%)W = Nagk o ad ()

V - (k*V 0) + BV + (8 VT*®) = Npo¥ « p°C,* DT*W

(6)
which must be solved subject to the boundary conditions
W=DW=606=0 at z2==x1 (7)

The effect of property variation is represented by the
functions p*, ¢y*, u*, k¥, and T* which represent the
spatial distributions of these properties due to the quies-

+ The small effect of compressibility is discussed in references 16 to 18.
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cent state temperature distribution. When there are no
property variations, these terms are constant, except for
T* which is linear in z, and the equations reduce to those
appropriate to the Boussinesq approximation. For the
case of property variations, then, the problem reduces to
an eigenvalue problem with variable coefficients.

The equations are solved by using the Galerkin method
with the following trial functions:

1 2
Wy = zk—1 (I-—z‘")

1
O = z*~1 (—4—— 22 )

[See Finlayson (3) for a description of the Galerkin
method.] Only stationary instability was considered, since
the results of Davis (4) suggest that oscillatory instability
cannot occur. All calculations were done by using four
terms in the expansion for W and 4. For the case of no
property variations, this gives (Ngrs)o = 1,709 compared
with the exact value of 1,707.765 (10). Six terms gave
(Nre)o = 1,707.77, but the improved accuracy was
deemed unimportant in this study so that only four terms
were used. When the properties are constant, of course,
W and @ are even functions, and only even terms need to
be retained in Equation (8). The approximations 1,709
and 1,707.77 then refer to two- and three-term expan-
sions, respectively.

For small B, the critical Rayleigh number follows the

relation
5 4
2 2 «ij B; B; (9)

i=1 j=1

(8)

NRa
—— ] +
(NRa)O

where the coefficients a;; are listed in Table 1 and the
dimensionless coefficient of property variation is defined as

bpd d
B; = A i=12234 Bs=—ﬁ—- (10)
Qio TO

The effect of property variations is very small, since, for
example, a viscosity variation of 109 ‘induces a change
in the critical Rayleigh number of only 0.05%. Notice that
ag is very close to the value of —0.048 determined by
Palm and Segel for free boundaries, suggesting that these
coefficients are not very sensitive to the type of boundary
conditions.

In order to generalize the results, it is instructive to
examine why first-order changes in property variations in-
duce only second-order change in the Rayleigh number.
All terms involving property variations in Equations (5)
and (8) are of the form

@ =1+ 0(By)z + 0(B;By)z? (11)

In the Galerkin method, the first approximating function
is an even function of z, corresponding to the approxima-
tion for the solution with constant physical properties.
Since linear terms in the property variations occur only
in conjunction with odd powers of z, it is clear that the
first approximating function and these linear terms will
not contribute to a change of Rayleigh number in the
first approximation. In the second approximation, however,
the approximating functions contain odd powers of z.
These can interact with the terms linear in B;, but a de-
tailed examination of the 4 X 4 determinant arising in
the Galerkin method indicates that the determinant is a
function only of combinations of B;B;. The effect on the
Rayleigh number must be second order. Consequently, in
similar convective instability problems, whenever the so-
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lution to the eigenvalue problem with constant coefficients
is an even function and the linear variations of the vari-
able coefficients occur as odd functions, then including
these variable coefficients induces a second-order effect on
the eigenvalue. A similar conclusion can be reached by
using the perturbation method.
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NOTATION

a; = physical property

b, = temperature dependence of physical property, de-
fined in Equation (2)

B; = dimensionless physical property variation, Equa-
tion (10)

C, = heat capacity

d = thickness of fluid layer

g = acceleration of gravity

k = thermal conductivity

Nra = g(—b1)Bd*/ povexo, Rayleigh number
= pressure

I

gas constant, per pound mass
temperature

dimensionless vertical velocity
vertical distance

It

R RIS

Greek Letters
wave number, dimensionless

[+4 =

B = temperature gradient, AT/d

0 = dimensionless temperature

K = k/pCp, thermal diffusivity

» = viscosity

v = u/p, kinematic viscosity

p = density

Subscripts

0 = property evaluated at centerline temperature (z
i =i=1 2,3, 4 means p, p, k, Cp, respectively

k = denotes term in expansion functions for W and 4,

Equation (8)

Superscript
b = dimensionless function of position
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