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Abstract

The method of orthogonal collocation on finite
:lements (OCFE) combines the features of orthogonal
:0llocation with those of the finite element method.
‘he method is illustrated for a Poisson equation
‘heat conduction with source term) in a rectangu-
.ar domain. Two different basis functions are
mployed: either Hermite or Lagrange polynomials
‘with first derivative continuity imposed to en—
jure equivalence to the Hermite basis). Cubic or
1igher degree polynomials are used. The equations
ire solved using an LU-decomposition for the
lermite basis and an alternating direction implic-
Lt (AD1) method for the Lagrange basis.

Summary

The ADI method with Lagrange basis functions
zonverges in a few iterations using the least
:omputer time and storage whem the element sizes
aire uniform. The optimal iteration parameters are
ziven., When elements have widely different sizes
the Hermite basis with a direct LU decomposition
requires the least computer time.

For one problem treated here, it is more ad-
vantageous to increase the degree of polynomial
of the basis functions than to use more elements.
For problems with few elements, the collocation
method with Hermite basis functions uses fewer
nultiplications to do an LU-decomposition than the
Galerkin method with Hermite basis functions. As
the number of elements increases the Galerkin
method is preferred. The Ritz method is always
preferred if it is applicable.

Introduction

We solve the problem

2 2

2m _ 82T _ 32T _

veT w2 + 3;7 f(x,y) in A (1)
T = g(x,y) onC (2)

for a rectangular domain xe(0,1), ye(0,1).

Problem I uses £ = -4, g = 0 and corresponds to
fully developed flow of a Newtonian fluid in a
rectangular duct, or heat transfer with zero wall
temperature and uniform heat generation. Problem
II uses f = 0, g = 0, except on y = 0 where g = 1.
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This problem corresponds to heat transfer with one
surface maintained at unit temperature, and the
solution has a singularity at the corners

(x,y) = (0,0), (1,0). This problem is linear and
easily solved using separation of variables, fast
Fourier transforms, etc. However, we use it as a
prototype problem to test methods that can be
applied to nonlinear problems. The problem has a
variational principle, so that the Ritz method is
applicable, but we concentrate on the collocation
and Galerkin methods, which are applicable to all
problems.

Lagrange Interpolation and ADI

In each element the unknown T is approximated

by
NPX NPY
™y = 1 B L@ Ly Cﬁ (3)
u = (x-xk)/Axk , V= (y-yz)/Ayz (4)

is the value of Tk£ at the collocation

j) in the k&-th element.

tion points u, are the zeroes of the (NPX-1l)-th
degree shiftea Legendre polynomial on 0S5 u sI.
Similar definitions apply in the y(v) direction.
The element sizes are Axk=xk+1-xk,Ayk = Ve ~ Y

Here C

ke
ij

point (ui, v The colloca-

k’
denote the x positions of the element
us a rectangular array of elements is

where {x,}
sides. %h
used.

Orthogonal collocat:ion1 is applied at each
interior collocation point of each element (ki).

NPX NPY

1 ke 1 ke ke ke
KEE nf1 Bin Tnj + Z;% I Bjn Tn© f(xi 28 )(5)

i=2, ..., NPX~13 j = 2, ..., NPY-1, k = 1,
..., NEX; £ = 1, ..., NEY.

NEX and NEY are the number of elements in the x
and y directions, respectively, and NPX and NPY
are the degree + 1 of the polynomial in the x and
y direction. Cubic polynomials have NP = 4, 1In
addition to these equations we require the solu-
tion and first derivative be continuous across
element boundaries?. The boundary conditions are
satisfied at the collocation points on the bound-"

ary, e.g. at (x,y)=(0,vjAyk+yk), k=1,...,NEY;



j=24 .., NPY-1. In addition the function and
first derivative are made continuous on the bound-
ary, and the boundary conditions are satisfied at
the four corners of the domain. The approximation
is in €2 at least on each element, and is in C!
globally.

The algebraic equations (5) plus the boundary
and continuity conditions are solved using ADI:

JlsH/2 _ 1 m;x 5 gkL.s+l/2 ®
ij 2 Tin 'nj
NPY
kl,s 1 k&,s ke
wTyy * K;%nzl Bin Tin ~ fi3
NPY
k&,s+l 1 Kk, s+1
T4 nzl %n Tin M
NPX
wTkK.s+l/2 + -1 ;B Tkﬂ,s+1/2 _fkﬂ
13 L Pin oy 1]

The iteration parameter, w, strongly affects the
rate of convergence with iteration number, s. Eq.
(6) is solved line by line at constant y (i.e. far
j=2,...,NPY-1,8=1,...,NEY). Since the matrix is
the same for all j, ¢ an LU decomposition is per-
formed only once per problem. The matrix is
block diagonal and the LU decomposition does not
require pivoting.” Each block is of size NPX x
NPX, with one line overlap between elements.
After one half iteration the

T:f's+l/2 is known for j=2,...,NPY-1 but not for
j=1 or NPY. These are obtained by smoothing the

solution in the y-direction at each x value. The
other half iteration is performed similarly, line
by line at constant x, followed by smoothing in
the x-direction.

The iteration error is governed by

(£%-Ex®)=t® (E°-EX)N ) ° ®)
where E5=1s-1, the difference between the solution
at the s-th Tteration and the exact solution to
the algebraic equations. EX is used to eliminate
the values on element boundaries (which do not
affect the iteration error) and M and N are

matrices derived from those in Egs.(6,7). (See
Ref.3 for details.) We thus have

T
St - e o<l N ET-X) I )

The reduction in error from one iteration to
another is thus dependent on the spectral radii
of M and g?(actually MR, a portion of M and MR, a
postion of g?,

e - e < )’ WRIF fle-Ex I a0
Ln MR 1P INRIE = 0 £ oMRIpR) <1 (11)

Clearly the error decreases faster each iteration
if p is amaller. p < 1 is necessary for conver-
gence, and the value of p depends on the iteraton
parameter, w. If w is specified, o is known, and
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M=N, the maximum errors at the s-th iteration
decrease as

Error =p (12)

Thus knowledge of p permits calculation of the
number of iterations s needed to make the iteral
error less than a specified value. Sequences of
iteration parameters, w®, are not considered hei
It is essential to use a p which is as small as
possible. There is no point, of course, in re-
ducing the iterate error (to the solution of the
algebraic equations) much below the approximatic
error (to the solution of the differential equa-
tions.)

The dependence of p(MR) on w is shown in
Figure 1 as a function of NP (the degree of
polynomial is NP-1) and NE(themmber of elements
The optimal parameters (minimum p) are shown in
Fig. 2. Note that p increases (requiring more
iterations) as NP is increases, as NE is in-
creased, or as the total number of points in one
direction, NT = (NP-1)NE+l, is increased.

The spectral radius depends also on the
element sizes, Axk and Ayl. We consider a giver

number of elements, say NEX, and specify an ele-
ment distribution given by

(13

FIGURE 1.SPECTRAL RADIUS VERSUS ITERATION
PARAMETER.
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Thus the elements are not all the same size. Fig
3 shows the dramatic effect on p. For example,
for NE=3, NP=5, changing H from 1 to 2 to 10
changes p from 0.817 to 0.88 to 0.992. If the
same element distribution is used in the x and y
directions and the iterate error is 0.001, this
increases the number of iterations from 17 to 27
to 430. Clearly the ADI method is not as suiltable
for very non-uniform element sizes.

The iterate error is plotted versus itera-
tion number in Fig. 4 for problem II and the
error decreases at a rate slightly faster than
the theoretical upper bound given by Eq.(12).

For problems which require widely different
element sizes, the ADI method is less suitable.
Then we must go to a direct solution of all the
equations (6,7) together. Unfortunately, the
bandwidth of the matrix is too large, being
roughly twice as wide as the bandwidth for Hemmite
polynomials. This causes a fourfold increase in
decomposition time, so the Hermitian interpolation
is used in these cases.

Hermite Interpolation and Direct Solution

The Hermite interpolation gives

NPX NPY
|94 194
T = § ) H(uH

i1=1 §=1 1 13

(v) C (13)

h]

where the Hermite polynomiils are defined on uc
[0,1] and the parameters Cij are values of T,

3T/9x, 3T/dy,or 32T/3xdy at the element corners
(for NPX=NPY=4, cubic polynomials).

Hy(u) = (1 + 2u) (1 - u)?

Hy(u) = u(l ~ u)?

H3(u) = (3 - 2u)u? (14)
Hy(u) = (u - 1)u?

For polynomials higher than cubics we add the
functions

Hy,, () = Wl - w? (15)

Within an element kf the derivatives of T
can be related to the derivatives of H, e.g.

L MO
== ) —(u H. (v )C
Lo am ge1 B

o __1 ot

ox Axk 3u

ke
ij

For cubic polynomials the x-derivatives at the
four collocation points are given by a 4x16
matrix multiplying a 16xl vector (Cij)'

The differential equation (1) is satisfied
at the collocation points interior to each eleament
(see Figure 5b) and the boundary conditionskzre
satisfied on the boundary. The vajue for T
at an element edge is shared by C{y in one
element being the same variable as the corre-
sponding C in the adjacent element. Thus the
approximation is automatically in c!. The re-
sulting matrix f size NTX*NTY x NTX-NT¥) can be



decomposed (LU) using the same block diagonal
version used for ADI, except that pivoting is
necessary. Here NTX = NEX(NPX-2)+2 and NTY=

NEY (NPY-2)+2. We perform partial pivoting within
a block. The numbering scheme for the variables
is given in Fig. 5a. The extraneous zeros intro-
duced by using the block diagonal decomposition
cause additional, unnecessary, multiplications,
but there are minimized by checking for zeros in
the decomposition. A banded decomposition would
be faster, and one with a variable band width
would be even faster, but both would have to pivot.

Approximation Error

For one-dimensional problems deBoor and
Swartz" showed that the error of the collocation
method depends on the number of elements as
follows:

NP

error o (1/NE) , NE » o, NP fixed a7n
For global polynomials (NE=1l) in one direction
Ciarlet, Schultz and VargaS show that the error
of a Galerkin method follows:

error « (1/(NI“—2))NP—2 (18)
A similar dependence was found empirically for the
‘collocation method.3 For two-dimensional problems
Prenter and Russell® have shown that

error a (llNE):’_E 19
where the 3 characterizes the continuity of the

exact solution. We find for problems I and II
the approximation errors follow

_195p 1 min (NP,k)
R ) (20)
where NEX=NEY=NE and NPX=NPY=NP. The dependence on
NP rather than NP-2 is empirical; it gives a
correlation of the results at low NP (3 to 7).
parameter k characterizes the continuity of

solution and C and o are independent of NP and NE.

For Problem 1 Fig. 6 shows the error as a
function of NP and NE. Here® k=3.and the curves
for different NP > 4 all have the same slope, since
min (NP,k)=3. Fig. 7 shows the same data plotted
versus NP log NP , and the straight lines
are evident. For this problem the constants in
Eq. (20) are C=0.07, «=0.5, k=3.

For Problem II the k=1 since the solution hasa
singularity. The results are shown in Fig. 8, and
here €=0.038, «=0.2,k=1, This problem has discontin-
uous first derivatives at the corners, yet we are
approximating it with a basfs function in Cl.
Adequate results can be achieved, however, and im-
provement results from using a graded mesh. The
boundary conditions must be carefully applied if
the correspondence between Lagrange and Hermite
basis functions is to hold.

Computation time

We next compare computation time of OCFE with that
of Galerkin & Ritz method. The calculation time is
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due to formulation of the equations, decompositim
of the matrix, and fore and aft sweeps of the
right-hand sides. For OCFE and Galerkin methods,
both using Hermite polynomials the formulation
time is similar for linear problems. For nonlirex
problems the Galerkin method requires more time
since more quadrature points are generally used
than collocation points. We concentrate here on
the number of multiplications in the decomposition
and fore and aft sweeps.

The decomposition cost depends on the method
used. For elements not on the boundary and the
same numbering scheme the bandwidth of collocation
is significantly less than Galerkin (about 2 times
smaller). However, the boundary elements cause
the bandwidth of the collocation to increase., We
compare here the decomposition cost for Galerkin
using a banded matrix decomposition with the cost
for collocation using a block diagonal matrix
decomposition. This provides a penalty for the
collocation method, and the penalty increases with
the number of elements. Both methods would be
faster using a frontal approach. Table I gives
the formulas used to approximate the number of mul
tiplications for the different methods, while Table
IT gives the actual multiplication count.

Comparison of Methods

For few elements, OCFE-Hermite has fewer
multiplications than Galerkin-Hermite, while the
reverse holds for more elements. For NP=4 the
crossover point is NEX=NEP=3, or 9 elements with
64 unknowns. For NP=5, however, it is NEX=NEY=5
or 25 elements with 289 unknowns. Clearly OCFE-
Lagrange with direct decomposition of all vadablks
is not competitive. The Ritz method, with a
symmetric matrix is of course preferred when
applicable. The collocation method leads to an
unsymmetric matrix even for self-adjacent prob-
lems with variational principles. For most
problems, however, the Ritz method is not possible
because no variational principle exists and the
collocation method should be compared to the
Galerkin method.

It is more difficult to compare the OCFE-
Lagrange-ADI with OCFE-Hermite-direct because the
ADI uses iteration to solve the equations and the
direct method solves them in one iteration. How-
ever, let us use the data presented to make a
comparison. For ADI choose an iterate error of 10%
of the approximation error for that discretiza-
tion. Then use Eq.(12) to find how many itera-
tions are necessary. The results in Table III
show that the Lagrange-ADI method uses only about
1/4 the time of the Hermite-direct when the
elements are uniform. When the elements are non-
uniform, however, ppy, approaches one, s increases
and the direct methods are more competitive.

Another interesting comparison is whether it
is better to increase the number of elements or
the degree of polynomial. Using the actual approx
imation error for Problem I from Fig. 6 and the
multiplication count in Table 2, we can conclude
that for equivalent accuracy (ER=3x10 %), cubics
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(NP-4) require 150% more multiplications than
quartics (NP=5), and quintics (NP=6) require 182
less. The difference between NP=5,6,7 is fairly
small, but NP=5 is a significant improvement over
NP=4. For Problem II (which has the singularity)
there is almost no difference between cubics
(NP=4) and quartics (NP=5).

Table 1 Decomposition Cost

Half-Bandwidth or No. of

ethod N.T. Block Size Blocks| Approximate Cost

Galerkin NBW (NT-NEWHL) (NBW+1)>
NTX* NTY (NPY-2) * NTX+2 *NPY-1 NBW
+] 1
i=1
|Ritz 1/2 of the above
OCFE~Hermite 3
direct NPY - NIX NEY |NEY NTX(NPY°-8)/3
OCFE-Lagrange ((NPX-1) NEX+1)- NPY ( (NPX~1) *NEX+1) NEY NEY ((NPX-1) NEX+1)3
direct
((NPY-1) NEY+1) aey3-1)/ 3
NIX = (NPX-2) NEX + 2
Table 2 - Operation Counts for Direct Methods*

NP 4 4 4 4 5 5 5 5
NE 2 3 4 5 2 3 4 5
Galerkin, FE 9.3 27.9 64.2 126 48.4 172 474 926
Ritz, FE 4.6 14.0 32.1 62.9 24,2 85.8 236 463
OCFE,
Lagrange 14.4 63.0 185 1300 60.3 272 812 5700
OCFE,Hermite 7.6 27.5 72.3 157 38.6 152 426 943

*
In thousands of multiplications
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2.

3.

6.

Table 3 - Operation Counts for OCFE-Lagrange ADI for Prob. II

DC = (NEX NPX> + NEY NPY3)/3

SB = (NPY-2)NEY NEX NPX2 + (NPX-2) NEX NEY NPY2

Total Counts = (DC) + s (SB)
NP 4 4 4 5 5 4 4
NE 2 3 4 2 3 3 4
H=Axk+1/£\xk 1 1 1 1 1 2 2
Approximation *
Error Bound 6(-3) 4(=3) 3(-3) 4(~3) 3(-3) 3(-3) 3(-3)

*% %k

pmin 0.60 0.73 0.78 0.73 0.82 0.90 0.95
Smax 8 13 17 13 21 39 77
Total Counts' 2.1 7.6 17.6 8.0 28.6 22.6 79.0
ADI
OCFE-Hermite .28 .28 .24 .21 .19 .82 1.09
Galerkin
OCFE-Hermite 1.27 1.01 .89 1.25 1.13 1.01 .89

* -
6(-3) = 6 x 10 3 Relative iteration error is taken 10% of the approximation error bound

*%
Estimated

+Thousands of multiplications
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