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Abstract

The method of orthogonal collocation on finite
elements is described for solution of ordinary and
partial differential equations. Benefits and limita-
tions of the method are outlined by comparison with
Galerkin finite element methods. Practical difficul-
ties are given which arise in the application to en-
gineering problems. Areas for future research are
suggested.

Introduction

In the collocation method the unknown solution is
expanded in a series of functions, often polynomials,
which include unknown parameters. The expansion is
substituted into the differential equation to form the
residual. The residual is set to zero at a set of
points, called collocation points, and these equations
provide the criteria needed to determine the para~
meters in the expansion. The collocation method has
been used in engineering analysis since the 1930's [1],
but usually with the trial function defined globally,
i.e., over the entire domain. In the 1960's the
Galerkin finite element method came into widespread
use. This method differs in two respects: the
Galerkin criterion is used rather than setting the
residual to zero, and the trial functions are usually
piecewise polynomials, defined over small regions of
space, called elements, and zero elsewhere. In the
1970's this idea of finite elements was applied to
collocation methods.

The promise of the collocation finite element
method is that the equations are usually easier to set
up and solve than in Galerkin methods. The conver-
gence properties of the two methods are comparable,
and the collocation method may lead to a more sparse
matrix than that given by the Galerkin method. Dif-
ficulties do arise: the first possible trial function
is a cl cubic, and such expansion functions are not
appropriate for all problems, and may be inefficient
for engineering accuracy. Meshes are not as easily
distorted to handle irregular geometries as for iso-
parametric elements in the Galerkin method. Mesh
refinement is not as easy because triangular elements
have not been utilized with collocation methods. Some
of these difficulties are just now being alleviated in
ongoing research projects.

One-Dimensional Problems

Take the one-dimensional domain O & x § 1 and
discretize it by the knots,
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The k-th element is contained between X and xp49. On
that element we define a local coordinate system using
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A collocation point or solution at that point in the
local coordinate system is denoted by a capital let~

ter, i, while the same point, but in the global num-
bering system is denoted by a lower case letter, i+
Thus the function cy in the k-th element is also "cj.
The conversion from I to i and vice versa is understood
and depends on the element number.

Within an element we interpolate a function u(x)
by Hermite polynomials.
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These functions are arranged so that they have zero
slope and function at each end of the element, &=0,1,
except for one such value. Hl is 1 at £ = 0, Hy has a
unit x- derivative at £ = 0, Hy is 1 at £ = 1 and H4
has a unit x- derivative at & = 1. Thus the coeffi~
cients C; in the expansion represent the value of the
function u or its derivative at the points £ = 0 or 1.

Lagrangian interpolation can also be used.
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Using NP = 4 gives a cubic polynomial with both inter-
polants. Use of the Hermite polynomials results in an
interpolation that is in C' for xe[0,1] whereas the
Lagrangian interpolation is not automatically in cl.
The first Hermite polynomial is a cubic function of
position, while the first Lagrangian polynomial (for
second order equations) is a quadratic function of
position. This is in contrast to Galerkin methods
which can employ linear functions on elements.

Still another alternative is to use an expansion
function with B-splines and collocate at the knots,
including the end points. 'If cubic B-splines are used
then the expansion is in C2 since first and second
derivatives are continuous at the knots. This ap-

proach has been advocated by Sincovec {2] and de Boor
[3].

Steady~State Problems

A typical steady state problem is

d du, du du
= (n(u,;x') E;) = f(u‘,‘&) (1)

* This paper was presenFed at_the 3rd IMACS International Symposium on Computer Methods for Partial Differential
Equations held at Lehigh University, Bethlehem, Pennsylvania, USA, on June 20-22, 1979.
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The collocation method applied to this equation gives
the following equations:

Dag ng 1Ay = £lup, LAy @
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The result is a set of possibly nonlinear algebraic
equations which must be solved to find the approximate
solution. The collocation criterion is applied at the
Gauss quadrature points interior to each element; for
cubic functions we have two such points for each ele-
ment. We also have two boundary conditions, and this
provides enough conditions to define the Hermite ex-
pansion. The Lagrangian interpolation has more para-
meters, however, ((NP-1)NE+l), and another condition
must be applied on each element.

The added collocation condition can be obtained
in two ways. Clearly we cannot collocate at the knot
since the first and second derivatives are not neces-
sarily continuous there, so that the second derivative
may not be defined. The first approach was by Carey
and Finlayson [4]: they appended a condition that the
interpolation have continuous first derivatives at the
knots. The solution is then in Cl; indeed it is the
same solution as found with Hermite polynomials since
it satisfies the same conditions. With Lagrangian
cubics, however, approximately 3NE terms are needed,
whereas for Hermite cubics only 2NE terms are needed.
The Hermite solution thus involves less computational
effort to solve.

The coefficient n in Eq. (1) can represent a ther-
mal conductivity in a heat transfer problem, a diffu-
sivity in a mass transfer problem, or a viscosity in a
fluid flow problem. If such problems involve more
than one material, these coefficients may be discon-
tinuous at certain points in the domain 0 < x < 1. 1In
such cases the fluxes are usually continuous, i.e.,
ndu/dx is continuous across the region of changing
material, although du/dx is not continuocus there. For
these problems the Lagrangian formulation is easily
changed to allow for continuous fluxes, whereas the
Hermite formulation is not so accommodating.

A recent addition to the scope of techniques
available is to use Lagrangian interpolants but re-
place the slope condition at the knots by a Galerkin-
type criterion [5, 6]. We define the "hat" functions
as piecewise linear functions, with the 1y function
centered at the k-th knot. Eq. (1) is multiplied by
this "hat" function and the result integrated by parts
as in a Galerkin method.

1
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X = i lkf(u, du/dx)dx (3)
o

o

This equation, one for each interior knot, replaces
the slope condition at the knots. The approximate
solution is then in CO, and the method is described as
a €O Collocation-Galerkin method. The author prefers
to call it a €O collocation-residual method, since
Galerkin used the same functions for trial functions
and weighting functions, which is not done in Eq. (3).
Such a method may not have any apparent advantages for
this problem, but it does for time-~dependent problems
and for two-dimensional problems.

Time-Dependent Problems

We next append a time derivative to Eq. (1) to
obtain a parabolic partial differential equation.

s 2= 2o (o 2y 2] - e, 2) @

For steady-state problems the solution methods are all
sufficiently fast that the efficiency of the method is
usually not of great concern. For transient problems,
however, many time steps must be taken, so that effi-
ciency is important. Clearly the Hermite interpolant,
which involves fewer unknowns per element, is more
efficient, in that the resulting matrix problem can be
solved faster.

There is one important reservation, however. Her-
mite interpolation applied to Eq. (4) gives

duJ

gup) § Coyae = -

where the matrix C;, is a 2 x 4 matrix. Lagrangian
interpolation, howeVer, gives equations of the form

oy
g(uj) e
and the time operator is clearly diagonal. The CO
Collocation-Weighted Residual method gives a time
operator which is diagonal for the interior collocation
points but is not diagonal for the knots. This means
that neither Hermite collocation nor CY Collocation-
Weighted Residual methods can use explicit integration
schemes, such as Runge-Kutta, without additional
processing. Lagrangian collocation methods have no
such limitation. When the time derivative is linear,
however, an LU decomposition of the time operator for
the Hermite interpolation need only be done once per
problem, so that most of the economy of the method is
retained, Such limitations are not important if one
uses an implicit integration in time, since then a
matrix problem must be solved in any case.

None of the methods can be adapted to use inte-
gration packages which handle the time integration.
Packages such as GEARB [7] are made to integrate prob-
lems in the form

B _—
fj (yys )

and must be revised for problems in the form

dy

1 Cji(yl’,_"’ v) d—tl = fj(yl, sy ).

Such revisions are necessary for Hermite interpolation
or O Collocation-Weighted Residual methods, and other
revisions are necessary for Lagrangian interpolation.
The use of Lagrangian interpolation gives a set of
ordinary differential equations in time with some
linear algebraic constraints. These constraints must
be handled adroitly to avoid changing the band struc-
ture of the matrix. None of these changes are insur-
mountable; but they must be made to use a collocation
method with a standard integration package. Similar
problems involving the time derivative also occur for
all Galerkin finite element methods. Madsen and
Sincovec [8] have prepared a package which uses
B-spline interpolation for the spatial dependence and
a version of GEARB for the time dependence. The user
then must only provide a subroutine defining the dif-
ferential equation and boundary conditions. When such
a package is not available, it is usually much simpler
to apply finite difference methods to the partial dif-
ferential equation, and then use an integration pack-
age to integrate in time. The finite difference method
may not give the most efficient method when looking at
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computer time alone, but when including programming
time it may be the method of choice for "one-shot"
one-dimensional applications.

Convergence

The convergence of collocation finite element
methods is one area in which the mathematical theory
outstrips the practice. Douglas [9] treated the
linear problem (4) with g = n =1 and f = 0. He
showed that if 4th degree polynomials are used in
space and second degree in time, and collocation is
applied in both space and time, that the pointwise
error at the knots in both space and time decreases
with spatial step size h and temporal step size At as

error a 0(h6) + O(AtA)
This is a special case of a more general result by
Douglas and Dupont [10] for nonlinear equations of the
form
du 3%u Ju
o= =+ =
glu) o¢ = alu) o5 + b (u, %

They show that the error at ‘the knots in space and
time decreases with step size as

error o O(th—Z) + O(Atzs)

where r-degree polynomials are used in space and
s~-degree in time. For cubic polynomials in space this
gives h*.

deBoor and Swartz [11] treated collocation
methods for steady state problems of the type

m m-1
d'u du d u
- = flu, ==, -—,

dx m-1
dx

The polynomials are taken as degree m + k - 1 and the
error at any point in the domain obeys

global error o 0(hm+k)
whereas the error at the knot obeys
error at knots a O(th)

Such results are called superconvergence results since
the rate of convergence at the knots is faster than
globally. Consequently, the solution is expected to
be more accurate at the knots. This result holds for
arbitrary order of equation, and the analog of the
result for initial value problems had been proved
earlier by Hulme {12]. For second order equations

and cubic polynomials the error goes as h" both glob-
ally and at the nodes.

For the CO Collocation-Weighted Residual method
Dunn and Wheeler [13] have shown for a linear two~
point boundary value problem that the pointwise error
decreases as

global error o O(hs)

where s is bounded between 3 and r + 1, for polyno-
mials of degree r. The exact solution has finite
derivatives of at least degree s. For a problem in
which the exact solution has bounded, fourth deriva-
t&ves and cubic polynomials are used the error goes as
h*.

While the convergence theorems depend on various
conditions on the coefficients in the equations,

boundary conditions, etc., and may not apply to a prob-
lem of specific interest, they are general enough to
provide guidelines for all cases and useful results for
for some cases.

The error reduces very rapidly as the number of
elements is increased, or as h decreases, One impor-
tant limit on the convergence theorems is that they
require the solution to be highly continuous. If the
solution is not continuous, or does not have continuous
derivatives, then the rate of convergence is not as
rapid and is limited by the continuity of the solution
rather than the degree of polynomial. The work to
apply the methods goes up rapidly with high order
methods. For example a finite difference method or
Galerkin method with linear trial functions requires
approximately 5n multiplications to solve a linear tri-
tiagonal system, where n is the number of grid points.
A Hermite polynomial cubic polynomial requires 12n
multiplications to solve the linear matrix problem, for
n elements. Consequently, the extra work must result
in better accuracy if high order methods are to be
efficient. In such cases, with exact solutions having
discontinuous derivatives, the low order methods may be
preferable, and in that case the collocations methods
are inappropriate: cubic (or quadratic Lagrangian)
polynomials are the lowest order polynomials possible.
The collocation method may be as good or better than
other methods which use cubic polynomials, such as the
Galerkin method with cubic polynomials, but may not be
competitive with methods which can use lower order
polynomials, such as the Galerkin method (linear poly-
nomials) or the finite difference method.

Applications

Early applications of OCFE in engineering were to
heat and mass transfer problems. Carey and Finlayson
[4] used Lagrangian interpolation for a reaction-
diffusion problem (1). For large reaction rates, the
concentration solution had a steep profile, or a large
gradient, and small elements were necessary in that
region to solve the problem. Mesh refinement was done
using a large residual as a criterion for needing addi-
tional elements. Chawla et al. [14] used Hermite
cubics for a nonlinear transient heat conduction prob-
lem (4). Finlayson [15] solved for water transport in
dry soils using OCFE and found the method worked well
only when small elements were used near the steepfront.
More recent applications have been primarily in chemi-
cal engineering, usually for problems involving dif-
fusion and reaction. Young and Finlayson [16] treated
a monolith reactor, with reaction on the wall. For
carbon monoxide oxidation the concentration and tem-
perature profiles are steep and finite elements are
necessary. Lee and Aris [17] treated a similar prob-
lem, but added a non-linear integral term to the equa-
tion to account for radiation. Birnbaum and Lapidus
[18] have compared OCFE favorably to semi-implicit
Runge-Kutta methods for solving boundary value prob-
lems (1) with diffusion and reaction. OCFE was several
orders of magnitude faster than shooting methods for
the problems treated. Hopkins and Wait [19] compared
Galerkin and collocation finite element methods with
finite difference methods for a variety of linear and
nonlinear parabolic equations (4). They concluded
that finite difference methods were faster than low-
order Galerkin methods, which in turn were faster than
high-order collocation methods, which were faster than
high-order Galerkin methods. Unfortunately, the
authors based comparisons on a similar number of un-
knowns, and the computation times varied widely.
Indeed, detailed examination of the results indicates
that the high-order results are not changed as more
elements are added, and this means the error is pri-
marily time truncation error rather than spatial error.
The results do indicate, however, that low-order




14 B.A. Finlayson | Orthogonal collocation on finite elements

methods may be better for some problems, and this
leaves out collocation methods which are automatically
high-order. Jensen and Finlayson [20] have applied
OCFE to the convective diffusion equation.

3c 3c _ 32c
5t TP n T ek

When the Peclet number is large the equation is more
nearly hyperbolic in character than parabolic. The
solutions can then exhibit steep fronts which persist.
If large elements are used the solutions oscillate
unnaturally. OCFE has been no more successful in
solving this problem than other methods. Small ele-
ments are needed near the front and a moving coordi-
nate system has proved effective for placing them [20].
Theoretical work [21] has shown that oscillations occur
unless

Pe AX < p

where p depends on the method. OCFE with cubics gives
p = 3.46 where finite difference and Galerkin finite
element (linear or quadratic elements) give p = 2.
Thus small elements are needed for large Pe or the
solution is degraded. This was made particularly
evident by Mercer and Faust [22] in his solution of
the Buckley-Leverett problem; this equation for flow
in porous media is hyperbolic and OCFE performed
poorly.

For one-dimensional problems the method of ortho-
gonal collocation on finite elements has proved to be
a useful, efficient method. It is especially good if
high accuracy is desired, since the rate of conver-
gence goes as h' or higher, where h is a typical step
size. When the solution has singular-type behavior
resulting in sharp fronts or large gradients, the
method is not much more successful than other methods:
small elements are needed.

Two-Dimensional Problems

For two-dimensional problems, the usual procedure
is to take the trial function on an element as the
tensor product of two one-dimensional polynomials, one
in x (or £) and one in y (or local coordinate n). For
a rectangular domain of elements collocation is ap-
plied at interior collocation points. If cubic poly-
nomials are used in both directions, there are four
collocation points corresponding to the four Gaussian
quadrature points in a rectangle.

Prenter and Russell (23) have studied the conver-
gence of the method for the elliptic equation:

[, 8u\_ 3 [ 3u -
= (P I (q By) +cu=f (5)
x,y [0, 1]

u = 0 on boundary

where p, q, ¢, and f are functions of x and y.

They expand the trial function in cubic Hermite poly-
nomials, and prove error bounds. The error decreases
as

s
mean square error o h

where he is a typical dimension of an element. The
parameter s takes the value 4 under some conditions
(P, g € C,c e CO and is 3 otherwise. More recently
P?rcell and Wheeler (24) have extended the proof to
give errors

Ly error in solution a hr+l

for the function and
Ly, error in derivative a h"

for the derivative. Here r is the degree of the poly-
nomial, with cubics giving h*.

First consider solving Eq. (5) by expanding the
solution in a trial function of Hermite polynomials
defined in both directions on finite elements. Evalua-
tion of the residuals at the quadrature points gives
conditions determining the coefficients of the solu-
tion. (Here first assume that the boundary conditions
are easily satisfied by the trial function). Consider
one element as shown in Figure 1.

Figure 1 - Orthogonal collocation on
finite elements, x- collocation
point. Arrows show bandwidth.
0- show parameters entering
equation at point 1.

Each corner of an element has four quantities associa-
ted with it: the function, its x and y derivatives
and the xy second derivative. The equation resulting
from the collocation equation for point 1 then has 16
entries, since only 16 functions are needed to evalu-
ate the differential equation at each collocation
point, By contrast the Galerkin method with the same
cubic Hermite trial functions has many more equations.
See Figure 2,

G ? ®

y. N S
hd <

Figure 2 - Galerkin method with Hermite cubic
functions. Arrows show bandwidth,
0 show parameters entering equa-
tion with weighting function at 2.
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One of the weighting functions is a function with
specific value and derivatives at point 2. The equa-
tion resulting from this weighting function in the
Galerkin method will have 36 non-zero entries in it,
because the weighting function overlaps four elements
and all the parameters associated with each corner
shown in Figure 2 must be considered. This means that
the collocation method takes less work to set up the
equations since the number of non-zero terms is less
(16 vs. 36). Of course the extent of this advantage
depends on whether the problem is linear of non-linear
and whether it has a variational principle. If a
variational principle exists, the matrix is symmetric
and only half as many terms need be evaluated in the
Galerkin method (assuming the Galerkin method is ap-
plied as a variational method when a variational prin-
ciple exists).

The other advantage the collocation method has is
a smaller bandwidth. The bandwidth of the matrix
associated with Figure 1 is approximately 2n, where
there are n elements in one direction, and n? total
elements. For the Galerkin method in Figure 2, the
bandwidth is 4n. The following comparisons were pre-
sented at this conference two years ago.

(1/2) (4n)2(2n)2 = 32n*

multiplications for Ritz
method (symmetric matrix,
no pivoting)

(4n)2(2n)2 64n* multiplications for
Galerkin method (unsym-
metric matrix, no pivot-

ing)

2(2n)2(2n)2 320" multiplications for
collocation method
(unsymmetric matrix with

pivoting)

For the decomposition cost collocation is equivalent
to the Ritz method and is twice as fast as the
Galerkin method.

The above analysis is changed when we must include
the nodes and parameters associated with boundaries.
This may be necessary because a program is to be
written to allow many different kinds of boundary
conditions, which the analyst chooses, making the
automatic renumbering of the unknown difficult to pro-
gram for arbitrary cases. When all unknowns on the
boundary are included, the collocation bandwidth
increases to 4n whereas the Galerkin and Ritz band-
widths remain the same. Then the relative comparisons
for LU decomposition are 32n" for Ritz, 64n* for
Galerkin, and 128n* for collocation. By skipping the
multiplication of rows by zeroes in the LU decomposi-
tion, economies can be made. Houstis [25] reports
that the decomposition time for collocation is between
that of the Galerkin and Ritz methods, when the zeroces
are taken into account. Thus in practice the LU de-
composition time for collocation is slightly smaller
than that for Galerkin when both use cubic polynomials,

The total comparison of collocation with Galerkin,
both methods using cubic polynomials, depends on the
problem. If the problem is linear, then the LU decom-
position time predominates and collocation is only
slightly better than Galerkin., If the problem is non-
linear, then the setup time is significant and then
the collocation method is much preferred. We see
below the things given up (at least until now) by the
choice of collocation.

The above comparisons are for direct solution
methods, i.e., solving the algebraic equations as a

system. Iterative methods are also attractive. Two
years ago at this conference an alternating-direction
method was presented for collocation on finite elements
[26]. The method used Lagrangian polynomials and
solved the equation first along one row in x, then the
next row in X, etc., until the entire domain was swept.
Then another sweep was made on the y rows. Details
were given on the spectral radius of the matrices that
arise, Briefly it was found that spectral radius
increased (and so did the number of iterations re-
quired) whenever the number of elements or the degree
of polynomial increased. For rectangular arrays with
all the elements the same size, the ADI method proved
to be from 4 to 6 times faster than the direct solu-
tion. If there were both small and large elements,
however, the spectral radius increased and the direct
methods proved superior. This beginning study empha-
sizes the need for more development of iterative
methods, such as the Laplace modified methods being
worked on by Professor Wheeler. The matrix arising

in collocation is so sparse, but with a regular struc-
ture, that an iterative procedure than can capitalize
on the sparsity will prove very powerful,

Applications

At this conference two years ago, Houstis and
Rice [27] presented collocation software for the solu~
tion of linear elliptic problems on general two-
dimensional domains,

32u 3%y 32u du Ju _
T + Zsaxay + Yayz + Gax + Say +zu-=f¢£

The boundary conditions on the irregular domain had to
be treated very carefully to insure good results. A
detailed comparison of finite element collocation to
finite difference and Galerkin finite element methods
was made by Houstis, et al, [25]. The problems chosen
for comparison were linear elliptic boundary value
problems, sometimes with irregular domains. All
finite element methods used Hermite bicubics. The
collocation finite element method proved superior to
Galerkin and Least Squares finite element methods, and
was usually superior to the finite difference method.
For good accuracy, the collocation method always was
more efficient than finite difference. This is the
only careful, controlled comparison of methods for two-
dimensional problems, and is limited to linear prob-
lems.

Recently the author has had the opportunity to
compare the performance of the collocation finite
element method to that of the Galerkin finite element
method for an important class of flow problems. This
comparison illustrates the considerations in "real-lifé'
problems, The problems involved the slow, steady flow
of fluid in two dimensions. For a Newtonian fluid the
equation is

0=~ 9p + qug
whereas for a purely viscous fluid we must solve
0=-p+7V -+ (1/2n(|7u]) (Vy + vu©))

and for a viscoelastic fluid the equation is much more
complicated. In addition the continuity equation is

v -u=0,
The Galerkin program used a frontal or profile solver,
whereas the collocation method used a block diagonal

LU decomposition. Detailed comparisons are given else-
where [28], but let us see the major results.
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The problems solved are illustrated in Figure 3,

(a) ENTRY LENGTH

U=vz0
fully
U=1 U=
developed
v:0 veo 0P
Teuey =0 veo T T T
U=
V=0
(c) DIE SWELL
free surface _ _
U = U(Y) oU/dX = O
V=0 V=0

Figure 3 - Flow geometries studied.

In the entry flow, the velocity is 1 at the left hand
side and O on the top boundary. Thus the exact solu-
tion is discontinuous at the corner, In the stick
slip problem the fluid is zero along the top surface
until the edge of the die lip, and then it acceler-
ates along the top free surface. In this case, the
first derivative of velocity is discontinuous and
infinite at the die 1lip. 1In the die swell the shape
of the jet is allowed to change until the normal and
tangential forces are balanced. A singularity also
occurs for this problem.

At the outset the Galerkin method may look better:
an element only has 22 unknowns whereas a collocation
element has 48. Thus the collocation method must use
many fewer elements to be competitive. However,
because of the problems chosen for study the high
order accuracy of the collocation method cannot be
realized because the rate of convergence is governed
by the continuity of the exact solution rather than
the degree of polynomial. This does not augur well
for the collocation method. In fact it was found that
for the Newtonian fluid the collocation method did as
well as the Galerkin method. The collocation method
with a few elements gave better integral mass and
force balances than did the Galerkin method with more
elements., The Galerkin method, which could use mesh
refinement because it had more elements, gave more
accurate local properties of the solution. When the
fluids were non~Newtonian, and the viscosity depended
on the shear rate, the collocation methods were not
competitive. In addition, the collocation method was
much more sensitive to the iteration scheme on vis-
cosity than the Galerkin method. When viscoelastic

fluids were used, the collocation methods proved to be
very expensive. In addition the Galerkin method had
the capability of refining the mesh in arbitrary ways
since it used isoparametric elements. The collocation
method treated irregular domains by transforming the
problem to a regular domain: thus the range of possi-
bilities was much less. Based on all these considera-
tions, in the subsequent work it was decided to use the
Calerkin method because of its greater versatility in
treating irregular domains, its ability to use refined
meshes, and a desire to solve flow problems which con-
tained singularities so that the high accuracy of high-
order methods could not be achieved.

Another potential area of application is the flow
of fluids through porous media. Petroleum companies
solve these nonlinear elliptic/parabolic problems to
predict performance of oil reservoirs. The finite dif-
ference methods are finely tuned: several iterative
methods are very efficient [29]. Galerkin finite ele~
ment methods have been used, but usually at a great
penalty in computer cost [30]. More recently, Galerkin
methods using iterative methods have proved more com-
petitive [31, 32]. It is clear, however, that the
straightforward application of Galerkin finite element
methods to petroleum reservoir problems does not give
competitive results. Advances need to be made in
iterative solution techniques to become competitive.
The same comment must hold for collocation finite
element methods.

Future Development

The collocation finite element method is being
developed because of its promise of reduced computa-
tional cost. Widespread use will not happen unless
the following problems are addressed. For many
engineering problems, it is necessary to solve problems
on irregular domains, Thus the isoparametric elements
used in Galerkin methods are very useful. Pinder,
et al. [33] have developed isoparametric transforma-
tions for use with collocation, and these would permit
treatment of arbitrary domains. Another advance would
be the €0 collocation-weighted residual methods in two
dimensions [24], Once the constraints are dropped for
continuity of derivatives, the deformation of elements
becomes very much easier. Mesh refinement is an
important feature of finite element methods and is
easily done in Galerkin methods with triangular ele-
ments. Collocation on triangles would be useful if
such a method were developed. Methods have been
advanced [34, 31] which are closely related to colloca-
tion methods but which have some efficiencies or abili-
ty to treat irregular geometries. One discouraging
feature of high-order methods, collocation or Galerkin,
is that problems which may be well behaved in one
dimension exhibit singularities easily in two dimen-
sions. Then the high-order methods do not achieve
high accuracy and the approximation is made better
only by adding elements and refining the mesh. But
the high~order elements contain so many unknowns that
the problems become very big very easily. Then the
low-order methods prove attractive,

Conclusion

As the collocation field matures, better iterative
methods will be developed, irregular domains will be
treated, and maybe even collocation on triangles will
prove possible. Despite these possible successes, it
should be realized that there are some problems that
are stacked against a high-order, good accuracy collo-
cation method. There are enough other problems, how-
ever, that progress is worthwhile.
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