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parameter defined by (24)

parameter defined by (25)

thickness of liquid mass transfer film

= liquid holdup

dimensionless residence time, defined by (18)
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molar density of liquid phase
residence time
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ubscripts

of species A
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stream leaving condenser
feed stream

gaseous phase
gas-liquid interface
liquid phase
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of species R
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Mathematical Models of the Monolith :

Catalytic Converter:
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Seattle, Washington 98195

Part |. Development of Model and Application of Orthogonal

Collocation

The orthogonal collocation method is applied to solve the mathematical
model of a monolith catalytic converter, in which the reaction takes place
in a porous catalytic layer deposited on the wall of a tube. A sequence
of models is developed, with the most complicated one involving transient

heat and mass transfer in three dimensions.

SCOPE

The orthogonal collocation method is developed for
application to problems having irregular geometries. Most
previous applications of orthogonal collocation in two
dimensions have been for rectangular regions (Villadsen
and Stewart, 1967; Sprensen et al, 1973; Young and
Finlayson, 1973). A notable exception is the series of
papers by Sprenson and Stewart (1974) dealing with
flow of a fluid in a packed bed. In the applications to
monolith catalytic reactors envisaged below, the duct
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frequently takes irregular shapes. Consequently, it is
necessary to apply orthogonal collocation in these irregular
three-dimensional geometries.

The monolith reactor is a large number of small,
long tubes (in parallel) through which a gas flows, and
catalyst is deposited on a porous layer on the wall of
the duct. Another important objective is model discrim-
ination; different mathematical models are developed for
such devices in order to illustrate the phenomena oc-
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curring in them and to determine the simplest, correct
model. Current models of catalytic mufflers for oxida-
tion of carbon monoxide in automobile exhaust approxi-
mate the transverse diffusion and conduction in the fluid
by means of assigned Nusselt and Sherwood numbers
(Kuo, 1973; Hegedus, 1974; Votruba et al., 1975). One
objective of the study is to test this assumption to see
its limitations, since the calculations of Young and Fin-
layson (1974) suggest that the assumption may not always
be valid. Another important feature of the model is the
effect of axial conduction in the wall, since Eigenberger
(1972) has shown that the inclusion of axial conduction
may drastically alter both the steady state and transient
behavior of packed beds. Models are developed with and
without axial conduction so that this effect can be ex-

amined. Finally, peripheral diffusion and conduction is
included in one model to see its effect.

The equations for the various models are written down,
and then the details of application of the orthogonal
collocation method are given. The novel features ot the
analysis are the method of handling irregular geometry,
which makes possible calculations for a variety of ducts
with different shapes with one computer program; and
the rearrangement of the fluid mass and energy transport
problem by using Graetz problems, which drastically re-
duces the total number of unknowns in the approximate
solution. Both extensions of the orthogonal collocation
method make possible the efficient calculations whose
results are given in Part II as applied to automobile ex-
haust.

CONCLUSIONS AND SIGNIFICANCE

A number of important conclusions are obtained rela-
tive to the application of the orthogonal collocation
method. The average energy equation (or mass balance)
is satisfied exactly by the approximate solution if there
are no quadrature points on the boundary. Graetz prob-
lems for two-dimensional irregularly shaped ducts are
solved by using the orthogonal collocation method after
transformation of the domain. Quadrature formulas are
given for integrals over the cross section of a duct and
on the boundary of the duct, and the proper choice of
collocation points is given for the transformed domains.

Graetz problems are solved for various geometries,
mainly because the results were used in the solution
method of the monolith models. However, more accurate
results are obtained for the asymptotic Nusselt number
in a constant temperature Graetz problem for the follow-
ing geometries: square, rectangles with aspect ratio of
0.5 and 0.25, and equilateral triangles. An asymptotic
formula is given for the Nusselt number near the inlet
of the duct. New results are obtained for two trapezoid
geometries: friction factor and asymptotic Nusselt num-

ber for boundary conditions of constant temperature
and linearly varying wall temperature.

Mathematical models are developed for monolith chem-
ical reactors, including transport of heat and mass in
the fluid, axial conduction and diffusion in the wall or
porous layer, peripheral conduction or diffusion in the
wall or porous layer, and laminar flow of the fluid. Sim-
plifications of these models permits elimination of each
of these phenomena in order to test their importance.

Solution of the mathematical model by orthogonal
collocation is feasible and extremely useful. When axial
conduction in the wall is included, orthogonal collocation
on finite elements is used. When the distribution of tem-
perature and concentration in the fluid is important, a
technique is given for reducing the complexity of the
problem and greatly reducing the number of unknowns
(by factors ranging from 3 to 15). It is possible to handle
irregular geometries by using fairly general methods after
transformation of the domain, so that it is possible to
examine the influence of geometry on converter perform-
ance by using the same computer program.

AVERAGE ENERGY EQUATION

One choice to be made in the collocation method is
the location of the collocation points. A certain choice
is preferable to others as we illustrate by examining the
problem of heat transfer to a duct wall when a fluid
flows in laminar flow through a pipe with circular cross
section. The governing dimensionless equations for a
specified wall heat flux are

oT 1 9 aT
L (o
( =) 0z x ox * dx (1)
oT
T(0,x) = To, — =0 (2)
X | z=o0
oT |
—_ =h
o |, = (3)
The mixing cup temperature is
1
T™(z) =4J; (1 — x2)T(z, x)xdx (4)
and the local Nusselt number is defined in two ways:
-2 aT
Nu(z) = —m—ono-uo —
(=) ™ —T(z,1) 0% | z=1 (5)
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—0.5 dT™
N =
YO E TG & ©
The first definition is the standard one, and the second
results from use of the average energy equation, found
by integrating Equation (1) in x:

4 oT _ dT™ o
N
This leads to the boundary condition
1 dT™
=&
o () (8)

One would like the average energy equation to be satisfied
exactly, but this does not happen for all approximation
techniques.

In the application of orthogonal collocation to these
equations, a solution of the following form is assumed:

N+1
T(52) = 3 Lix)T(x2) (9)
i=1
where L;(x?) is the Lagrange interpolating polynomial.
The analyst has the freedom to choose the N interior
collocation points x;. The collocation points are usually
taken as the roots of a Jacobi polynomial, defined by
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® INTERIOR COLLOCATION POINTS
x BOUNDARY COLLOCATION POINTS

M points

N points

Fig. 1. Two-dimensional arrangement of collocation points for an
irregular domain, - interior collocation points, x boundary collocation
points.

fl x2—2Py (a2) w(a®) xdx =0 for i=1, ....,N
(10)

Either w(22) = 1 or w(x?) = 1 — a2 is commonly used.
For w(x?) = 1, the polynomial roots are the base points
of the Gaussian quadrature formula, while w(x?) = 1 —
a2 gives the base points of the Radau quadrature formula
(Krylov, 1962). Both quadrature formulas are of the form

N+1

L ads= S Wit
i=1

For the Gaussian quadrature, the formula (11) is exact
for f(x?), a polynomial of degree 2N — 1 or less in x2,
and the weight factor on the boundary is zero, Wy+1 = 0.
For the Radau quadrature, the formula is exact for poly-
nomials of degree 2N or less in 2 and Wy +1 # 0.

Numerical experience has established guidelines on
the best choice of points between these two (Ferguson,
1971). The best choice depends on the type of boundary
condition. If the boundary condition is of the first kind,
solution specified on the boundary, then Radau quadra-
ture base points usually give slightly better results than
Gaussian points. If the boundary condition is of the second
or third kind, then Gaussian points give substantially
better results than Radau points. If Radau points are
used with second or third kind boundary conditions, then
an integrated form of the boundary condition must be
used to achieve reasonable accuracy and convergence
(Ferguson, 1971; Elnashaie and Cresswell, 1973; Fer-
guson and Finlayson, 1974).

That the best choice of collocation points are quadra-
ture base points is no coincidence, since this choice en-
ables one to achieve accurate approximations of other
weighted residual methods. Young (1974) has shown
that the best approximation to the moments and least-
squares methods results when Gaussian quadrature base
points are used, regardless of the boundary conditions.
The best approximation to the Galerkin method results
by using Radau points for first kind boundary conditions
and Gaussian points for second or third kind boundary
conditions. Interestingly, numerical experience suggests
that for the general case one should use the points which
best approximate the Galerkin method; however, for
specific cases other choices might give slightly better
results,

Next we apply orthogonal collocation to the heat
transfer equation. The differential equation is
de N+1
=ZBjiTif=1,....,N (12)

i=1

(11)

(1 —x2)
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The boundary condition, Equation (83), is

N+1
2 An+14Ti = h(z) (18)
i=1
where
dL;(x2 d2L;(x2
Ay=HE) | By = FLE)
dx 2 da? i

If we wish to use the boundary condition in the form of
Equation (8), we need

N+1

dr,
dT™ El Will = =) ==
dz = N+1

S Wil =)
i=1

N+1
dr,
= W;(1 — x2
43 W) g

i

(14)

Since the term for xy+; = 1.0 drops out (Wy4+1 = 0)
by virtue of Equation (12), we can write

dT™ N N+1
ks 43 W > Bili (15)
o =1 i=1
The boundary condition (8) is then
N+1 N
> T, WiBi=h(z) (16)
i=1 i=1
It is a general result that
N+1
D, WiByu= An+iy (17)
i=1

so that if Wy4+; = 0 Equations (16) and (13) are
identical. Thus we see that the average energy equation
(7) is satisfied by the approximation provided Wy.1 = 0.
This is true for the Gaussian quadrature points (w = 1)
but not for the Radau quadrature points (w = 1 — x2).

In problems of reaction and diffusion, the average mass
balance is satisfied if Gaussian quadrature points are
used but not if Radau quadrature points are used. If
Radau points are used, in order to reduce errors arising
from the boundary condition, Equation (3), the boundary
condition can be rewritten in integral form, as was done
for Equation (8); however, in other problems this pro-
cedure is more difficult. This has been noted previously
by Ferguson (1971), Elnashaie and Cresswell (1973)
and Ferguson and Finlayson (1974). It is more con-
venient and as accurate to simply use the Gaussian quad-
rature points (w = 1). The same conclusion applies if
the geometry is spherical or planar.

GRAETZ PROBLEM IN TWO DIMENSIONS

Consider a two-dimensional figure as shown in Figure
1. In order to achieve accurate approximations, we wish
to define optimal quadrature formulas for integrals over
the surface dS = dx dy and on the boundary, dl:

N
S tends = 3 witn (18)
i=1
N
[rma=3 wia (19)
i=1
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Stroud (1971) discusses both product and nonproduct
quadrature formulas similar to Equation (18).

Product formulas are constructed by transforming the
independent variables and by writing the integral (18)
as a double integral:

[ twyas=J, f flemhie) — ga)1dnads
S 4 o Jo >

(20)

where (x)
—_y-8w ,_x 1
n—h(x)—g(x) 9£ a (2)

The quadrature weights and base points can be deter-
mined from the theory of quadrature in one dimension.
The optimal base points »; are simply the Gaussian quad-
rature points defined by

1
j; 7 1Py(n)dy=0,i=1,...,M (22)

The optimal base points &; are the roots of the N* degree
orthogonal polynomial defined by

L e en(e)thioe) — glap)1de =0, i=1,....,N

The resulting quadrature formula is

N M
St pas = IRGAICEN Y

and will be exact when f is a polynomial of degree 2N
— 1 or less in ¢ and 2M — 1 or less in 5. All quadra-
ture points lie on the interior of the region. A two-
dimensional Radau quadrature formula can be generated,
in which case the additional factors n(1 — ) and ¢(1
— ¢) are included in Equations (22) and (23), respec-
tively. If the problem is symmetric in ¢ or », the poly-
nomials can be defined to include this symmetry [com-
pare Equation (22) with (10)]. In the standard applica-
tion of collocation procedures, the polynomials them-
selves need not be found; only the quadrature points
are needed, and these are often available (Stroud and
Secrest, 1966).

The subject of optimal nonproduct quadrature schemes
is not well developed (Stroud, 1971, p. 91). In non-
product quadrature schemes, a total of N quadrature
points might be placed inside (or sometimes outside) the
region shown in Figure 1, without regard for obtaining
a regular pattern, which is essential to the use of La-
grange interpolation. There are several nonproduct formu-
las for some of the regions for which theory has been
developed (Stroud, 1971). For the square, one of the
nonproduct formulas happens to be a product formula.
Owing to insufficient information to guide our choice,
here we restrict attention to product formulas.

The surface integral is then Equation (24), while
the line integral is

Sra=f vir@rae+ [ T e

1
+1h0) — g1 f) tdn + [h@) — (@)1 f] 1

Ny N

= 2 Wit (atf), glate) + 2 Witf(aglr), h(a¢h)
=1 =1
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+ 2 Wiof[0, g(0) (1 — m) + 7:h(0)]
i=1

N
+ 2 Wi'fla, g(a) (1 — m) +nh(a)] (25)
i=1

The base points »; are defined as shown above, Equa-
tion (22), while the optimal base points ¢¢ and ¢ are
the roots of orthogonal polynomials defined by (Krylov,
1962, p. 161):

1
S et OVIT @@ de =0, i=1,.., "
r=horg

Special procedures must be used when g’ or A’ are in-
finite. If the problem has a symmetry about x = % or y
= 1, the line of symmetry can be used as one boundary,
thus reducing the number of collocation points.

Having thus determined the quadrature points, we use
them as collocation points, since this gives an accurate
approximation to other weighted residual methods. We
transform the coordinate system (x, y) to (¢, 4) using
Equation (21). Then derivatives change as follows:

oT  oT A A, 0T
a— % +a(yh’ —g’) o (27)
A A
h(x) = [hix) - )14 £ (@) =g(x) h () .

@ — = ah — (29)

and so forth. The normal unit vectors are
—eh + ey
=—————ony=h 30
VIE o (90)
exg - ey
———ony= 31
Using the above relations, we can write the differential
equations and boundary conditions in terms of ¢ on 7

derivatives. Orthogonal collocation is applied by taking,
for example

3T (¢, m) N2

> = BT (&, mi) (32)
o7 £kmj i=1

where the B matrix is the usual matrix representing the
second derivative (Finlayson, 1972).

By using the above procedures, Graetz problems have
been solved for a variety of geometries. We report here
only new or more accurate results; other calculations
confirmed that the results were comparable to literature
values when available. The velocity is found by solving

82V 2G=—1inS, G=0on C (33)
92 92

V2= — 4 — 34

it o g (34)

and the desired feature of the solution is the friction
factor times the Reynolds number fRe = 1/<G>. The
brackets denote an average over S:

J; Gdxdy
<G>=—r— (35)

r

s dxdy
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The temperature is the solution of

G_(x,__y)__al =8r2V2T 2>0 (36)
<G> az
(x,y) in §
T(x,y,2=0) (87)
under various types of boundary conditions:
I T,=1, T=0onC (38)
II To=0, T=zonC (39)

For the more general boundary condition, T = f(z) on C,
the eigenvalues and other constants needed to calculate
solutions are given by Young (1974). The desired quan-
tity is the Nusselt number averaged around the periphery.
With the definitions

™ = J; GTdS/ J; GdS (40)
and
w=f i fa (41)
we want 4 { VT}
_ —infy
<Nu> = ™ — (T} (42)

The asymptotic value <Nu,> occurs for z —> .

For rectangular regions, solutions are available in
Shah and London (1971). The value of the friction
factor-Reynolds number product fRe and the asymptotic
Nusselt number under boundary conditions II are evalu-
ated by using up to thirty terms of the exact representa-
tion by an infinite series. Calculations with orthogonal
collocation were made with symmetric polynomials in x
and y, that is, those defined by Equation (9) with w
= 1. The results agreed with the exact results to six
digits, with small differences in the seventh digit. For
the square duct, the number of terms used was N = M
= 6, while for an aspect ratio of 0.5 and 0.25, we used N
= 4 (in the direction of the short dimension) and M =
7. Since symmetric trial functions were used, only a
quadrant was solved for the rectangle, and only half of
the quadrant was solved for the square, which has addi-
tional symmetry. For the boundary condition of type I,
the most accurate results presented by Shah and London
are from an unpublished paper which utilized a finite
difference method and reported values of the asymptotic
Nusselt number to four digits. Our results show converg-
ence to within four to six digits as N and M are in-
creased (Young, 1974). Thus we regard the asymptotic
values listed in Table 1 as the most accurate available.

For the Graetz problem in a circle, Sellars et al. (1956)
showed that the Nusselt number in the entry length
follows the formula

<Nu> = gz~1/3 (43)

where the constant ¢ is determined by the Leveque solu-
tion. The power on z is dictated by the boundary layer
type of solution at the inlet, and this power should be
the same in all geometries. Calculations by us and others
(Shah and London, 1971) confirm this, and the appro-
priate constants for rectangular ducts are given in Table 2.

The collocation method was applied to the Graetz
problem for an equilateral triangular duct for compari-
son purposes. In that case h(x) = bx and g(x) = 0.
Various quadrature points (collocation points) were used
corresponding to different weighting functions. When N
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TABLE 1. AsyMPTOTIC NUSSELT NUMBERS FOR CONSTANT
WaLL TEMPERATURE

Shah and
London
Orthogonal collocation ~ (1971)
Geometry N M <Nu> <Nu>
Square, b/a=1 6 6 2.977524 2.976
Rectangle, b/a = 0.5 4 7 3.3923 3.391
b/a = 025 4 7 4.4405 4.439
Equilateral triangle 3 6 2.491 2.47
TABLE 2. NusseLT NUMBER NEAR THE INLET
Parameter a
in Equation (43)°
Constant  Linear wall
Geometry Aspect ratio temperature temperature
Square 1.0 1.16 1.79
Rectangle 0.5 1.23 1.89
0.25 1.38 2.05
Equilateral triangle 0.860 —

° Formula (43) is valid for z < 0.01.

7:0.966|— —4— - — 8- - i
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|
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I \
I | !
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|
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0.38l-——8—————
| |
I |
0.169F — ——8— —— ———
|
0.034|-——-¢— —————_ ————— - —
(Y x
er
t=0 0.183 0526 0.797 0960 1.0
M=4
Fig. 2. Location of collocation points for trapezoid bound
ary, - - - line of symmetry.

= 6 and M = 3 were used, the Nusselt numbers at z
= 0.01 varied with the different weighting functions
by +5%, but the asymptotic Nusselt number differed
only in the fourth digit for the different weighting func-
tions. The value obtained was 2.491. This is probably
more accurate than that given by Shah and London
(1971) who report values ranging from 2.35 to 2.70,
with 2.47 as the preferred value.

Two trapezoidal duct cases were studied: b = 1, ¢ =
Y, and b = 3, ¢ = Y4. A weight function of 1 was
used in both ¢ and 5. The collocation points for the case
N = 6 and M = 4 are illustrated in Figure 2 for one
of the trapezoids. Values of fRe and asymptotic Nusselt
numbers are listed in Table 3 as derived with N = 6, M
= 4. The complete results suggest that these values are
correct to five digits. The developing profiles were also
derived, and the eigenvalues and constants needed to
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TasbLE 3. FRICTION FACTORS AND AsyMPTOTIC NUSSELT
Numsgrs For TrRaPEZODAL Ducts

Constant Linear
wall tem- wall tem-
perature perature
Geometry fRE <Nu,> <Nu,>
b=10, ¢c=05 14.192 2.8764 3.5279
b = 0.75,¢c = 0.25 13.9057 2.7736 3.404

calculate the solution for other wall temperature distribu-
tions are given elsewhere (Young, 1974). The fully de-
veloped condition is reached at z = 0.1, so that for
lengths longer than this, the asymptotic Nusselt number
holds.

MATHEMATICAL MODEL FOR MONOLITH

The convective transport of heat and mass is governed
by the equations of motion, energy, and continuity. The
complete set of equations are given by Bird et al. (1960,
Chapt. 18), and these are simplitied below for applica-
tion to the monolith converter.

The flow of exhaust gas through the monolith cells
is not of prime importance in itself, but only insofar
as it affects heat and mass transfer in the device. Of
utmost importance is whether flow is in the laminar or
turbulent regime. For a typical engine, the flow rate
will vary from 0.01 at idle to 0.05 std. m3/s or more
at highway cruising speeds. For typical converters, the
Reynolds number will then vary between 75 and 600.
Since the transition to turbulent flow for many duct
shapes occurs at approximately 2000 (Knudsen and
Katz, 1958), the flow is laminar.

Since the flow is laminar, heat and mass transfer be-
tween the exhaust gas and the monolith cell wall is
similar to that in the Graetz problem. The axial diffu-
sion of mass and heat in the fluid may be neglected for
Peclet numbers greater than 50 (Hennecke 1968; Michel-
sen and Villadsen, 1974; Sorensen and Stewart, 1974),
which is the case here. Another difference is that in the
Graetz problem the velocity is usually fully developed,
while in the monolith the velocity profile develops as
the gas passes through the converter.

In a monolith converter, when the reaction rate is
very fast, the reaction lights off at the converter inlet,
and the converter is controlled solely by mass and heat
transfer limitations. For this limiting case, mass transfer
is governed by the Graetz problem with a constant reac-
tant wall concentration of zero and a constant wall tem-
perature equal to the adiabatic temperature. This Graetz
problem has been solved for circular geometry by using
both the fully developed velocity profile and the develop-
ing velocity profile. The results are summarized by Shah
and London (1971). Since in this limiting case the reac-
tion zone is at the inlet, where the velocity profile de-
velops, the comparison of these Graetz problems will
show the maximum effect of the developing velocity
profile. The maximum error in the mixing cup average
conditions is only 7¢% (Young, 1974); so it appears
reasonable to assume that the velocity profile is fully
developed throughout the converter.®

The equations of change would, of course, applv to
the fluid in each cell of the monolith and to the entire
monolith solid. It is advantageous to use the symmetry
of the cell configurations, since in a monolith converter

® In much of the heat transfer literature on circular ducts, there is a

factor of 2 error in the dimensionless axial coordinate., This has been
corrected in the above comparison.
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Fig. 3. Cross section of trapezoidal shaped duct. Region 1—substrate,
2—wash coat of porous material with catalyst, 3—fluid, ----
region of calculation.

there are from one to five thousand cells. It would be a
huge computational task to model every cell in the con-
verter. Only the repetitive symmetric portion of the cells
needs to be modeled if the converter is adiabatic and
the flow rate is equal in all cells. Experimental evidence
shows that the flow rate is not the same in each cell
(Lemme and Givens, 1974; Howitt and Sekella, 1974),
although Morgan et al. (1973) measured only minor
radial temperature variations even during transient ex-
periments. A nonuniform flow distribution between the
cells tends to decrease the effectiveness of the converter
under a given set of conditions. It is desirable to mini-
mize flow variations, and considerable progress has been
made in this direction. Since the radial temperature
gradients are not large and flow straightening devices
should be used, it appears reasonable to assume the con-
ditions are the same in each cell, so that the symmetry
of the device can be used.

By the nature of the problem, any mathematical
model must be a transient one. It appears reasonable,
however, to neglect some of the transient terms as in
analysis of packed-bed reactors (Ferguson and Finlay-
son, 1974). Since monolith converters are somewhat
similar, these criteria are used here. The thermal accu-
mulation term for the fluid is neglected, since the ratio
of fluid to solid thermal capacity is approximately 0.0007.
The mass accumulation term for the fluid is neglected,
since the residence time in the converter is from 0.003
to 0.02 s, while the thermal time constant is approximately
2 5. The transient response of velocity is neglected since
velocity changes will occur on the order of ¢t = 1.8
m2p/p =~ 0002 s (Bird et al, 1960, Chapt. 4). The
transient response of mass in the catalytic layer can be
neglected when the ratio of thermal to mass time con-
stants is large. For the monolith converter, this ratio is
approximately 105, which is substantially larger than the
necessary ratio of 1 suggested by Ferguson and Finlay-
son (1974) for packed-bed reactors. This last effect,
however, is included in some of the models, since no
additional effort is required to do so.

The models developed below for the monolith con-
verter embody the assumptions discussed above. There
are, however, other phenomena which might be neg-
lected, although there is no previous work which relates
to these possible assumptions. To determine this informa-
tion is one of the primary reasons for the present study.
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A series of models with various combinations of additional
assumptions are developed below, so that the important
features of the problem can be determined.

In order to specify a converter model, models must be
chosen for heat and mass transfer in the three regions
shown in Figure 3. The discussion below treats, in tum,
heat and mass transfer in the. fluid phase, heat transfer
in the solid phase, and mass transfer in the catalytic
layer.

Two models are developed to govern heat and mass
transfer in the fluid. The first accounts for the distribu-
tion of heat and mass in the cell cross section, and the
second assumes that heat and mass transfer coefficients
may be used to account for the resistance to transfer be-
tween the fluid and the wall,

In the governing equations for the fluid, diffusion
coupling is neglected, and an effective multicomponent
diffusivity is used (Bird et al., 1960, Chapt 18). The
fluid properties are assumed to be constant in the cell
cross section; the gas is ideal with a constant average
molecular weight. The compression work term is neg-
lected in the energy equation, and no reaction is as-
sumed to occur in the fluid. Under the above assump-
tions, the equations governing the fluid are

Heat, mass, and momentum balances for fluid in models
II, IT-A, and III-A

aT! 8r2<G’>
= V1.2T! 44
9z “ G (x,y) " (44)
Y/ 8r2 <G>
—_— =y —————— V2Y 45
7o % =) n?Yd (45)
C dp
2V ,,2@ = 8712 — —— 46
8r2Vn Th oLz (46)

In Equations (44) and (45), the fluid properties may
vary axially and with time, either explicitly or as a
function of temperature and composition; however, in
the calculations «; and ' are assumed to be constant,
since they vary by only 159 over a 400°F temperature
change. The molar velocity G’ is zero at the converter
wall, and the boundary conditions for the fluid energy
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and continuity equations are determined by the equa-
tions governing the converter wall.

Simplified Huid equations are derived by integrating
the fluid equations (44) and (45) across the fluid cross
section and by defining Nusselt and Sherwood numbers
in the usual way. With this assumption, the equations
for the fluid become

Heat and mass balances for fluid in Models I and I-A

aT™

—— = 2a; Nu(Ts — TH)
dz

ayM

(47)

= 2 ayt Sh(Yy# — Y M) (48)
Equations (44) and (45) and (47) and (48) are
designated as distributed and lumped parameter fluid
models, respectively. If the Nusselt and Sherwood num-
bers in (47) and (48) are calculated from the solution
to (44) and (45), then the two models will agree
exactly for any wall temperature and composition distribu-
tion. The essential difference between the fluid models
are that if Equations (44) and (45) are not solved, then
the Nusselt and Sherwood numbers must be specified a
priori, even though they may vary with position and time.
Three different models are considered for heat transfer
in the solid phase. They differ by the conduction terms
neglected in the three-dimensional transient heat con-
duction equation. To model the transfer of heat within
the converter wall, the reaction is assumed to take place
in an infinitesimal region at the fluid-solid interface.
This assumption results, since the catalytic layer is thin
(~0.025 mm) relative to the substrate (~0.25 mm), and
the Prater relation (Smith, 1970, p. 446) suggests that
the temperature change within the catalytic layer will
be less than 1 deg. The catalytic layer and the substrate
are assumed to have the same thermal diffusivity. In
addition, the temperature is assumed to be constant in
the direction perpendicular to the wall. An analysis by
Young (1974) suggests that this assumption is valid
provided rpks/mukf > 20. In the monolith converter, this
quantity is about 50, so the assumption appears justified.
The most complex and comprehensive model for heat
transfer in the solid results by the application of the
above assumptions to the transient three-dimensional
heat conduction equation. The resulting equations are
listed below for the square cell monolith, since this is
the only geometry for which this model is solved:
Energy balance for solid in model III-A

[ aTs ( Ths )2 92T's ( Ths )2 82T’]
as| ag — —
at L 922 2y + d/4 9x2
"
+ 2ryn-VT! 4 2 Bsi<ri> =0 (49)

i=1

where x = x//2r, for the coordinate system in Figure 4
and <r;> is the average reaction rate across the catalytic
layer. The term 2r, + d/4 in Equation (49) is the aver-
age length of the wall in Figure 4. Similar equations can
be derived for other cell geometries.

The second model considered for heat transfer in the
solid is derived from that above by assuming that heat
conduction is sufficiently fast that no appreciable tem-
perature gradients develop around the periphery. Under
this assumption, the governing equation for any geometry
becomes

Energy balance for solid in models I-A and II-A

aTs Ths )2 92T ]
as[a;; ot bt ( I 922 +2fh(n‘VTf)

March, 1976 Page 337



A

+ 2 Bsi<ri>=0 (50)

i=1

In Equation (50), T is understood to be constant around
the cell periphery.

The simpiest model considered for the solid results
by the additional assumption that heat conduction in
the axial direction is zero, In this case, the governing
equation becomes

Energy balance for solid in models I and II

A
s m

+2nm(n VT + 3 Bsi<r>=0 (51)
i=1

2
35 ot

By comparing the results predicted by the above three
models, one can determine the importance of heat con-
duction around the periphery and axially. Radiation
effects should probably be included and would cause
effects similar to those caused by axial conduction.

The usual equation for modeling reaction and diffu-
sion in a porous catalytic slab is

dzys
B =0
dy£(0)
Ye) =y S22 =0 (52)

Equation (52) is, of course, a special case of the
equation for three-dimensional transient diffusion and
reaction, It assumes that the mass transient term can be
neglected and that negligible diffusion takes place in the
other two spatial directions, The mass transient term
can be neglected, as discussed above, but there is no
evidence to suggest that diffusion axially and around the
periphery can be neglected.

For the above reasons, the following equation is the
most complex model used to describe the catalytic layers,
region 2 in Figure 3:

Mass balance for porous layer in model ITI-A

. JY(“ (f )2 azyts

i i — B,i —_ = —_—

ag [ a— Bii<r> T P

f )2 BZYis ]
(= 2rn-VYS =0 (538
(2fh Py + 2ryn (58)

where x is again the coordinate on the periphery of a
square duct. In Equation (53), <r;> denotes the reac-
tion rate from (52), averaged in ¢, that is, the apparent
reaction rate including internal diffusion effects, and
Y = Y¢f|¢=y is a function only of ¢, z, and x. Equations
(52) and (53) solved together in this fashion do not
constitute a legitimate solution to the equation for three-
dimensional diffusion and reaction. The purpose of this
approximation is to test for the importance of diffusion
axially and peripherally. The mass transient term is in-
cluded, since no additional effort is required to include it.

When infinitely fast peripheral diffusion is assumed,
we get

Mass balance for porous layer in models I-A and II-A

Y ( ¢ )2 2y ]
i — gicrs [ 5
ag [ wi— B> poe

L
+ 2r,(n-VYH) =0 (54)

When axial diffusion and the transient term are neglected,
we get
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TABLE 4. DESCRIPTION OF MATHEMATICAL MODELS

Diffusion and conduction peripherally

Model in substrate and porous layer

Fluid model

III-A Distributed

II-A Distributed
I-A Lumped

Finite rate
Infinite rate (no variation peripherally)
Infinite rate

Models with the designation A have a finite rate of axial conduction
and diffusion in solid. Models without the designation A have no axial
conduction or diffusion in solid.

Mass balance for porous layer in models I and II
2Th(ll‘VYif) = 'aei 4i<1'{> (55)

By comparing the results from Equations (53) to (55),
the importance of axial and perpheral diffusion and
the mass transient term can be determined.

The results of the various models can be compared
to deduce which phenomena are important for a proper
mathematical moael of the catalytic converter. Table 4
lists the relevant features of the models. For example,
comparison of models I-A and II-A shows the effect of
a lumped parameter vs. a distributed parameter model
for the fluid. Models I and II can be used to see if the
same comparison between lumped and distributed fluid
models holds in the absence of axial conduction in the
solid. Comparison of models II-A and III-A shows the
effect of peripheral variations of concentration and tem-
perature around the substrate and porous layer, for
example, along 2’ at y’ = 2r, in Figure 4. Interestingly,
models I and I-A are similar to adiabatic packed-bed
reactor models, which include an external resistance be-
tween the fluid and solid catalyst. Model I is like that
first solved by Liu and Amundsen (1962), and model
I-A is similar to that solved by Eigenberger (1972). The
calculations with these models can be related to these
previous studies.

Model I-A is also very similar to the monolith con-
verter model developed by Kuo (1973), which has been
used extensively by industry. In this study, constant
values of the Nusselt and Sherwood numbers are assumed,
while Kuo (1973) used the axially varying Nusselt and
Sherwood numbers calculated from a constant wall
temperature Graetz problem. This difference is minor,
and the results found with model I-A apply equally to
Kuo’s model. Model I-A is the same as that used by
Votruba et al. (1975).

The initial conditions for model III-A are

Ts =To%(x,2); Yif=VYio%(x,2z) at £t=0
(56)
At the fluid-solid interface, the following conditions apply:
Y/ =Ys T/ =Ts (57)
The boundary conditions in x are
ayis=ﬁ=0 at x=0,1 (58)
dx ox

The boundary conditions in the axial direction depend
on the nature of the inlet and outlet regions, which are
modeled by assuming they are ideal stirred tanks. Energy
and mass balances on the fluid in the inlet region yield

Ths 2 1 3Ts
T/ = Tof + 4 ('—L—) a1a5£ a—zdx (59)
at 2=0
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2 1 3Y8
Y=Y + 4(%) azias‘j; 3; dx (60)

Heat and mass transfer coefficients are used to describe
transfer between the fluid and solid at the inlet:

Orps 0T¢

= Nuo(T* - T! (61)
T o )
at z=0
2me YE _ (v — Y4 (62)
L 9z

where Sho and Nuo are defined by using 2rss as the
characteristic length. Values of 3.5 and 5.5 have been
used for Sho and Nuo in the calculations, and it is found
that the values of these parameters make little difference.
This occurs because transfer between the fluid and wall
is very fast at the inlet owing to the developing tem-
perature profile there, so that T¢ ~ T/ and Y¢ ~ Y/ at
the inlet regardless of the values of Nuo and She.
A similar analysis could be applied to the outlet re-
gion; however, the following condition is used:
aTe _ Y ¢

02 0z

The above boundary and initial conditions can be sim-
plified for the other models. For example, the conditions
on models II-A and I-A follow by assuming that T* and
Y are constant in x. Models without axial conduction use
the initial conditions

T'=T¢; Y=Y of at z2=0 (64)

instead of Equations (59) to (62). Models I and I-A
do not use Equation (57).

SOLUTION OF MATHEMATICAL MODEL

The solution method is based on the well-known fact
that the solution of a heat transfer Graetz problem with
arbitrary specified wall temperature can be expressed in
terms of the solution (and various integrals) of the
Graetz problem with constant wall temperature down
the duct. In the monolith problem, the wall temperature
down the duct is unknown, but the fluid temperature
can still be written in terms of the unknown wall tem-
perature distribution. Consequently, the temperature and
concentration in the fluid can be solved directly, and
only the solid equations are left to be satisfied.

To illustrate the ideas, consider a circular duct Graetz

problem, Equations (1) and (2), but with the wall
condition

=0 at z=1 (63)

T(1,2) = Tw(z) (65)

Sellars et al. (1956) have derived an analytical solution
for this problem. Their solution can be rearranged to

T(x,2) = To — i MCaBa(®)

n=1
eMmGE=D[T,(r) — Toldr (66)

The solution of the orthogonal collocation approximation
to Equations (1), (2), and (65) is

N N "

T(x,2) =To+ > D thintty~ (1 — x?)Byn+s J;
i=1 n=1

eMm=D[T, () — Toldr (67)
Equation (67) is a radially discrete approximation to
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the first N terms of the analytical solution, Equation (66).
The orthogonal collocation method could be made radially
continuous if desired and would then give an approxima-
tion to the Green’s function for the problem. In Equa-
tion (67), the A, are the eigenvalues of the matrix (1
— x2) 7'By;, and the u;, are the associated eigenvectors.
The mixing cup temperature and wall heat flux are given

by

N 2z
™ =T¢ + 2 Sk"; eMz=N[T,(r) — Toldr
k=1

(68)
T 1dmv 1 Y (
— = e e— T — S Tw —T
0x | z=1 4 dz 4 1;:;1 y (=) °
e f Ty ) — Toldr ) (69)
where

N N
S, =4 2 2 Wi(1 — x2)ugette;=* (1 — x2) Bjn +1
j=

-
Il
-
-

(70)
In this fashion we have completely expressed the ap-
proximate solution T; = T(x;, z) [and hence T(x, z)]

in terms of the wall temperature T, (x).

For more complicated geometries, the details become
more complex, but the ideas are similar and are applied
here to the rectangular geometry. Only the temperature
equations are given in detail. The mass balances follow
by analogy. Orthogonal collocation applied to Equations
(33) and (36) yields

Th

2V 3 becu+ (L) 3 e - -
a kgl o E b ngﬂG! .

(71)
Gy dTy ( iy )2 [ pliy
8 —s( ™ BueT
<G> dz a ,;::1 oM

1 \2 M+
+ (—b-) Z:l By*Ty ] (72)
Here the boundary and initial conditions are taken as
T(x,y,0) =To, T(x,1,2) =h(x,2),
T(Lyz) =gly2) (79)
leading to collocation approximations:

T;(0) =To, Tim+1=h(x,2), Ty+1;=g(ysx)
(74)

In these formulas, Tiyj(z) = T(x; y; z). The fluxes on
the walls are

ony=1 2rnnVT
ZLYM +1
1 27' M+1
== () Aty (5)
a j=1
2fh N+1
on x+1: 2mn'VT =— 2 AN 14Ty
aN+pyy @ o

(76)

The above Equations (71) and (72) involve an un-
known matrix Ti;. The collocation points are renumbered
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by a single index so that these equations can be written as
Ny
> FifGy=—1 (77)
i=1

G dry X N
=S FyT, + F.f¢ 78
<C> iz E i Ly Zl ij fJ ( )

In these equations, {f;} are the values of h(x; z) and
g(y;, z) numbered in sequence arpund the periphery;
hence, Ny = N + M. N, = N X M is the total number
of interior collocation points. For all models except model
III-A, f; = f; for all i and §, since the conditions are
the same at all points on the periphery in the other
models. For the simpler models, Equation (78) can be
simplified to the same form but with N, = 1.

Equation (78) is identical in form to the equations
for the circular duct, Equation (12), with wall condi-
tion (65). Other geometries also yield equations of the
same form as Equation (78).

The solution is

Ni. N Ny

Ti=To + z 2 Z Upetly; ! <G> ijj:
k=1 j=1 I=1 GJ

eMGE=D[f(7) — T,]dr (79)

where A are the eigenvalues, and the Uy are the asso-
ciated eigenvectors of F;* <G>/G; The mixing cup
temperature is given by

Ny N A 2
™ =To + 2 2 Skt J; eMED[fy(r) — Toldr
k=1 1=1
(80)
where
A MNooN G
Sk = Wittt —— Fy° (81)
i=1 j=1 G

The flux on the boundary is obtained from Equations
(75) and (76), which are rearranged from a form with
Ty; to one with T}:

Ny Na
2rhn‘VT = 2 HﬁsTg-l- 2 Hj{cf{, i= 1, ERTS Nz
i i=1 i=1
(82)
The use of Equation (79) permits this to be written as
Ny N N, "
2fhn‘VT|j = 2 Hj{c(fi —_ To) + 2 2 RijRkls f
i=1

o

k=1 1=1
eME=N[f (1) — T,]dr (83)
where

N!. Nl
RyF = 2 HiSuy, RS = 2 g~ !
i=1 i=1

<G>

FﬂC
(84)

The appropriate quantities A, u, é\, H, F, G are calcu-
lated for the Graetz problem in order to use them in
the equations for the monolith.

The fluid balance for the monolith, Equation (44),
differs from Equation (36) only by the factor «;. The
mixing cup temperature from Equation (44) is then
derived by modifying Equation (80):

N; N,
T™(z) =To + 2 2’ /s\klj:
k=1 1=\

eaMGE=1[Ts () — Tolaydr (85)
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The normal flux is likewise
N, N1 N 2
2rn- VT, = 2 H;f(T¢ — Tof) + 2 2 RijRklAJ;
i=1 k=1 1=1

eeMZ=D[T(r) — TSlaydr (86)

We note that in order to apply this method we must
assume that «; (and ayi) are constant in z.

The problem is discretized in the axial direction by
approximating T°(z) by using Lagrange interpolation
over subregions or elements of equal length. Expansion
of the Lagrange interpolating polynomial gives the standard
collocation interpolation formula (Finlayson, 1972, p.
101). In the m! element with coordinate ¢ = 0 — 1,

we get
N, N,

Tlslgm = 2 Tslum 2 Qﬁ—lfj—i

i=1 i=1

(87)

where T¢|y™ = T¢|¢™ and the points ¢; are conveniently
taken as Gaussian quadrature base points.

Equations (85) and (86) can be used after a method
of calculating the integrals is devised.

For each eigenvalues \;, we calculate a quadrature
weight

Ny €5
L= -1 i)f AkCEs =TI/ N l—1
Wi = l=21 Qu ( N/ e ek(E =T /N5 =1,
(88)

In these formulas, the axial direction has been divided
into N5 elements, each having N4 collocation points.
Equation (86) can then be written as

Ng
2fhn'VTlr.nm = 2 H”‘C(Tslr‘m - To!)
i=1

& & ( 1)/N, A ( m )
m-— 5 OiAx -T
* z} gl Ru/Ryrf J; e Ny [T ()

Ny Nj Ny

2 Ruk"RiSWienTe|y™  (89)

=1 j=1 k=1
m—1 )
N + &

is the wall temperature, at the r*" axial collocation point
in the mt* axial element, and at the nt* peripheral posi-
tion. These equations are rewritten as
Ny Ny
2fhn'VTIm = 2 2 Fmistl‘jm+Gmm

i=1 j=1

— To'] aydr +
i

where

TS|pan = T ( Xns Yns (90)

(on) -

The matrix F doss not vary from element to element.
Equation (91) completes the specification of the normal
flux at any axial collocation point r in element m and any
peripheral position (n) in terms of the wall temperature
at the axial collocation points r in element m and the set
of peripheral position (j = 1, ..., N»). When heat con-
duction peripherally is very fast (all models except III-A),
N 2 = 1.

By means of Equations (85) and (86) or (91), the
fluid equation for models II, II-A, III-A are essentially
solved. Equation (91) is substituted into Equation (49)
for model III-A. The peripheral Laplacian is approxi-
mated by orthogonal collocation, while the axial Laplacian
term uses orthogonal collocation on finite elements as
well as the continuity conditions between elements (Carey
and Finlayson, 1975):
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822 m ( Az) 2 jgl " i

m N

82Ts 2
i=1

92
P (82)

in

The result is a set of ordinary differential equations for T*
at the axial and peripheral collocation pomts. This set
of equations is solved for a transient solution by using
a backward Euler method, with a Picard, or successive
substitution method of iteration applied sequentially on
each element. Iteration parameters are included, and
guidelines for the crucial choice of these iteration param-
eters is given elsewhere (Young, 1974). Stability of the
iteration process is enhanced by large iteration param-
eters, but computation times are then longer. If only
a steady state result is desired, the coefficient of the time
derivatives is set to zero, for example, a3 = 0. This
corresponds to taking a time step At of infinity. The
iteration to steady state solutions did not converge for
all cases, so the transient case was calculated to steady
state. The calculations proceeded element by element.
The solution at all collocation points in the first element
was found by successive iterations, and then each suc-
cessive element down the duct was solved in turn. If
there is no axial conduction in the wall, such a sweep
down the duct completes the steady state solution or
one-time step in the transient solution. If axial conduc-
tion is present, then what happens at the outlet in-
fluences what happens at the inlet, so that several more
sweeps must be made down the duct before convergence
is obtained for a single time step or steady state. Since
the full set of equations represents about 1000 coupled
nonlinear equations, the difficulties in the iteration method
are not surprising,

Model II calculations could be done for a circular cross
section with three radial collocation points (N;), and
for severe cases 1 001 points were used axially (N, = 3, N;
= 500). When model II-A was used, the number of
collocation points per element was from 5 to 7 (Ng),
and from 20 to 80 elements (Ns) were used. The num-
ber of collocation points interior to the fluid, hence the
number of eigenvalues A calculated, ranged from N; =
4, 6, 15, and 15 for the cross sections having the shape
of a circle, square, rectangle, or trapezoids. Computa-
tion times ranged from 10 to 40 s for steady state solu-
- tions on a CDC 6400 computer, depending on the com-
plexity of the geometry and the difficulty of the par-
ticular steady state problem being calculated. For model
III-A, with peripheral variations of temperature and
concentration and a square cross section, typical values
used were N; = 6 for the number of interior collocation
points and Nz = 8 for the number of boundary points.
Owing to the symmetry apparent in Figure 4, only a
few collocation points were needed to obtain accurate
solutions. Computation times for model III-A for the
square ranged from 32 to 250 s on the same machine.

In the transient calculations, the step size ranged from
0.125 to 1 s during the transient. The computation time
depended drastically on the severity of the solution
being calculated. With model II, one solution took 50 s
of computation to calculate 38 s of the model solution,
whereas a more severe case took 900 s of computation
for 14 s of real time. Model II-A calculations were from
four to six times less than model II calculations and
typically required from ten to fifteen times real time,
but a complete transient in real time can take place in

AIChE Journal (Vol. 22, No. 2)

as little as 25 s. Model III-A typically required four times
the computation time of model II-A, or fifty times real
time,

That solutions could be obtained at all is due largely
to the use of the eigenvalue technique. A typical steady
state solution to models 1I-A or III-A with Ny = 7 and Nj
= 25 requires the solution of 302 and 906 simultaneous
algebraic equations, respectively, Had the eigenvalue
technique not been used, then for square geometry and N,
= 6, the two models would have required the solution
of 2114 and 2 718 simultaneous algebraic equations.

NOTATION

duct dimension m, constant in Equation (43)

total converter frontal area, m?

orthogonal collocation matrix for approximating
a first derivative

rectangle or trapezoid aspect ratio

orthogonal collocation matrix for approximating
a single dimension Laplacian operator

trapezoid aspect ratio

total molar concentration p/M,, 0.0151 kg mole/
m3

molar heat capacity of fluid, 8.140 X 10* J/kg
mole °K

mass heat capacity of solid, J/kg K, p°Cp* = 4.14
X 105 J/m3 °K

converter wall thickness, m

effective molecular fluid diffusivity for compo-
nent i, m2/s

effective porous solid diffusivity for component i,
m2/s, Dis = 0.05 th

unit vector in x direction

unit vector in y direction

general function

triction factor Reynolds number product (8r2C
dP/dz’) /<G’ >p

orthogonal collocation matrix for the approxima-
tion of a two-dimensional Laplacian operator
and operating on the interior point values

Fiy¢ = orthogonal collocation matrix for the approxima-
tion of a two-dimensional Laplacian operator and
operating on the boundary point values

- pp
I I

I

Q
.a‘\
i

Q
”h
i

S
I

g
I

Sk
I

FyS

g = general function or a function describing a two-
dimensional region

@ = function defined in Equation (28)

G’ = molar flux, kg mole/sm?

G = dimensionless molar velocity, G'u/ (8r,2Cdp/dz’)

h® = heat transfer coefficient, J/sm? °K

h = general function or a function describing a two-
dimensional region

I/z\ = function defined in Equation (28)

H; = enthalpy change associated with the generation
of mole of component 4, 3.37 X 108 J/(kg mole
CO + 1/3 kg mole Hy)

H;;5 = orthogonal collocation matrix for the approxima-
tion of a normal gradient at a boundary and
operating on the interior point values

H;€ = orthogonal collocation matrix for the approxima-
tion of a normal gradient at a boundary and op-
erating on the boundary point values

k® = mass transfer coefficient, m/s

k = thermal conductivity, J/smk

ks/k = ratio of solid to fluid thermal conductivity, 25

l = line coordinate on the periphery of a two-dimen-
sional region

L = converter length, m
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L(x) = Lagrange interpolating polynomial

M = order of approximation

M, = average molecular weight of the fluid, 28.8 kg/
kg mole

n = unit normal vetor point outward from a two-
dimensional region

N = order of approximation

N; = number of collocation points or eigenvalues for
the fluid

N, = number of boundary (peripheral) collocation
points

Ny = number of axial collocation points in an element
(including boundary points)

Ns = number of axial elements

Nu = Nusselt number, 4r,h®/kf

<Nu>— = Nusselt number averaged around the periphery

Nu, = asymptotic Nusselt number

Nu, = Nusselt number for heat exchange between the
incoming fluid and the front face of the con-
verter solid, 2rysh®o/ks

P = total pressure, N/m?

Pr = Prandtl number of fluid, xC,//k'M,, 0.7.

Pe, = Peclet number for heat, PrRe

Pen' = Peclet number for component i, Sc;Re

Px(x) = orthogonal polynomial of Nt* degree in x

r; = rate of generation of component i, kg mole/sm?3

r, = hydraulic radius of a duct, the duct open area
divided by the duct perimeter, m

rns = hydraulic radius of the solid in the converter, the
solid area divided by the fluid-solid interfacial
length, or the solid volume divided by the super-
ficial surface area, or rps = (1 — €)rn/e, m

RjF = matrix for the flux around the periphery of a
duct, defined by Equation (84).

RS = matrix for the flux around the periphery of a
duct, defined by Equation (84).

Re = Reynolds number, 4r,G’M,,/p, 1900G std. (m?3/s)

Qi; = interpolation matrix in collocation method

S = surface area in two dimensional quadrature for-
mula

Sc; = Schmidt number, u/ (pD{), 0.7

Sk,§k1= coefficients for the mixing cup temperature in
a wall temperature specified Graetz problem,
defined by Equations (70) and (81).

S. = converter superficial surface area, eA.L/r,, m?

Sh = Sherwood number, 4r,k*/Df

Sh, = Sherwood number for mass interchange between
the incoming fluid and the front face of the con-
verter solid, 2ry.k,®/D*

t = time, s

T = temperature, °K

ug = the eigenvector associated with the kt* eigen-
value of the wall temperature specified Graetz
problem

W: = quadrature weight for the i** base point

x = dimensionless x” coordinate

y = dimensionless y” coordinate

Y; = mole fraction of component i

z = dimensionless axial coordinate, z’/ (2r,Pe) or z’/L

Greek Letters

a; = dimensionless thermal converter length, L/2r,Pe,

= 0.02/C (std. m¥/s)

ap! = dimensionless mass converter length for com-
ponent i, L/2r,Peni = 0.02/G (std. m/s)
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time constant, p°C,*ry2/ks = 0.0224 s

time constant for component i, {2/D;%, as®° =

1.59 X 10~5s

ratio of fluid to solid resistance to heat transfer

(ks/kf) (2rp/1hs), 100

ratio of fluid to solid resistance to mass transfer,

(D#/D{) (2ra/8), 2

Bsd = mass reaction coefficient, {2/CDy, 2.02 x 1010
m3 s/kg mole for CO

Bst thermal reaction coefficient, H2r,(/kf, 4.35 X

10—6m3

= void fraction of converter, or fractional open

area, rh/(rh + rh,)

void fraction of the catalytic layer

thickness of the catalytic layer, m

dimensionless transformed coordinates

kt eigenvalue for the wall temperature specified

Graetz problem

viscosity of gas, 8.57 X 10~5 kg/ms

dimensionless tranformed coordinate

density, kg/m?

dummy variable of integration

ag
a4

i

Il

as

ag

rS g

R~ 0

Subscripts and Superscripts

S = value for the interior of the region

C = value for the boundary of the region

f = fluid value

M = mixing cup average value

O = initial or inlet value

s = solid value

w = wall value

L g h, &, %, y, z = superscripts on quadrature formula

or collocation matrices associated with line in-
tegral, functions, or dimensions
dimensional quantity

m element number

A

m = number of independent chemical species

i, j k, I, r = collocation point

{f} = average of f on boundary of two-dimensional duct
<f> = average of f in cross section of two-dimensional

duct
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Mathematical Models of the Monolith

Catalytic Converter:

Part Il. Application to Automobile Exhaust

LARRY C. YOUNG

Calculations are done for a series of mathematical models for a mono-

lith catalytic converter to oxidize carbon monoxide in automobile exhaust.
Phenomena studied include axial conduction in the wall, diffusion and
conduction in the gas in a transverse direction perpendicular to the flow
direction, multiple steady states, and transients giving wall temperatures

exceeding the adiabatic temperature.

and
BRUCE A. FINLAYSON

Department of Chemical Engineering
University of Washington
Seattle, Washington 98195

SCOPE

For better or for worse, the use of catalytic converters
to reduce automobile emissions of carbon monoxide and
hydrocarbons has become a reality. Two types of catalytic
converters are used for this application: packed beds
and monoliths, The present study is concerned with
mathematical models for the monolith converter. The
simplest model which will give realistic predictions is
determined, and the model calculations illustrate the
important phenomena occurring in the device.

Although considerable attention has been devoted to
modeling packed-bed converters (Wei, 1975), little pub-
lished information is available on modeling monolith

Larry C. Young is with Amoco Production Company, Tulsa, Oklahoma.
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converters. Kuo (1973) developed a lumped parameter
model for the monolith converter, which has been used
by eight automobile and oil companies. Votruba et al.
(1975) have also presented a similar model. Both these
models include axial conduction in the wall. Hegedus
(1974) neglects axial conduction. In a preliminary study,
Young and Finlayson (1974) proposed and solved two
models for the monolith, which cast some doubt on the
validity of the simpler models. The essential question
is whether or not to include diffusion and conduction in
the fluid in a transverse direction perpendicular to the
flow (and duct) axis, as did Young and Finlayson, or
whether a simple lumped parameter model of this phe-
nomenon, with specified Nusselt and Sherwood numbers,
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is sufficient, as was done by Kuo, by Hegedus, and by
Votruba et al.

In the present study, calculations are done for a series
of mathematical models. Comparison of the results en-
ables the choice of the simplest model which can be
used for realistic predictions. The question of diffusion
and conduction perpendicular to the flow axis is con-
sidered, as well as the importance of axial conduction in
the wall and peripheral diffusion and conduction in the
wall around the duct. The effect on the reaction rate
of diffusion limitations in the porous substrate is also
included. The results provide a complete study of the
types of phenomena occurring in monolith devices.

One of the important limitations to the use of mono-
lith reactors in automobiles is peak overtemperatures
which cause the solid walls to melt or deform, which
eventually leads to the destruction of the device (Mor-
gan, et al., 1973). Calculations are done to investigate
this phenomenon and its dependence on transverse diffu-
sion and conduction in the fluid, axial conduction, and
the presence of significant amounts of hydrogen. Model
calculations also illustrate the effect of different duct
shapes on the performance of the converter. Steady state
and {ransient simulations are included, with transient
models being especially important for application to
automobile exhaust.

CONCLUSIONS AND SIGNIFICANCE

The most important transport phenomenon which must
be included in a model of the monolith reactor is the
diffusion and conduction of species and energy in the
fluid in a transverse direction perpendicular to the duct
axis. Lumped parameter models with Nusselt and Sher-
wood numbers assigned a priori do not suffice unless
multiple steady states are not predicted. Unfortunately,
for realistic conditions for treatment of automobile ex-
haust, multiple steady states are predicted to occur, and
lumped parameter models are unsuitable.

Axial conduction in the solid is sometimes important,
and its inclusion in the model tends to reduce the tem-
perature gradient at the point where the reaction lights

off and to reduce the peak overtemperature during tran-
sient and steady state simulations. Both effects tend to
shorten the computation time for transient simulations
when axial conduction is included rather than excluded.
Peripheral variations of temperature and concentration
around the duct at a given axial location are predicted
to occur, but the effect on the overall performance of the
converter is negligible. If hydrogen is modeled as a
separate species, rather than relating it strictly to the
carbon monoxide concentration, the peak overtempera-
tures are larger, but still not sufficient to cause melting
of the converter during normal operation of the auto-
mobile.

MODEL DEVELOPMENT

The monolith converter consists of a number of cells
or ducts through which the exhaust gas flows. A diagram
of a single square cell is shown in Figure 1. Other cell
shapes are possible, and those considered in this study
are shown in Figure 2.

The monolith converter consists of the three regions
shown in Figure 1: a laminar flow region, a porous
catalytic layer, and a relatively nonporous substrate. A
cell is typically 1.3 mm wide, the catalytic layer is ap-

L ; | I POROUS

| OPEN LAMINAR ‘ Eﬁ\TréLRYT'C
FLOW REGION :
| | FLow RS ; SUBSTRATE

CROSS SECTION

DEVELOPING VELOCITY FULLY DEVELOPED
PROFILE LAMINAR FLOW

|
L 1

LONGITUDINAL SECTION

Fig. 1. Cross section and longitudinal section of the square cell.
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proximately 0.025 mm thick, and the substrate is typi-
cally 0.25 mm thick. A typical converter will contain
thousands of these cells. After an initial length in which
the velocity profile develops, the fluid flows in laminar
flow through each cell. The reactants in the fluid diffuse
to the wall and into the catalytic layer, where the reac-
tion occurs; the heat generated and the reaction prod-
ucts diffuse back to the fluid and are carried downstream.
All of the models studied here embody the assumption
that the velocity profile of the fluid is fully developed

SQUARE CIRCLE
TRAPEZOID
4:1 RECTANGLE 'h

Fig. 2. Cross sections used in this study. Compared at constant ry.
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