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Chapter 1

Weighted Residual Methods and their
Relation to Finite Element Methods in
Flow Problems

B. A. Finlayson

1.1 Introduction

Weighted residual methods are contrasted to finite elements methods for
applications to flow problems. We first distinguish between principles which
will generate the approximate solution and the choice of trial functions. For
example, the Galerkin method is sometimes equivalent to the variational
method, regardless of the choice of trial functions. The orthogonal collocation
method is also seen to be equivalent to the Galerkin, and hence variational,
method because the trial functions are orthogonal polynomials. This makes
the orthogonal collocation method a discrete form of Galerkin’s method
in special cases. The importance of collocation-type methods is that quad-
ratures need not be evaluated: several examples are given where this is
advantageous.

The main difference between weighted residual methods and finite element
methods is in the choice of trial functions or shape functions. Traditionally,
weighted residual methods have used trial functions which are defined over
the entire domain, whereas finite element methods have used shape functions
defined over an element, with elements joined together to cover the entire
domain. The various polynomials that have been applied to one-dimensional
problems are described and their truncation errors listed. The method of
orthogonal collocation on finite elements is then introduced by using as
shape functions orthogonal polynomials on finite elements. This method
has the advantage that quadratures need not be evaluated in non-linear
problems. Conditions are given when it is equivalent to the Galerkin method
and applications to time-dependent and two-dimensional problems are
outlined. Finally the use of the residual allows for the automatic placement
of elements, so that the elements are smallest in regions dictated by the
solution. Such a scheme is not feasible in the finite element method when
linear shape functions are used, since the residual is not defined.

To illustrate these features of the various methods. we consider applications
to several flow problems. Entry-length calculations and boundary layer
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flows characteristically have solutions with large gradients and the boundary
layer flows often have singularities. These properties must be taken into
account by efficient weighted residual methods while finite element tech-
niques can be applied in a straightforward (though sometimes inefficient)
manner. Flow through packed beds of spheres is shown to have an 8-fold
symmetry which must be satisfied exactly for an efficient solution. Weighted
residual methods can use trial functions obeying this symmetry, thereby
achieving a 28 = 256-fold reduction in the number of unknowns compared
to finite element techniques. However, the trial functions utilizing this
symmetry in weighted residual methods must be specially constructed for
each problem. Applications in the field of petroleum reservoir analysis give
useful insight into comparisons of different piecewise trial functions, as well
as computing-time comparisons to finite difference methods. The non-
linearities associated with the flow of non-Newtonian fluids add difficulties
for efficient computing. In the finite element method, linear shape functions
are especially convenient (because then the viscosity is constant over an
element) but, for more accurate solutions, higher order polynomials have
been used for Newtonian fluids. Such shape functions require recalculating
the integrals in the finite element method each time the viscosity changes,
as it does in each iteration for non-Newtonian fluids. Finally, fliows with
free boundaries utilize the convenient ability of finite element methods to
handle diverse geometries.

1.2 Weighted residual principles

A variational principle is often used to generate the working equations in
the finite element method. For a non-linear equation

2(u(x)) = f(x)

application of the variational principle leads to the Euler equation of the
form

J Su[2(u(x)) — f(x)]dQ =0 (1.1)
Q
Application of the variational method, for a trial function

N
u(x) = ), cu(x)
K=1

where the ¢, are constants, gives

J.n ul2() c) — f(x)]dQ =0 (1.2)
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The same equations arise from an application of the Galerkin method, when
the residual, N} c,u,) — f, is made orthogonal to the trial function, u;.
Thus there is always a Galerkin method which is equivalent to the variational
method.

The variational method is usually applied without performing the integra-
tion by parts to obtain Equation 1.1 or 1.2. The trial function then need not
be as continuous, since lower order derivatives appear. For example, the
slow flow of a generalized Newtonian fluid through an irregularly shaped
duct is governed by the variational principle (see Reference 1, p. 274)

i ép
I(u) = f [ n(IIdIl’ + w. e(z,—il dA
ALJ0 0z

dij = 3(w; ; + w;)

where w; is the ith component of velocity w, w; ; = dw,/8x;, and e, is the
unit vector in the z(2) (or 3)-direction. The variation with respect to w yields

i)
STl = f [25w,.,,d,,;1(u) + 5w.e(,,-£] dA (1.3)
A
while the Euler equation is from

511 = f 5w,.[—2(d,.m(u)),, + 53%] dA + | 2n(D) 6w, dn;dT (1.4)
A

r

It is clear that the second derivative of w; must exist if the trial functions are
to be substituted into the Galerkin equation, Equation 1.4, since 24;;; =
w; ;i + wj;, while in the variational formulation, Equation 1.3, only first
derivatives of velocity appear. Furthermore, when the variational principle
is a positive definite one, the equations resulting from Equation 1.3 will be
symmetric and positive definite, thus leading to computational advantages.
A further advantage of the variational principle is that natural boundary
conditions are easily handled. The natural boundary conditions are con-
tained in Equation 1.3 as d;jn; = 0 on I'; while in the Galerkin formulation,
the natural boundary conditions must be adroitly combined with the
residual to obtain Equation 1.4 (see Reference 1, pp. 30, 150).

It is thus clear that a variational principle is useful, if one exists. The
existence question is answered definitively using Fréchet derivatives as
outlined in Reference 1, Chapter 9. Using that formalism, for example, we
can prove that the steady state Navier-Stokes equations do not have a
variational principle (Reference 1, Section 8.6) unless the inertial terms are
zero or w X (V x w) = 0. Thus, to include inertial terms we, of necessity,
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must use the Galerkin method. We can, however, use the formulation as in
Equation 1.3.

oIl = J' [26w An(11) + Swipwpw, ; + ow. e(,)z ]dA =0 (15
A

with the inertial terms added so as to obtain the correct Euler equation, as
in Equation 1.4. Then, while the matrix arising in the finite element method
will no longer be positive definite or symmetric, Equation 1.5 still only
contains first derivatives, so that trial functions can be used which have no
second derivative. Thus, even if the Galerkin method is applied, it is useful
to understand variational principles. We note in passing that quasi-varia-
tional principles and the local potential method are also equivalent to the
Galerkin method, and indeed these special constructs often obscure the
mathematical basis for the approximate solution (see Reference 1, Chapter 10:
Reference 2).

The orthogonal collocation method is an important method because of
its relation to the Galerkin method and because of the extensions described
below which combine it with finite element ideas. In a collocation method
we set the residual to zero at a set of collocation points, e.g.

N
@(Z cka(x)) — f(x) =0 i=1...,N (1.6)
k=1

X =X

and solve the resulting equations for ¢,. In orthogonal collocation methods
(Reference 3; Reference 1, Chapter 5) the trial functions are orthogonal
polynomials. For illustrative purposes consider a one-dimensional problem,
with 2 a second-order ordinary differential equation

d*u du
dx?’ dx

and appropriate boundary conditions at x = 0 and x = 1. The expansion
function is taken as

u(x)) - f(x) = 0<x<l (1.7)

N
u(x) = b+ cx + x(1 — x) 3 a;P;_(x) (1.8)
i=1
where P;_,(x) is an (i — 1)th order polynomial in x made orthogonal to all
lower order polynomials using

1
J P{x)P(x)dx =0 i=0,1,---,j—1
1]
Now it is clear that if the coefficients b, ¢, {q;} are known, the function u(x)

can be found for any x, since P,_,(x) are known functions. Conversely, if
u(x) is known at a set of N + 2 collocation points, then the coefficients
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b, c, {a;} may be determined. The collocation points are taken as the N roots
to Py(x) = 0, which will be in 0 < x < 1, and the end-points x =0, 1.
Derivatives of u, du/dx and d*u/dx?, can be written in terms of b, ¢, {a;},
which are known in terms of u(x;), the function u at the collocation points.
Thus it is possible to define the derivatives at the collocation points (Reference
1, p. 100)

N+2

= Y By, (1.9)
5 =1

N+2 d2u
Ji%is 2
;=1 dx

u; = u(x;), ?

X X

The orthogonal collocation method applied to Equation 1.7 then yields,
similar to Equation 1.6,

N+2 N+2

@ Z Bj,'ui, Z Aﬁul',uj,x]') —f(xl) = O j= 2, Ceen g N + 1 (].]0)
i=1 i=1

with two more equations for the boundary conditionsat x, = Oand xy., = 1.
Now comes the important part. Because we have used orthogonal poly-
nomials we can define a quadrature scheme

N+2

[ reax ="y wive e (1.11)
0 i=1

which is exact when f(x) is a polynomial of degree 2N + 1 or less (Reference 1,
p- 105). We can use this result to show that the collocation equations,
Equation 1.10, are equivalent to the Galerkin equations for certain linear
operators.

First assume the differential equation is of the form

d’u du
(al + azx)w + a3a—x‘

~fix)=0 (1.12)
with the boundary conditions u(0) = a,, u(1) = a5 and f(x) an Nth order
polynomial in x. The properties of the quadrature formula, Equation 1.11,
can be used to show that the orthogonal collocation and Galerkin methods
lead to identical results when the same orthogonal polynomials are used
as trial functions in both methods (Reference 1, p. 135). If the problem is
more general than Equation 1.12, i.e. the residual is not a polynomial or is
a polynomial of degree greater than N, or is non-linear, then the exact
correspondence fails. However, in those cases we can still say that the
Galerkin method, using an approximate quadrature scheme, is equivalent
to the orthogonal collocation method. It is the use of orthogonal polynomials,
and the corresponding collocation points, that allows this result, and this
is made particularly evident in the convergence results cited below.

Both variational and Galerkin methods require integration of the trial
functions over the domain or finite elements. Such procedures are possible
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a priori for certain types of non-linearities, like the pu . Vu term in Equation
1.5. However, other terms, like dw; jd;n(11) in Equation 1.5, may be compli-
cated enough to prohibit the mtegratmn at the start of the calculation, when
no solution is known. Then the integrals must be recomputed throughout
the iterative calculation and this increases the computation time drastically.
The collocation method avoids this problem, because no integrals are
evaluated, and the orthogonal collocation method is sometimes equivalent
to the Galerkin method anyway. This advantage of the orthogonal colloca-
tion method is explored below.
In the subdomain method we use in place of Equation 1.2

fvm [Q(Z cy) — f(x)]dVol = 0,

thereby setting to zero the average residual in each subdomain Vol;. Other
methods are also possxble by choosing other weighting functions in Equanon
1.2 in place of u;.

1.3 Trial functions

In order to apply one of the methods of weighted residuals it is necessary
to expand the unknown solution in a trial function. The analyst has a choice
of two broad classes of trial functions. One class uses functions which are
continuous and defined over the entire domain, while the other class divides
the domain into subdomains or finite elements and uses trial functions
defined only on the elements. The first class will be referred to here as global
expansions, for ease in exposition.

The chief advantage of the global orthogonal collocation method is the
very rapid convergence as the number of terms in the expansion is increased.
For example, one study for an ordinary differential equation® found that
the error was proportional to (1/N)'-72¥ where N was the number of colloca-
tion points. As N changes from 5 to 6, then, the error decreases by a factor
of 100. By contrast, in a finite difference calculation of O(Ax2), where
N = 1/Ax is the number of grid points, a change of N from 5 to 6 leads to
only 1-4 factor improvement in the error, or if the method is of O(Ax*) we
get a 2:1 factor improvement. A theoretical study of global polynomial trial
functions used with a variational principle showed that the error should
decrease as O(1/N)'~ ! when the number of trial functions is increased (thus
increasing the highest degree of polynomial considered).® In this expression
N + listhedegree of polynomial and ¢ is thc continuity of the exact solution,
and the proof requires N + 1 > 1. In the example cited, faster convergence
than this was found presumably because the trial functions were functions
of x? and had certain symmetry properties already included. The rapid
convergence of the global methods makes possible a reduction in the number
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of collocation points, N, for a given accuracy and usually a marked reduction
in computation time. However, the global expansions encounter difficulties
when the solution has steep gradients in parts of the domain. In those situa-
tions a finite element type of approach is preferred, because elements can
be bunched near the regions of steep gradients. ,

It is thus desirable to examine convergence results for piecewise poly-
nomials to see what guidelines they give. The excellent paper by Ciarlet
and coworkers® treats one-dimensional boundary value problems of the type

n
Y (= 1Y DI[pfx)Du(x)] = fix,u(x) 0<x<l|
j=o

which have a corresponding variational principle. In addition to the con-
vergence results for global polynomials, referred to above, they present
results for various piecewise polynomials. The domain, 0 < x < 1,is divided
into a number of elements and a polynomial trial function is used on each
element. The polynomials are listed in Table 1.1 together with the convergence
results. We have a wide variety of choices available and the power, p, on the
rate of convergence, expressed as (1/M )", depends on the degree of polynomial
in the element. The more accurate methods have a higher p, necessitating a
higher degree polynomial. The results of Ciarlet and coworkers® refer to
variational methods whereas DeBoor and Swartz’ use the collocation
method on the subdivision of elements. They also show that the rate of con-
vergence is increased in the collocation method on finite elements when the
collocation points are Gaussian quadrature points rather than uniformly
distributed. The Gaussian quadrature points correspond to the collocation
points in orthogonal collocation on finite elements, as described below. The
various choices of polynomials are compared in Table 1.2 depending on
the degree of polynomial and the continuity of the trial function. Clearly
there is overlap among the methods, even though the formulation and
methods of solution are different.

Douglas and DuPont® treat time-dependent one-dimensional problems
of the type

2 -
ax, 1, u)@ = a(x, t, u)g + b(x, Iu, ﬂ)
ot ox* éx

with a collocation method using cubic polynomials on ecach element. They,
too, find that the rate of convergence is increased (to Ax*) if the collocation
points are the Gaussian quadrature points, whereas the convergence goes
as Ax? for collocation points distributed uniformly on each element.
Douglas® extends this work for linear problems when the polynomial is of
degree N + 1. Gaussian quadrature points are used (i.e. orthogonal colloca-
tion on finite elements) to find that the convergence goes as Ax™ *? globally
and Ax?" at the collocation points.
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Table 1.2 Piecewise polynomials in one dimension

First entry is the degree of polynomial.
Second entry is the highest derivative of the solution which is continuous over the whole

domain.
Non-smooth Hermite
Spline
7 s i 3
— | ) —
6 4 2 L 1 0 0 0
———————————————————————— ———
m————— b e ___
Orthogonal I 2 13 4 5 6
collocation : | by 1 ) -
on finite elements L ______| __4'____{_____________-____1 _______
bs 6 7 8
I | -
| | 2 2
i |
i ]
b7 8 9 10
R 3 3 3 -
! ! !
Smooth
Hermite

1.4 Orthogonal collocation on finite elements in one dimension

Consider the ordinary differential equation, Equation 1.10, to be solved on
0 < x < 1 together with boundary conditions at x = 0, 1. We divide the
domain 0 < x < 1 into NE elements by placing the dividing points at x,,
I=1,...,NE + 1, with x; = 0 and xyg,; = 1. Within each element we
define a new variable s' = (x — x,)/Ax;, Ax, = x,+; — Xx;, and place interior
collocation points at the roots to Py(s) = 0, where Py is a shifted Legendre
polynomial defined on 0 < s < 1. Within each element the variable s' goes
from zero to one. Applying the usual procedure of orthogonal collocation'
we write the differential equation at the interior collocation points in terms
of the value of the solution at the collocation points in the same element.
Thus we get
1 N+2 1 N+2

2 Ax? ‘Zl Bﬁu,-,A—xl ‘Zl A, b, x, + sAx,| — f(x + shAx) =0
i= i=

i=2....,N+1:l=1,...,NE

where the matrices B and A are the same ones arising in Equation 1.10. At
the division between elements we require continuity of the first derivative.

(1.15)

N+2 N+2
I 1+1 _
Axyy Z Ay +2.iti — Axy Z A" =0
i=1

i=1
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Two additional equations are written for the boundary conditions. For use
on a computer we line up the variables u} as one long vector u, by defining
Uy = Uy 1yi-1)+j» Where | goes from | to NE and j goes from 1 to N + 1,
except for I = NE when j goes to N + 2 to get up 4 ywg+; = ulx = 1). If
the problem is linear we can then write the set of equations as

AAu=F {1.16)

and the matrix AA has the block diagonal structure shown in Figure 1.1.

AXA a

7777777777 0

| 777777777 |

[ 77777 ]

(L7 77777

L - - — _— _ _ _ XXX

Figure 1.1 Matrix arising in method of orthogonal collocation on finite elements. The only

non-zero entries are inside the solid blocks. The cross-hatched areas come from boundary

conditions, the slashed areas come from continuity of the first derivative at the element boun-
daries and the other areas come from the differential equation

There is only one element of overlap, so that we need store only the blocks
along the diagonal, as a three-dimensional array A A(l, i, jywithl = |,..., NE
and AAUN + 2, N + 2) = AA(l + 1,1, 1). Such matrices can be inverted
using an efficient LU decomposition routine written by Graham Carey of
the University of Washington, and the result can be stored on top of 44, in
the same block diagonal structure. If the problem is non-linear a simple
approach is to collect all the non-linear terms in F in Equation 1.16 and
solve the equations iteratively, AAuw**' = F* If AA is fixed (independent of
k) the LU decomposition is carried out only once, and the iterations are
performed with fore-and-aft sweeps, thus saving computation time. If this
iteration scheme is not convergent then Newton-Raphson can be applied
to obtain linear equations of the form Equation 1.16, and the matrix AA is
inverted at each iteration.

As mentioned above, DeBoor and Swartz’ have shown that for second-
order equations the rate of convergence of the solution and first derivative
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at the end-points of each element, s' = 0 or 1, goes as Ax?", where Ax is the
uniform element size, while the error decreases as Ax"* % as Ax — 0 for the
solution at the interior collocation points. It is clear that this scheme can
lead to very high order rates of convergence and, indeed, computations bear
this out. Of course, as in any finite element method, the element sizes need
not be uniform.

Once the calculation is completed, the residual can also be computed.
As in any weighted residual method, the residual is the differential equation,
evaluated for the approximate solution. It is zero at the interior collocation
points of each element, since the solution was found by solving Equation 1.15.
In between the collocation points, however, it is non-zero. Calculations have
shown that as the approximate solution is refined the residual approaches
zero at more and more points and the mean-squared residual also approaches
zero (see, for example, Reference 5). Sometimes an upper bound on the error
in the solution can be found as a function of the mean-squared residual.
even when no exact solution is available.® Thus we want the residual to be
small, and for the exact solution it is zero. After an orthogonal collocation
solution is found on finite elements we can examine the residual. This is
most easily done at the end-point of each element, although the interpolation
polynomial can be used to find the solution, and hence the residual, anywhere
in the domain. Additional elements can then be added in places where the
residual is large and the calculation is repeated. In this way we end up with
the elements in exactly the place they are needed. Application of this idea
to a chemical engineering problem led to very rapid convergence as well as
different element sizes whose ratio was as high as 2000.'°

When using orthogonal collocation on finite elements it is also possible
to show equivalence to the Galerkin method. For example, expand the
solution as a polynomial within each element

N
Ols) = by + ;s + s(1 = 5) Y ayP;—,(5) (1.17)
i=1
We require continuity of the solution and first derivative at the ends of the
element.

$l1) = ¢41(0) or b+ ¢ = b, (1.18)
dg,| _ , déi.,
Axpyy ds |oo, = 8N im0 (1.19)
or
N N
¢ — z apPi_ (1) = ¢4y + Z a1 ,iPi-1(0) (1.20)

i=1 i=1

These equations effectively give b, and ¢;. The a;; are found by making the
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residual, here just called 2(s), orthogonal to the weighting function
ody/oay = s(1 — s)P;_ (s) for each i.

1
J. s(1 — $)P;_((s)2(s)ds = 0 i=1,...,N
L]

Apply the quadrature formula, which is exact if 2 is a polynomial in s of
degree N or less, to obtain

N+2
Z WJ(-N+2)SJ‘(] - SI)H_,(SJ)_@(SJ) =0

J

This gives effectively 2(s;) =0 at j=2,...,N + 1, and the conditions
Equations 1.18 and 1.20 make the function and first derivative continuous
at the element boundary. Thus the Galerkin method requires the collocation
equations be satisfied. The reverse argument also holds. Thus, whenever the
residual is of degree N in s and the trial function of degree N + 1 in s is used,
Equation 1.17, the Galerkin and orthogonal collocation methods on finite
elements are identical.

There is one further feature of polynomial expansion on finite elements
which should be examined: symmetry conditions. To illustrate the point,
let us use the differential equation

d*u a—1du
s A a=f(u,«\)
du
ax=0 =0
u(1)=u

where a = 1, 2, 3 for planar, cylindrical or spherical geometry. If we expand
the solution in a power series, u = Y 2, a,x', the boundary condition at
x = 0 requires a, = 0. If we can prove that when a, = 0 then a;, a5, ...,
etc. are zero, too, then the solution can be expanded in even powers of x.
This is done in Reference 1 and Reference 3, Section 5.1. The net effect of
this simplification is that the number of terms needed in the expansion is
reduced by a factor of 2. To achieve a trial function of order 2N in x we need
only N polynomials in x*> and N interior collocation points. If this simplifica-
tion is not made, then we must use 2N — | interior collocation points. Now
in the finite element expansions the differential equation will be transferred to
1 d%u a—1 du
_AT,Z ds? * sAX; + x; ds 58 + x)
and the term du/ds|;-o = O affects the solution in only the first element.
The solution is not a symmetric polynomial in s, even though it is in x,
since x? = (sAx; + x))* = s?Ax? + 2x,Ax5 + x2. Thus, by going to any
finite element expansion for problems whose solution is symmetric we
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automatically double the number of terms we must include to achieve the
same level of approximation. The same results hold in problems whose
solution includes only odd powers of x. As the number of dimensions
increases the effect of symmetry is more pronounced. If symmetry exists in
a three-dimensional problem, changing to a finite element approach (whether
orthogonal collocation on finite elements or some other) will require 8
times as many points to achieve the same degree of polynomials. This is not
to say we need 8 times as many points to achieve the same accuracy, since
the possibility of placing small elements where needed may make possible
improved accuracy with lower order polynomials. However, the symmetry
of a problem is clearly an important consideration in choosing a method,
and we illustrate this below for flow in a packed bed.

1.5 Orthogonal collocation (global and on finite elements) in
two-dimensional problems

For two-dimensional problems the orthogonal collocation method is a
straightforward extension of the method for one-dimensional problems. For
a rectangular domain the trial function is the two-dimensional analogue of
Equation 1.17.
NX
u(x,y) = [b, + byx + x(1 — x) ). a,-P,~_,(x):|

i=1
NY
X [Cl + oy + Wl —y) Z diPi—l(y)]
i=1

The derivatives appearing in the differential equation are evaluated at the
collocation points using Equation 1.9 in each direction.

For example, the equations for the fully-developed flow of a generalized
non-Newtonian fluid in a rectangular duct are (considering only one quad-
rant of the duct)

IR I R Y
0= oz + ox ("(ll)ax) + 6y(n(")6y
or

0= -2

2 ~2
., '7(")(6 w 0 w) dwon dwéin

ax? "oy Taxax T oy oy
w=0 onx=uaqally

w=0 ony=hballx

%:0 atx =0,all y

ow

a_y=0 aty=0all x
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To examine the symmetry we see if the transformations (w, x, y) — (w, —x, —y)
or (w,x,y)«<(w, —x,y) change the differential equation. Since 2II =
(8w/dx)* + (6w/dy)? the equations are unchanged by these transformations,
and the solution is thus a function of x? and y?, not x and y. Thus we use
symmetric polynomials

NX NY
w(x, y) = [b +(1=-x3Y a,-P,{xz):l [c +(1 =y Y d,-P,{yz)]
i=1 i=1

where the polynomials P{(x?) are of order i in x? and are defined by
1
J' (1 = x})P(x?)P{x?})dx = 0, i=01,...,j— 1
0
The trial function automatically satisfies the derivative condition along

x = 0 and y = 0. The dimensions are also changed so that x and y both go
from 0 to 1. The orthogonal collocation formulation of the problem is then

ap | NX+1 ] NY+t
0= 52- + "(Hu)l:;j kgl BXikWU * P kgl Bijwik]
1 NX+1 NY+1
+ - [ Z AX,,"}(II;U)] I: Z AXl'kwki:l
a k=1 k=1

1 [rY+t NY+1
+ p[ ) ijkﬂ(llik)][ Y Ai’jk»v,k]
k=1 k=1
with W(x,-,yJ.): W.’j’i= 1,---,NX,_V= l,...,NY and
Winr+1 = Wax+1,; =0 allij.

For non-linear, two-dimensional chemical reactor calculations we have used
a Newton-Raphson method to solve non-linear algebraic equations similar
to these,’! but alternating direction methods are also possible.'?

If the aspect (b/a) ratio is very large, the velocity profile will be very flat
in the y direction. Then the global trial function would require a large number
of terms, or NY, to approximate the solution. This is a situation when the
method of orthogonal collocation on finite elements is useful. In the y
direction, then, we use finite elements. To solve the algebraic equations, we
use an alternating direction method : solve a succession of problems in the
x direction, while keeping y fixed, and then solve a succession of problems
involving the inversion of matrices as shown in Figure 1.1. To do this we
need to linearize the equations for each iteration, which can be done by
evaluating nat the previous iteration, or by using a Newton-Raphson method.

If the non-Newtonian fluid is such that flat velocity profiles are expected
in both x and y direction, then orthogonal collocation on finite elements
would be used in each direction. Again an alternating direction would be
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used in order to permit the storage-saving features of the matrix shown in
Figure 1.1. If the profile were not expected to be flat (say a Newtonian fluid
with b/a ~ 1), then the global orthogonal collocation method would be
used because of the 22 = 4-fold reduction in number of collocation points
when we include the symmetry of the problem.

1.6 Orthogonal collocation (global and finite elements) in
time-dependent problems

Orthogonal collocation methods can be used for time-dependent problems,
100, and reduce the problem 1o sets of ordinary differential equations in time.
These equations can be solved using any one of several techniques for inte-
gration of ordinary differential equations as discussed in Reference 1.
Chapter 5 and References 5. 13-15. Also, analogues of all the modifications
of the Crank—Nicolson method for finite difference methods are applicable,
while for two-dimensional problems alternating-direction methods are also
possible.

Orthogonal collocation on finite elements also leads to ordinary differential
equations in time. Explicit methods of integration lead to stability limitations
related to Ax?, as in finite difference methods. Implicit methods lead to
matrices of the form of Figure 1.1 to invert at each time step (or perhaps
only once if it is constant from one time to the next). Two-dimensional,
time-dependent problems can be solved with alternating direction implicit
methods.

1.7 Applications

A series of applications are considered to illustrate the comparison of global
and finite element trial functions.

1.7.1 Entry-length problems

As a fluid moves into a duct, a boundary layer is formed near the walls and
the thickness grows as the fluid moves down the duct. The solution to this
problem exhibits large gradients, making useful finite element methods
which can bunch the elements near the walls. We review first the global
techniques and then consider finite element calculations.

In the momentum integral method, first presented by Schiller,'® the boun-
dary layer equations for a flat plate are integrated over the thickness of the
boundary layer. A velocity profile is assumed and the boundary layer thick-
ness can be calculated as a function of length down the duct by solving an
ordinary differential equation. Campbell and Slattery'’ showed that more
accurate results are achieved if the pressure drop is calculated from the
kinetic energy balance including viscous dissipation. However, for some
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non-Newtonian fluids, even this approach does not give accurate results
(see Reference 1, p. 87). These methods are limited in usefulness because the
accuracy is sometimes poor and cannot be estimated and a convergent
process has not been defined to refine the calculation. In addition they are
restricted to a few regular geometries, such as circular tubes or a duct
between flat plates.

A convergent mathematical scheme for the flow problem can be applied
as presented by Fleming and Sparrow.!® They write the solution as the sum
of the fully developed solution and an entry-region solution. The fully
developed solution is found by using trial functions which satisfy the differ-
ential equation, which is easy to do since the differential equation for New-
tonian fluids is Poisson’s equation. Then the boundary conditions are
applied by applying collocation on the boundary of the domain, which can
be irregular. They use more collocation points than there are constants to
fit in the trial function and so use a least squares collocation condition:
minimize the sum of the collocation residuals on the boundary. The entry-
region solution is then found from the solution to,

ow* Stw*  QPw*
E(Z)U-a = A2) + V[—Ex—z + W—]
where U is the mean velocity and the &(z) and A(z) functions are found in the
solution. Thus the solution includes inertial effects (with an approximation)
and viscous terms in the axial direction, 0?w/dz2, are also neglected. The
solution is expressed as an infinite series in h;,

wk = E‘ C‘,hie-mé
1 [oh;
2 . 1. = —_— i} —
V2h + ph; = 0, e ds =1

Again the trial function satisfies the differential equation (with an as yet
undetermined eigenvalue). The eigenvalue is found iteratively to satisfy the
normalization condition and the boundary conditions are satisfied by a
least squares collocation condition on the boundary. Since the entry-region
solution is expressed as a series, the three-dimensional problem is reduced
to a series of two-dimensional eigenvalue problems. Arbitrarily shaped
ducts can be handled, although calculations are presented only for rectangular
and triangular ducts. To achieve good accuracy near the inlet from 12 to
100 terms are required in the eigenfunction expansion, depending on the
problem.

Atkinson and coworkers!? solved the problem of slow flow of a Newtonian
fluid using a finite element method. The problem was solved in terms of
the stream function, so that second derivatives appeared in the functional,
and quadratic shape functions were used on triangular elements. The number
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of elements needed (as well as the number of eigenfunctions used by Fleming
and Sparrow) depends on how close to the entrance one wants to resolve the
velocity profile. For flow in a pipe the finite element calculation used 451
mesh points, in both radial and axial directions, but the closest profile to
the inlet presented by Atkinson and coworkers is at length z = 0-1R, where
R is the pipe radius. By contrast, the expansion method of Fleming and
Sparrow could be evaluated as close as z = 0-0006Re . D, for rectangular
ducts, using 100 eigenfunctions, where Re is the Reynolds number and D,
is the hydraulic diameter. For equilateral triangular ducts only 12 terms are
needed. For an entry-length heat transfer problem for flow between parallel
plates, Tay and Davis?® used the finite element method with linear shape
functions on triangles. They calculated to within 0-0005Pe . h, where Pe is
the Peclet number and h is the thickness between plates ; but the calculations
still showed some error even for 21 x 25 = 525 mesh points.

Both global and finite element methods are applicable to arbitrary geo-
metries perpendicular to the duct axis, but the eigenfunction techniques are
probably more accurate for a given number of trial functions.

1.7.2  Boundary layer flows

Inboundary layer flows the computations are complicated by the singularities
of the solution and the semi-infinite domain. All the applications of the
Method of Weighted Residuals known to the author have been with trial
functions defined over the entire boundary layer rather than over finite
elements, although the entry-length calculations cited above indicate
finite element calculations might be possible.

Oneadvantage of global expansion methods is that if the type of singularity
is known it can sometimes be transformed away. As mentioned by Thomp-
son,?! and illustrated by him, if the solution varies wildly, an analytical
transformation may be used to make the bad behaviour algebraically
explicit; the new unknowns are then smooth. Some of the analyses of
laminary boundary layers are attempts to do this.

In the method of integral relations (see, for example, Reference 1, p. 78)
the boundary layer equations are integrated from the solid boundary to the
edge of a subdomain. The subdomains usually are parallel to the shape of the
body. The equations are then satisfied in subdomains, or strips running
parallel to the body creating the boundary layer. In one sense the method
isa finite element method in the transverse direction. The ordinary differential
equations thus generated are integrated along the length of the body. As
pointed out by Melnik and Ives?? this method leads to equations which, if
linearized, have both positive and negative eigenvalues. Furthermore, the
magnitude of the eigenvalues increases rapidly as the number of strips
increases. This makes the calculations difficult and the number of subdomains
is usually limited to five or less. Melnik and Ives?? indicate that an increase
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in accuracy is possible if the location of the strips is not uniform, but the
edges of the strip are placed at the roots to Chebyshev polynomials. They
recommend for engineering calculations that two strips, so placed, are
sufficient. For supersonic flows similar methods are applicable, but Holt
and Ndefo?? indicate they are too expensive. Chushkin,?* on the other hand,
maintains the scheme is efficient for supersonic flows about conical bodies,
including three-dimensional cases.

Galerkin methods are also possible and have been developed by Dorod-
nitsyn25:2¢ and Bethel.2”2® The boundary conditions on velocity must be
approached asymptotically so that the choice of trial functions may be
difficult. To avoid this problem, a transformation is made

0(x, u) = (du/on)~!

where the variables are f—new dependent variable, x—lengthwise co-
ordinate, u—lengthwise velocity, p—transverse coordinate. The full equations
are summarized in Reference 1, p. 79. This method is efficient and often four
term solutions are comparable in accuracy to 100 term finite difference
solutions (Reference 1, p. 80). Unfortunately, it is not possible to ensure the
completeness of the trial functions, owing to the transformation, and reversed
flow formulations require different trial functions. Indeed for accelerating
flows the trial function is O(x,p) = Y. cfx)P{u)/(1 — u), where Pfu) is a
polynomial in u. If the singularity in u is not handled correctly, the result
may not converge to the solution. Thus, without considerable a priori
knowledge about the solution, the accuracy cannot be guaranteed. This is
both an advantage, if one is doing many calculations for a class of problems,
and a disadvantage if one is doing many different kinds of problems.

The question of the proper singularity in Bethel’s méthod is an important
one. For free shear layers Stoy2® applies the method and finds the non-
linear equations difficult to solve. The method was criticized by Wortman
and Franks®° as not being appropriate for an accurate solution and Stoy,
in his reply, agreed. These conclusions apply to the type of trial function
used and its singularity, rather than to the Method of Weighted Residuals
as a whole.

To avoid this problem, MacDonald*' applies a Crocco transformation
in which the new independent variables become x and u while the new
dependent variable is @ = (du/dn)?. In this formulation there are no singu-
larities and simple polynomial expansions in u can be used. The trial function
is substituted in the differential equation, it is multiplied by a weighting
function and the integrated result is set to zero. This process leads to non-
linear ordinary differential equations; if the problem admits a similarity
solution, algebraic equations result.

Bossel2 uses exponential trial functions, without making any trans-
formation, and in compressible flow calculations®* found that 5 terms in
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the series compared in accuracy to 200 grid-point finite difference calcula-
tions. The calculations were faster per time step than finite difference
calculations but required more steps due to the stifiness of the equations.
Jaffe and Thomas®* introduced yet another variation by applying quasi-
linearization to the basic equations and solving the resulting linear equations
using a series of Chebyshev polynomials. We note that the same equations
result if the solution is expanded in the polynomials and then the Newton-
Raphson method is applied. For the Falkner-Skan equation their method
required about 10 times fewer terms than were needed in finite difference
methods, but the computation times were comparable. In many ways this
approach is comparable to applying orthogonal collocation and the corre-
sponding generalization of applying orthogonal collocation on finite elements
has not yet been applied.

Another interesting problem for which the Method of Weighted Residuals
has been used to good advantage is the treatment of laminar flow in strongly
curved tubes.®® At high Reynolds number, boundary layers are formed,
and these are treated using the integral methods described in the previous
section. For lower Reynolds number the velocities are expanded in a Fourier
series in the angular variable. The trial function is substituted into the equa-
tions and the coefficients of sin n¢ and cos n¢ are set to zero. This is a
Fourier series method, but can also be viewed as a collocation method with
Fourier series expansion functions. The ordinary differential equations in
r are then solved. In this way the rather formidable two-dimensional, three-
velocity-component, flow problem is reduced to manageable proportions.

It is clear from this summary that applications to boundary layer flows
using global trial functions have been successful in varying degrees. Finite
element methods are feasible, as illustrated by other papers in this book.
Certainly the orthogonal collocation method on finite elements is one
candidate for calculation, with larger elements far from the body to handle
the infinite domain and perhaps generating differential equations in the
lengthwise direction. Whether finite element methods are competitive in
terms of efficiency of computation (accuracy, computation time and storage)
remains an open question.

1.7.3  Flow in packed beds

One of the strengths of the finite element method is its adaptability to
different and complicated geometries. This feature is especially useful when
one wants to solve similar problems, differing only in geometry, such as in
design studies. If the problem has a great deal of symmetry, however, global
methods are able to reduce:the number of trial functions needed by taking
that symmetry into account. Finite element methods, however, can take
the symmetry into account (by setting derivatives to zero, for example) only
in the elements nearest the line of symmetry. An example of the efficiency
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of global methods is presented for the slow flow of a Newtonian fluid through
a bed of solid spheres packed in a simple cubic array.
Sorensen® solved the three-dimensional flow problem given by

uViv = —Vp

with v = 0 on the boundary of the spheres. The equations and geometry,

and hence the solution, exhibit the symmetry shown in Table 1.3. The average

flow is in the z direction, which is parallel to one orientation of the spheres.
The three-dimensional velocity is expressed as

v=VF x VG

which automatically satisfies the continuity equation.

Table 1.3 Symmetry conditions for flow in simple cubic packed bed*

Functions which are Functions which
Transformation unaffected change sign
() x> -x Ut p Uy
2 y—--vy Pl p v,
(3) z—- -2 v, p = 2py — plx.y. —2) U0,

Other transformations
@4 (xy)-(x Uy,
v, p unchanged
Periodicity conditions
(5-7) v(x,y.2)=v(x+ 2i,y + 2j,z + 2k)
plx,p,2) =plx + 2i,y + 2j,z + 2k) — 2k Ap
i.j. k = any integer values

* The spatial dimensions have been non-dimensionalized in terms of the sphere radius.

The symmetry is included in the trial functions by a change of coordinates.
The coordinate &, is given by

T il -1/P)
o i=L2..
$= 25T TR
+j=0,1....
Pp=[] T1 [ —exp(—wldy)ll —exp(—w2d)]
i *k=0,1,...

+i=1,3,5,...,jodd
+i=20,2,4,...,jeven
(g + 12 = (x — 202 + (¥ — 2)* + (z — 2k)*

Three other coordinate lines are obtained from the same expressions using
various interchanges of indices. The pair (£,,¢&,) give coordinate lines
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which are nearly perpendicular and cover the region (in the x-y plane)
between the four spheres. The other pair (£5, £,) curve in the opposite sense
and both grids are needed to obtain the full symmetry.

The trial functions are written as Fourier series

Fy=2¢,/2 G, =¢y/2

G, = &/2 + 2 C, cos (jné;)sin (ing,) cos (knz)
Fy = £,/2 + 2, C,,sin (in&,) cos (jné,) cos (knz)
v, = VF, x VG, + VF, x VG,

and this construction for F and G keeps the problem linear in the unknowns,
{Cn}- A similar expression is written to obtain v3, and to obtain the full
symmetry we use

V=V, + ¥y,

The collocation points are spaced somewhat uniformly between the
spheres in each x-y plane. The residuals are set to zero and the equations
solved. The pressure drop was calculated by evaluating the viscous dissipa-
tion, with very good accuracy. For a total number of unknowns of 30, 42 and
54 the pressure drop differed by only +0-04%,. Using that answer as the exact
result, the calculations for n = 2 had an error of 0-7 %, while n = 8 gave 049,
error. The fact that 19, accuracy can be achieved with only 2 terms is a
result of including the eight-fold symmetry in the trial functions. If a finite
element or finite difference calculation were used we would need about 28
times as many mesh points or grid points. This is a dramatic illustration of
the power of global trial functions in special cases.

1.7.4 Newtonian fluids flowing past spheres and cylinders

Flow past spheres and cylinders at finite Reynolds numbers is a problem
which has been solved many times using different methods. The Galerkin
method has been applied to flow past a sphere using a trial function which
contains the Stokes solution as a special case®’

Y(r, 0) = Py(r)sin? 8 + Py(r)sin® 6 cos 6

With only two terms in the 8 direction, good accuracy could not be expected.
At Re = 100 the solution was compared to a finite difference solution (using
60 annular grid points and 78 radial points). The Galerkin method using the
crude velocity profile gave reasonable accuracy of average quantities, such as
drag coefficient, but pointwise values of separation angle, pressure profile on
the sphere, etc., were not well determined.

Other authors have expanded the solution in Fourier series (see Reference
38, for cylinders) and Legendre polynomials in cos 0 (see References 39 and
40 for spheres and 41 for cylinders). The trial function is substituted into the
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differential equation and the coefficient of each angular function in the trial
function is set to zero. This can be interpreted as a collocation method in the
0 direction. All these authors then used various finite difference methods to
solve the set of ordinary differential equations in the r direction. The calcula-
tions could not be taken to high Reynolds number because the number of
modes needed increased dramatically with Reynolds number. For the
sphere,®® 16 modes were necessary for very accurate solutions at Re = 40.
For the cylinder*! 80 modes were used with Re = 100. Collins and Dennis*!
also solved the problem of an impulsively started cylinder and, for small
times, transformed the problem using boundary layer coordinates to obtain
accurate solutions.

The author and one of his students (Ronald Andermann) have applied
orthogonal collocation on finite elements to flow past a sphere. The problem
was formulated in terms of the stream function and vorticity.

CTepof ¢\ wal ¢ \1_ 2.,
smB[E 6_9(r2 sin? 0) T %63r\r7sin76) | " Re Bt

rsin O = E%
0> sinfof 1 @
2—_— — — ———— ———
E=gt 69(sin066)

In the @ direction each variable was expanded in sine functions, while the r
direction was divided up into elements and orthogonal collocation was
applied in each element. The equations were solved iteratively using an
alternating direction method. For a given stream function, the vorticity
was found from the first equation by successive sweeps in the 6 and then
the r direction. When sweeping in the 0 direction (constant r) the inertial
terms involving (/30 were put on the side with 02{/36* and when sweeping
in the r direction the 8¢/0r and 6%{/0r* terms were used as unknowns in the
iteration. When this problem had converged, the next equation was solved
for stream function, for the given vorticity. This was also done using an
alternating direction method. In this way the storage requirements for the
matrices to invert were no larger than needed to solve ordinary differential
equations using orthogonal collocation on finite elements. The calculations
are not yet complete, but the results to date indicate the method gives very
accurate answers; the practical upper limit in Reynolds number, however,
has not yet been determined.

The finite element method has been applied to the flow past a cylinder
for Reynolds numbers up to 100 by Taylor and Hood.*? Their recommended
procedure leaves the equations in terms of the primary variables, velocity
and pressure, and keeps the time derivatives in order to integrate to steady
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state. The Galerkin method was used on elements with trapezoidal bases
and apparently quadratic shape functions.* Taylor and Hood found that
the non-linear inertial terms had to be included in the linear iteration scheme,
rather than simply be evaluated at the old iteration, in order to have stable
calculations. Unfortunately, for the cylinder problem the detailed features
like drag coefficient and separation angle were not reported, so that com-
parisons cannot be made concerning accuracy. The computation time was
large, being greater than 100 minutes for Re = 100 on an ICL 1905E com-
puter. The work does, however, show the efficacy of the finite element method
for Reynolds numbers this high. This paves the way for other applications,
like flow past banks of cylinders, where the ease of handling irregular
geometries will be especially useful.

1.7.5 Reservoir engineering problems

In the section on trial functions, considerable discussion was given to
convergence results for various types of polynomials for one-dimensional
problems. The same polynomials can be used in two dimensions, making the
methods finite elements on square bases. Applications like this have been
made in the field of reservoir engineering problems and the results have been
compared to finite difference results, which is the usual method of calculation.
The comparisons give some interesting results.

Price and Varga*?® solved a linear time-dependent problem in one
dimension, for parameters giving rise to a moving wave front in the solution.
They used the Galerkin method with piecewise linear, cubic and quintic
trial functions, as well as one calculation with piecewise linear functions
everywhere except near the wave front where quintic polynomials were
used. The results showed that the computation time was much less than that
for finite difference calculations, sometimes 10 times less, and that the
improvement was best when solutions were desired of high accuracy.

The next comparison is for a non-linear problem, but still for one space
dimension and time. Culham and Varga** used smooth linear and cubic
Hermite polynomials, non-smooth cubic polynomials and cubic spline
polynomials. These trial functions were used along with the Galerkin
method. Cubic spline functions were also used with a collocation method.
The results were compared based on the pointwise error, but a bias was
introduced into the results. The finite difference results were compared
based on the error at the grid points, whereas the Galerkin results and
collocation results were based on the error throughout the entire domain.
The convergence results cited above indicate that the solution in the ortho-
gonal collocation method is more accurate at the collocation points than

* The shape functions are defined for another problem in the same paper, but not for flow
past a cylinder.



24 Finite Elements in Fluids

globally (see, particularly, Reference 9), so that the comparison of the spline
collocation method may be comparing the least accurate part of the colloca-
tion solution with the most accurate part of the finite difference solution.
The Galerkin results may not be discriminated against, since the rate of
convergence applies globally. The authors also compared four different
methods of handling the time-dependent calculations. They found that the
Galerkin results were always inferior to the finite difference results when
comparing computation time to achieve a specified accuracy. The cubic
spline collocation results were more competitive, but were faster than the
finite difference results only for the most accurate solutions determined.
The reason given for the dramatic difference in conclusion reached in this
non-linear problem, compared to the linear problem, was that a large frac-
tion of the computation time was to evaluate quadratures to be used in the
Galerkin method. Since the problem was non-linear, these quadratures had
to be recomputed at each time step and the entire method became inefficient.
We note also that cubic splines give convergence as Ax? whereas cubic
polynomials in orthogonal collocation gives convergence as Ax*.

Two-dimensional calculations are reported by McMichael and Thomas**
for the full scale, three phase production of an oil field (non-linear equations,
parabolic in time, elliptic in two space dimensions). They used both linear
and cubic polynomials in each direction on finite elements with square bases.
They concluded that the Galerkin method was feasible to apply and in many
cases gave results which were superior to those from finite difference schemes
and gave more realistic profiles. For a given time step the Galerkin method
requires significantly more machine time, but larger time steps are allowed ;
the net effect was that the finite difference results took from 4 to ¢ times as
much computer time as the Galerkin method. The Galerkin method also
gave less numerical dispersion than the finite difference methods.

These results suggest that for certain non-linear problems the finite
element method may not be competitive with finite difference methods in
terms of computation time, because of excessive time spent calculating
integrals in the Galerkin method. This same problem does not arise in the
method of orthogonal collocation on finite elements because the colloca-
tion method is used, but the rate of convergence is the same as the Galerkin
method when Gaussian quadrature points are used. Consequently this is a
type of problem for which the marriage of orthogonal collocation and finite
elements may provide a solution to an important difficulty.

176 Non-Newtonian fluids

When the fluid is no longer Newtonian, the viscosity is a function of the
velocity gradient and the integrals in a variational principle (if one exists)
or the Galerkin method become difficult to evaluate (e.g. Equation 1.4).
Some recent finite element work has tackled these problems using a viscosity
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which was constant within an element, but which varied from element to
element.*®*® In these cases linear shape functions were used for velocity and
pressure (or quadratic functions for stream function) so that the velocity
gradients were constant within triangular elements. Then the viscosity
function is actually constant within an element. The calculations of Taylor
and Hood,*? however, used quadratic trial functions for Newtonian fluids.
If these shape functions were used for non-Newtonian problems, the viscosity
would vary over the element, the stiffness matrices would have to be re-
calculated at every iteration and a finite element solution might run into the
same problem found in the reservoir engineering calculations: the finite
element may not be competitive with finite difference methods in terms of
computation time for a given accuracy.

Another feature of interest is more general constitutive equations. The
power law fluid is a common one and has

T= — 2K(2d“dﬁ)n— !lld

Polymer flows are usually viscoelastic, however, leading to constitutive
equations of the form, e.g.

(1 + )-‘F)T = 2”0(1 + }»zF)d

ot
ot

The applicability of finite element methods (or any other method) has yet
to be shown, but the possibility of using both stress and velocity shape func-
tions in the finite element method may be useful.

Global trial functions have been applied to non-Newtonian fluids,
particularly for flow around spheres and flow through ducts (see Reference 1
for references), but rarely are the solutions done numerically and continued
until numerical convergence was obtained. The method of orthogonal collo-
cation on finite elements might be a good compromise for these problems:
by avoiding the calculation of integrals but retaining some of the convenient
features of finite element methods.

Fr=—+u.Vi+w.t—t.w—(1+ed.t+1.d)+ ¥ + &)d. o)1

1.7.7  Flow with free boundaries

When a free boundary exists, on which the normal and viscous stresses must
be balanced between the two fluids, the calculation is complicated by the
unknown position of the boundary. The finite element method is ideally
suited to such problems: by assuming the shape of the boundary, solving the
problem and then correcting the shape and repeating the calculation, the
location of the boundary can be determined. The advantage of the finite
element method in handling diverse geometries is especially useful here.
Thompson and coworkers*S treated a power law fluid squeezed between two
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flat plates, with the fluid exposed to air in between the plates. Chan and
Larock*? applied the finite element method to an inviscid, irrotational fluid
out of an orifice. The viscous problem is much more complicated, of course,
but the iterative method of finding the shape of the jet was verified. The
author is currently applying the method of orthogonal collocation on finite
elements to problems involving both non-Newtonian fluids and free bound-
aries.

1.8 Conclusion

The classical Method of Weighted Residuals, in which the trial functions are
defined over the entire domain, and the finite element method, which uses
variational or Galerkin principles but utilizes trial functions defined over
finite elements, are similar in many respects. The finite element method is
preferred when there are rapid changes of the solution, or complicated
geometries. In other situations the Method of Weighted Residuals, with
global trial functions, is preferred for its very rapid convergence and savings
in both storage and computation time. In addition the analytic form of the
solution is convenient in many situations. The method of orthogonal colloca-
tion on finite elements is a combination of both methods. By using a colloca-
tion principle, the quadrature evaluation is eliminated, giving rise to time
savings in non-linear problems. By using orthogonal collocation, the method
converges as fast as a Galerkin method (in certain cases). So far the method
has only been applied to problems with some symmetry, so that diverse
geometries have not yet been handled. Orthogonal collocation on finite
elements provides a bridge between methods using global and finite element
trial functions and the limits of the method are yet to be defined. A broad
outlook of weighted residual methods and finite element methods leads to
interesting and useful comparisons and interrelations which reveal the
advantages of each approach.
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