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SUMMARY

Convection—diffusion equations are difficult to solve when the convection term dominates because most
solution methods give solutions which oscillate in space. Previous criteria based on the one-dimensional
convection—diffusion equation have shown that finite difference and Galerkin (linear or quadratic basis
functions) will not give oscillatory solutions provided the Peclet number times the mesh size (Pe Ax) is
below a critical value. These criteria are based on the solution at the nodes, and ensure that the nedal values
are monotone. Similar criteria are developed here for other methods: quadratic Galerkin with upwind
weighting, cubic Galerkin, orthogonal collocation on finite elements with quadratic, cubic or quartic
polynomials using Lagrangian interpolation, cubic or quartic polynomials using Hermite interpolation, and
the method of moments. The nodal values do not oscillate for collocation or moments methods with
Hermite cubic polynomxals regardless of the value of Pe Ax.

A new criterion is developed for all methods based on the monotonicity of the solutions throughout the
domain. This criterion is more restrictive than one based only on the nodal values. All methods that are
second order (Ax?) or better in truncation error give oscillatory solutions (based on the entire domain)
unless Pe Ax is below a critical value. This value ranges from 2 for finite difference methods to 4-6 for
Hermite, quartic, collocation methods.

INTRODUCTION

Convection—diffusion equations are difficult to solve when the convection terms dominate.
Similarly the Navier-Stokes equation suffers from the same difficulty for large Reynolds
numbers. The difficulty is manifest by solutions that oscillate in space, in contrast to the real
behaviour. These oscillations are not present if the mesh size is sufficiently small. It is not always
possible to use small enough mesh sizes, however, for economical reasons, and then the analyst
must turn to various upwind weighting or differencing schemes. These schemes eliminate the
oscillations but degrade the accuracy of the solution. Because of these problems it is important
to know a przorz when oscillations are expected.

Price et al." first showed for the one-dimensional transient equation that the finite difference
method would give solutions which did not oscillate provided the mesh spacing satisfied

PeAx <2 (1)

Christie et al.® provided a criterion for the one-dimensional steady-state equation with the
Galerkin finite element method and linear or quadratic trial functions. Linear functions give the
criterion (1), whereas quadratic functions give the criterion

PeAx <4 2)
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Both criteria are based on examining the conditions needed to make the solution at successive
nodes monotone. For the finite difference method or Galerkin method with linear shape
functions this also makes the solution between the nodes monotone, since the interpolation is
linear between nodes. For the quadratic Galerkin method, however, it is possible for the
solution at the nodes to be monotone but still violate the monotonicity between the nodés. This
is illustrated in Figure 1 for a case in which the solution is 1 at the first two nodes of an element
and zero at the last node. Clearly the quadratic interpolant achieves a maximum and is not
monotone.

If only the steady-state solution is desired, and the solution is sampled only at the nodes,
monotonicity throughout the domain may not be important. For the transient problem,
however, the steep front moves in time, and a maximum which occurs interior to an element at
one time may be a maximum at a node at a later time. Thus monotonicity throughout the domain
in the steady problem is necessary to insure monotonicity at the nodes in transient problems.
New criteria are derived to ensure monotonicity throughout the domain, based on the
steady-state equations. Galerkin and collocation finite element methods are considered for a
variety of basis functions. For most methods the monotonicity criterion is more restrictive when
based on the whole domain instead of just the nodes.

MODEIL PROBLEM

The model problem and boundary conditions are

g—}— Pe:—; =0 (3)
c=1 atx=0
c=0 atx=1
The theoretical solution of (3) is
C=A+B T = (e Py ~1) . 4)
The solution satisfies |
c>c¢ if xi<x; | (5)

The function ¢ is thus a monotone function over the whole interval, zero to one.

CRITERION FOR OSCILLATIONS

The finite element method approximates a variable within an element k by a polynomial of
degree NP—1.

NP-1 ,
r 1
a(x)= Y aix
i=0
Normalizing x for one element we have

NP-1

c(u)= ‘é aiu', x€[0,1] (6)
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C (u)

0 : 1.0
u

Figure 1. Galerkin quadratic interpolation on one element

The solution (4) is monotone ‘decreasing, so the most restrictive criterion to ensure no
oscillations is that the numerical solution satisfy

dc :

—<0 for all x ([0, 1]

dx
The constants a; in (6) can be found once the analytical expression for the value of ¢ at all nodes
in an element are known. Then

NP—-1 |

=)= % iau'™

i=1
and we require
de(u)
du

for any element. The Galerkin method with quadratic shape functions and orthogonal collo-
cation on finite elements (OCFE) with cubic Hermite shape functions are examined using this
criterion. For all the finite element methods we divide domain 0 < x < 1 into NE equal elements
of length Ax = 1/NE. We denote by c; the concentration at the ith node, and reserve integer i for
the nodes at the ends of the element. Fractional i correspond to points interior to the element.

<0 for uel0,1] (7

Galerkin method with quadratic shape functions
Christie ef al.” derived the diﬁerenée equations for this mode:
(1+ PeAx/2)ci—1 +(—8—2PeAx)ci-1/2 +14¢; +(~8+2PeAx)cis 12 8)
+(1 —PelAx/2)¢is =0
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for nodes at the end of an element and
(4+PeAx)c; —8¢iy1/2+ (4 —PeAx)c;s1 =0 9)
for nodes at the mid-side of an element. Combining (8) and (9) gives

(1+PeAx/2—Pe*Ax2/12)c;_1 + (2 +Pe’*Ax?/6)c;

+(1—PeAx/2+Pe’Ax?/12)cis1=0 (10)
which only involves integer nodes. The exact solution to the difference equation (10) is
ci=A+Bg’ (11)
where
242
(b__1+Pch/2+Pe Ax“/12 61 (12)

" 1-PeAx/2+Pe’Ax?/12’

and A and B are determined by the boundary conditions. Making co=1and cxg =0 (N = NE =
the number of elements):

qu e ~ qbN g (13)

¢N__15 B—d)N_l, Cl_¢N_1

Substituting equation (11) into equation (9) gives the solution for the mid-side nodes:
1-Pe’Ax?/24

1—PeAx/2+Pe’Ax>/12

Equations (13) and (14) thus give the exact solution to the Galerkin equations. We can now
evaluate the constants g; in any element. We have

A=

Ci+1/2 =A+B¢i

(14)

c(u)=ap+au +asu*

where
c0=cy c@)=cirrjz c)=cirr
which gives
Qo= ¢;
a; =—3¢;+4¢;11/2— Civ1 (15)
Ar=2¢;—4Cir172+2¢i41

Thus criterion (7) gives

g—c—=a1+2a2u<0 o
du
=2a2(u+_¢_z_1_)<0 . (16)
2612

) .. . . ' o ro.
For a maximum or minimum in ¢ to occur in the element —a,/2a, must be between 1andze
Substituting equations (11), (12}, (14) into equation (15) gives-

—a/2a,=1—1/PeAx an
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For PeAx <2, ¢ has a maximum outside the element, which is of no concern since the element
interpolation is only inside the element. Furthermore, ¢ will be monotone decreasing inside the
element. For PeAx >2, one maximum occurs inside the element. By looking at

ci>civ1 and  ¢;>civyp2

the apparent criterion would be PeAx <4 The restrictive criterion to ensure no oscillations (7) is
then PeAx <2 for quadratic shape functions and the Galerkin method.
Collocation with cubic Hermite interpolation

The formulation of OCFE is given elsewhere.>* When applied to equation (2) we get for an
arbitrary element

(-2, Pe) L (FUED LR, (12 Py (2 )
Ax? Ax) ! Ax? J12 Ax/ S T\ AxE Ax/© AxZ 12 ax/

and

Ax® +x/12 Ax

V2 Pey  (V3)-1 1 Pe), (_\/_13“35) '+(1+~/3_1 Ef’-)cf=0
( * )Ci_l ( ci-1 Ax? Ax/ TN AR Vizax

Ax*  Ax
Here ¢; and ¢) are the function and first derivative at the element boundary X With two
additional equations for the neighbouring element (using nodes ¢;, ¢!, €41, Cl+1) we can reduce
these four equations to

(1+PeAx/2+Pe?Ax2/12)ciey +(—2— Pe*Ax?/6)c; + (1 —PeAx/2+Pe’8x?/12)cis1 =0,  (18)

which only involves node values, and

(1+PeAx/2 +Pe*Ax?/12)c;-1— (1 +PeAx/2+Pe’Ax?/12)c; +¢i =0, (19)

involving derivatives too. The solution to (18) is also equation (11)'wi?h ¢ given b)'l equation
(12). The nodal values ¢; are given by equation (13). From (19) we obtain an expression for the
derivative ‘

¢! =PeAx.B. ¢’ (20)

We thus have solved the collocation Hermite equations exactly. The nodal values are mqnotone
and the first derivative at the nodes is always negative. Thus oscillations do not occur in these

values for any PeAx. . . .
To evaluate the limit using the entire element, we look at the cubic expansion in an arbitrary

element

c(u)=a0+a1u+a2u2+a3u3 (21)
with the conditions
dc ,
= . — () =c
C(O) Ci du( ) | 1
dc , (22)

c(1)=ci+1 ";‘(1):6‘5—1 |
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The coefficients are
Ao =C; a=ci
a=-3¢;—2c!+3¢i1 —Ci+1
as=2¢; +c! —Z'bi+1ﬂ~c§+1

Using equations (12), (13) and (20), the constants a; can now be calculated.
The criterion (7) is

d
-£=a1+2a2u +3a3u2<0
du
which can be written as
d
“~£=3a3(u —u)u—uz)<0
du
with
D S i\/(_1___1_,2) | (23)
" 2 PeAx 12 Pe’Ax

Both 1y and 1, must be outside [0, 1] to avoid oscillations. This gives
PeAx <12, no oscillations
PeAx =+/12, one maximum in ¢ | inuel0,1]
PeAx > 12, one maximum and one minimum in ¢

The most restrictive criterion is then PeAx < V12, If we only examine the nodal values and th'e
derivatives at the nodes, there is no limit; oscillations do not occur for any PeAx. Furthermore, if

—-o—— NODE VALUES

—&— COLLOCATION POINTS \\'

0.4 —0O— EXACT SOLUTION ‘\ -
\
\

0.2 Vo4
\

\

L 1 1 1 L L | l | J——
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X

Figure 2. Solution of convection-diffusion equation with cubic Hermite polynomials: Pe = 100, Ax =0-1, PeAx = 10
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we only look at the nodes and the collocation points, the criterion would be PeAx < 4- 391, as
reported in Reference S. :

The numerical solution agrees with these deductions, Shown in Figure 2 is a solution of (3)
using OCFE with first-order Hermitian shape functions and Pe = 100, Ax = 1/10, so PeAx = 10.
The solution does not oscillate if we only look at the nodal values, or derivatives at the nodes, but
inside the element both a maximum and minimum occur. This analysis suggests that when
Hermite polynomials are used it is always necessary to look at values inside the elements.

Other ﬁniie element methods

The oscillation limits for other finite element methods are summarized in Table I. Details of
the analysis can be found in Reference 6. Criteria based on any point and only the node points
are included. The function ¢ appearing in equation (11) is given and is a Padé approximation to
exp (PeAx).

We notice that the criterion based on the nodal values alone says that many methods will not
oscillate. If the criteria are based on monotonicity over the entire domain then all methods, but
one, oscillate for large enough Ax. The only exception is linear basis functions with upstream
weighting (finite difference), which is low order (Ax) and inaccurate. The quadratic elements
provide no improvement over linear elements since they have the same criterion based on the
mesh size but have twice as many unknowns per element. The higher order methods with cubic
or quartic basis functions do provide an improvement Furthermore, the mesh size limitation
increases faster than the number of nodes per element, so that net improvement is obtained by
using higher order elements. However, the work requirements increase more rapidly than the
allowable mesh size. If we consider a computation with the mesh size chosen by criteria (7), and
compare work effort, the smallest work is provided by the finite difference or Galerkin linear
element. The next best method is the Hermite cubic collocation moments. Comparisons based
on equivalent accuracy, rather than PeAx = B, may lead to other conclusions. For extremely
large Pe the key problem is to use as large a Ax as possible without inducing oscillations, and in
that case Ax = B/Pe would be used, giving the work requirements in the last column of Table I.

CONCLUSION

Criteria are presented to eliminate oscillations in solutions to the convection-diffusion equation
when solved by finite difference, Galerkin or collocation finite element methods. Criteria based
on the nodal values alone are least restrictive and smaller Ax are needed when the criteria are
based on monotonicity over the entire domain. All methods have a limitation on the allowable
mesh size if oscillations are to be avoided, unless artificial dispersion is included.

APPENDIX: NOMENCLATURE

= Constants to define element polynomial.
A,B = Constants defined by boundary conditions.
¢ = Dimensionless concentration
= Concentration at ith node."
k = Element number. ~
NE = Number of uniform elements on 0y <1.

NP =Degree of polynomial is NP - 1.
Pe = Peclet number.
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u = Spatial co-ordinate within element.
x = Spatial co-ordinate.

Ax = Grid spacing (uniform elements).
¢ = Function.

REFERENCES

. H. S. Price, R. S. Varga and J. E. Warren, ‘Application of oscillation matrices to diffusion-convection equations’, J.

Math. Phys. 45, 301-311 (1966).

. L. Christie, D. F. Griffiths, A. R. Mitchell and O. C. Zienkiewicz, ‘Finite element methods fer second order.;

differential equations with significant first derivatives’, Int. J. num. Meth. Engng 10, 1389-1396 (1976).
G. F. Carey and B. A, Finlayson, ‘Orthogonal collocation on finite elements’, Chem. Eng. Sci. 30, 587-596 (1975).
B. A, Finlayson, Nonlinear Analysis in Chemical Engineering, McGraw-Hill, London and New York, 1980.

. O.K.Jensen and B. A. Finlayson, ‘Solution of the convection-diffusion equation using a moving coordinate system’,

in Finite Elements in Water Resources (FE2) (Eds C. A. Brebbia, W. G. Gray and G. F. Pinder), Pentech Press,
London, 1978, pp. 4.21-4.32. )

. 0. K. Jensen, ‘Numerical modeling with 2 moving coordinate system: application to flow through porous media’, -

Ph.D. thesis, University of Washington (1979).





