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Abstract
The method of weighted residuals unifies many ap-

proximate methods of solution of differential equa-

tions that are being used currently. This review
presents the basic method in its historical context and
shows some of the many possible modifications that
have been used throughout the past fifty years. The re-
lationship between the Galerkin method, which is one
version of the method of weighted residuals, and varia-
tional methods is outlined. Also included is an exten-
sive listing of published applications of the method of
weighted residuals.

Introduction

The method of weighted residuals is an engineer’s
tool for finding approximate solutions to the equations
of change of distributed systems. Experience and in-
tuition can be distilled into a reasonable and some-
times quite accurate first guess, from which it is possi-
ble to proceed to successively improved approxima-
tions. The analytical form of the approximate solution
is often more useful than solutions generated by numer-
ical integration, and the approximate solution usually
requires less computation time to generate. The
method is applicable to nonlinear and non-self-adjoint
problems—one of its most attractive features.

The method of weighted residuals (MWR) includes
many approximation methods that are being used cur-
rently. It provides a vantage point from which it is
easy to see the unity of these methods as well as the
relationships between them. This review, after outlin-
ing application of the basic method to initial-value,
boundary-value, and eigenvalue problems, surveys the
history of major contributions to the subject and dis-
cusses some of the many modifications of the basic
method. The review concludes with a listing of appli-
cations of weighted residual methods to problems aris-
ing in applied mechanics and related fields. Four prac-
tical aspects of MWR in need of further research are
identified.

*Present address: Office of Naval Research, Washington,
D. C.

A. Basic Method

The best available treatments of MWR have been
those by Crandall [1], who coined the name method of
weighted residuals, Ames [2], and Collatz [3], who
calls these methods error-distribution principles. The
following outline parallels their treatments, in places
contrasting them and elaborating on them.

Given a system of differential or integro-differential
equations of change ahd constitutive relations, bound-
ary conditions representing the interactions between
the system and its surroindings, and initial conditions
representing some base state of interest, the general
approach is to assume a trial solution whose functional
dependence on position is chosen, but which includes
undetermined functions of time. The latter are found by
requiring that the trial solution satisfy the differential
equation in some specified approximate sense.

Initial Valve Problem
Consider the differential equation for (u(x, t):

N(u)—%lizo xinV,t>0 (1)
¢

where N(-) denotes a general differential operator in-
volving spatial derivatives of u, V is a three-dimen-
sional domain with boundary S, and ¢ represents time.
Suppose the initial and boundary conditions are

u(X, 0) =upy(x), xinV

)]
u(x, 1) = [s(X, £), Xon §
Assume a trial solution of the form
N
u*(X, t)=ugs(X, 1)+ Z () u; (x, 1) (3)

i=1

where the approximating functions, u;, are prescribed
and satisfy the boundary conditions

4

Then u* satisfies the boundary conditions for all func-
tions c;(#). It is not necessary that the trial solution

us=[s, u;=0, xonS§
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be linear in the c¢;, but such a choice is usually made
for simplicity; no systematic study of altematives has
been reported, so far as the authors know. The differ-
ential equation residual and initial residual,

R(u*) = N(u*) — ur (5)
ot

N
Ro(u*) = uo(X) = ug(X, 0) = ) " € (0)ui(x, 0)  (6)
i=1
are measures of the extent to which the function u*
satisfies the differential equation and initial condi-
tions, respectively. As the number N of approximating
functions u; is increased in successive approximations,
one hopes the residuals will become smaller; the exact
solution is obtained when both residuals are identically
zero. As an approximation to this ideal, the weighted
integrals of the residuals are set equal to zero:

{wjs R(u*)>=0
i=1,2,..., N (7)
<wj; Ro(u*)>=o

(w, vy = fwudV (8)

represents a spatial average or inner product and w; is
a prescribed weighting function. If z* is the exact
solution, Equations (7) are satisfied regardless of the
choice of weighting functions.

The weightinig functions can be chosen in several
different ways, and each choice corresponds to a dif-
ferent criterion in MWR. Once the choice is made,
Equations (7) become a set of N first-order ordinary
differential equations in the N unknowns ¢; (t). For the
linear problem

where

oL
gy (u) 9)

with approximating functions u; and ug that do not
themselves depend on time, Equations (7) become simply

N

dCi N
:ZT<wj; uiy = Z c; <w]-; L))+
i=1

Gojs Lug))  (10)

i=1

or, in matrix notation

>
B

=BcT+b. (11)

The solution to these equations is substituted into
Equation (3) to give the approximate solution to the
problem. Successive approximations are obtained by
increasing N and solving Equation (10) anew. The
convergence of successive approximations gives a
clue, but not necessarily a definitive one, to the rea-
sonableness of the approximation.

Boundary Valve and Eigenvalue Problems

The method is equally applicable to steady-state and
eigenvalue problems. For steady-state problems, the

c; are constants rather than functions of time; for linear
problems they are determined as solutions to

Bc=-b. (12)
For nonlinear boundary-value problems it may be useful

to assume trial solutions of a more general form than
Equation (3), viz.:

wr(x) = ¢ (leh, uy(m) (13)
For the linear eigenvalue problem
L)~ =0 (14)

the approximate solution is determined by

N
Z [oF] <w]-;L(ui> —/\<w]-;ui> =
i=1 N
Z ci(Aji—ABj)=0 (15)
i=1
and this set of equations has a non-trivial solution only
if
det (Aj; ~ ABj;) = 0. . (16)

The values of A for which this is true are the approxi-
mations to the first N eigenvalues Ag-

Weighting Functions

The choice of ‘the weighting functions, w; in (7),
corresponds to various criteria in MWR: the historical
relationship of the criteria is portrayed in Table I

In the collocation method, due to Frazer, Jones, and
Skan [4], the weighting functions are the Dirac delta
functions

w; = 8(X; — X); (17)
TABLE |
HISTORY OF APPROXIMATE METHODS
Date Investigator Method

1915 Galerkin [10] Galerkin method

1921 Pohlhausen [ 18] Integral method

1923 Biezeno and Koch [5] Subdomain method

1928 Picone [9] Method of least squares

1932 Kravchuk [17] Method of moments

1933 Kantorovich [30] Method of reduction to ordi-
nary differential equations

1937 Frazer, Jones, and

Skan [4]
1938 Poritsky [31]

Collocation method

Method of reduction to ordi-
nary differential equations

Convergence of Galerkin’s
method

Collocation, Galerkin, least
squares for initial-value
problems

Convergence of Galerkin’s
method, steady-state

1947 Yamada [16] Method of moments

1949 Faedo{S9] Convergence of Galerkin’s

1953 Green {60] method, unsteady-state

1940 Repman [55)
1941 Bickley [12]

1942 Keldysh [57]

1956 Crandall [1]

Unification as method of
weighted residuals
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the differential equation is then satisfied exactly at the
N collocation points, X;. As N is increased, the resid-
ual vanishes at more and more points and presumably
approaches zero throughout V.

If the weighting functions are

1 Xin V7
w; = (18)
0 XnotinV;

then the differential equation is satisfied on the aver-
age in each of the N subdomains, V]-;this is the sub-
domain method [5, 6]. If the V; are disjoint (which they
need not be), the size of one or more subdomains de-
creases as N is increased, with the result that the dif-
ferential equation is satisfied on the average in smaller
and smaller regions, and presumably the residual ap-
proaches zero everywhere. It was Biezeno’s presenta-
tion [7] of the subdomain method at the First Interna-
tional Congress of Applied Mechanics which prompted
Courant’s remark [8] that led Crandall to choose the
name, ‘‘method of weighted residuals.”” The authors’
translation of Courant’s remark reads:

**Mr. Courant (Gdttingen) indicated afterward that
the method advanced by Mr. Biezeno can be viewed
from the standpoint of the calculus of variations in
the following manner. If a differential equation, as
it arises for example in a variational problem, must
be satisfied, then we can express it so that the left
side of the differential equation, multiplied with an
arbitrary function and then integrated, must give us
the value zero (vanishing of the first variation). In-
stead of taking an arbitrary function, we can also
take infinitely many determined functions, if these
only form a so-called complete function system for
the region in question. The piecewise constant func-
tions advanced by Mr. Biezeno are indeed just an
especially simple special case of such a complete
function system.”’

The least-squares method, which seems to have been
first presented for this type of application by Picone in
1928 [9], uses the weighting functions OR(u*)/dc;. The
corresponding interpretation is that the mean square
residual

Izj‘[R(u*)]2 dv (19)

is minimized with respect to the constants cj.

In the Galerkin method [10], developed in 1915 as the
first criterion of what is now known as the method of
weighted residuals,* the weighting functions w; are
just the approximating functions of «;. The approximat-
ing functions are often members of a complete system
of functions, although this property, required for mathe-
matical purposes, is sometimes ignored in practice.
The Galerkin method then can be interpreted as making
the residual orthogonal to members of the complete set.

*See Mikhlin [ll] for a discussion of the contribution by
Bubnov in 1913; while his method is the same as the Galerkin
method (Mikhlin and others in recent Russian literature call
it the Bubnov-Galerkin method), it was Galerkin who devel-
oped the method independently of any variational principle.

A fundamental property (sometimes the definition) of a
complete system of functions is that a piecewise con-
tinuous function can be orthogonal to each and every
member only if the function is identically zero. In the
approximation scheme outlined above, the residual is
usually continuous (depending upon the differential
operator and the choice of approximating functions),
and hence the residual can vanish only if it is ortho-
gonal to each member of a complete system of func-
tions. Of course in practice the residual is made ortho-
gonal to no more than a modest, finite number of the
members of a complete set. In the original Galerkin
method, developed in the study of elastic equilibrium
and stability of rods and plates, Galerkin used trial
solutions with unknown constant coefficients. Now
many similar techniques are often referred to as the
Galerkin or generalized Galerkin method: (i) the one
given above in which ¢, = ¢;(¢) for time-dependent prob-
lems [12, 1]; (ii) one in which trial solutions are of the
more general form u* = f(X, {c;}) with weighting func-
tions 9f/dc; [13]; and (iii) one in which weighting func-
tions are of the form K(u;), rather than #;, where K is a
specified differential operator [14, 15].

The method of moments is similar to the Galerkin
method except that the residual is made orthogonal to
members of a system of functions which need not be
the same as the approximating functions. Both methods
are combined under the single name of orthogonaliza-
tion methods by Collatz [3]. Yamada [16] and Krav-
chuk [17] applied the method of moments to ordinary
differential equations by using the weighting functions
fx7} regardless of the choice of approximating func-
tions. For the first approximation, the weighting func-
tion isunity, and the method of moments in this case
is equivalent to the subdomain method and is usually
called the integral method, or von Kdrmdn-Pohlhausen
method {18, 19]. For the integral method, reviewed in
detail by Goodman [20], the differential equation is
satisfied on the average over the domain of interest.

Boundary Methods

In the foregoing it is presumed that the trial solution
satisfies the boundary conditions but not the differen-
tial equation. The converse situation can also be
treated: the differential equation is satisfied but the
boundary conditions are not. Trial solutions of this
sort lead to boundary methods, as they are called by
Collatz [3]; the procedures are analogous to those
above, but with the spatial average, Equation (8), re-
placed by an average over the boundary.

Mixed Methods

The intermediate situation can also be handled: in
so-called mixed methods the trial solution satisfies
neither the differential equations nor boundary condi-
tions. In Schuleshko’s treatment of mixed methods [21],
the differential-equation residual is made orthogonal to
one set of weighting functions, using (8) as the inner
product, while the boundary residual is simultaneously
made orthogonal to another set of weighting functions,
using an appropriate surface integral as the inner prod-
uct. If N weighting functions are used, this leads to
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2N conditions, yet in general only N conditions can be
satisfied by the N independent c¢;. For this procedure
to work, some of the conditions must be discarded, as
was noticed by Snyder, Spriggs and Stewart [22] in their
discussion of the Galerkin method.

On the other hand, Bolotin [23], Mikhlin [11}, and
Finlayson [24] have pointed out that for the Galerkin
method the dilemma can be resolved by adding the dif-
ferential-equation residuals to the boundary residuals.
The combination is made in such a way that the differ-
ential-equation residual, when integrated by parts, can-
cels identical terms of the boundary residual. The sit-
uation is analogous to the treatment of natural boundary
conditions in the calculus of variations, and indeed
only boundary conditions analogous to natural boundary
conditions can be handled in this way. Such a combina-
tion of equation and boundary residuals represents a
generalization beyond the treatment given by Cran-
dall [1] (page 235), who states that MWR cannot be ap-
plied unless the trial solution satisfies all boundary
conditions. However, Crandall [1] (page 321) does com-
bine the residuals for eigenvalue problems in which an
eigenvalue appears in both the differential equation and
boundary conditions. The combination of residuals for
more general problems is important in establishing the
equivalence between the Galerkin method and several
so-called variational methods [25, 24] (see below).

B. Refinements on the Basic Method

Other modifications are possible: Duncan [26] makes
the approximating functions satisfy derived (or second-
ary) boundary conditions which are determined by re-
quiring that the differential equation be satisfied on
the boundary. Derived boundary conditions are also
used in boundary-layer theory in the von K4rmdn-Pohl-
hausen method; other compatibility conditions—such
as continuity of the velocity and certain of its deriva-
tives at the edge of the boundary layer—are employed
as well. Recently it has been shown [27,. 28] that ad-
ditional compatibility conditions are required to assure
good results when the integral method is applied to
magnetohydrodynamic boundary-layer problems. In
these cases the additional conditions are found by dif-
ferentiating the differential equation in the direction
normal to the surface; all trial solutions must then
satisfy this equation at both the solid surface and the
edge of the boundary layer. A variation of the colloca-
tion method is given by Collatz [3], who differentiates
an ordinary differential equation and applies the collo-
cation method to the residual of the resulting equation,
too.

Kantorovich and Krylov [29] outline a method for
two-dimensional problems in which the residual is re-
quired to be zero along a line in the domain (such as
x =7v). The method of reduction to ordinary differential
equations, as developed by Kantorovich [30} and inde-
pefdently by Poritsky [31], reduces a partial differen-
tial equation to a system of ordinary differential equa-
tions. This is the procedure described above for initial-
value problems but it can be applied equally well to
boundary-value or eigenvalue problems. The spatial
averages (Equation (8)) are taken over all the inde-
pendent variables except one, and the approximate so-

lution is found by solving a set of ordinary differential
equations involving this remaining independent vari-
able. While this semi-direct method was originally pro-
posed in the context of variational principles, Kantoro-
vich [32] in 1942 showed its equivalence to the Galer-
kin method. Even earlier Bickley [12] had applied the
Galerkin method to unsteady-state problems in a manner
equivalent to the method of reduction to ordinary dif-
ferential equations. In general, MWR can be used to
reduce the number of independent variables in any par-
tial differential equation. The resulting system of
equations is simpler (it may be algebraic or ordinary
differential equations or even a set of partial differen-
tial equations), but its solution remains only an approx-
imate solution to the original problem.

In the collocation method a critical problem is the
choice of collocation points. For ordinary differential
equations Wright [33] has shown that the residual is
minimized if the collocation points are given by the
roots of the Chebyshev polynomials.

Naturally the method of weighted residuals can be
combined with other methods. Collatz [3] presents a
combination of the iteration method and MWR. Yang
(34, 35, 36] uses the approximate solution generated by
the integral method as the first step in the following
procedure for time-dependent problems: the result of the
integral method is substituted into those terms involv-
ing time-derivatives and equation thereby obtained is
solved as a steady-state, nonhomogeneous, partial dif-
ferential equation. * An advantageous coupling of MWR
and numerical finite difference methods has been em-
ployed by Kaplan [37], Kaplan and Bewick [38], and
Kaplan, Marlowe, and Bewick [39] to reduce the com-
puter time necessary to solve certain nuclear reactor
problems; the number of independent variables was re-
duced from four to three or two by using MWR. Other
modifications and hybrid schemes are possible and will
undoubtedly be proposed as needs arise.

Choice of Approximating Functions

The choice of approximating functions can be crucial
in applying MWR. How to arrive at a good, if not the
best, selection is an outstanding problem. Certainly
any symmetry properties of the system should be ex-
ploited but there seems to be no way available at pres-
ent to do this systematically for all problems. In prob-
lems of conventional types it is usually convenient to
have the approximating functions satisfy the boundary
conditions, and Kantorovich and Krylov [29] show how
to construct complete sets of functions which vanish on
a boundary of complicated shape. Snyder and Stewart
[40] combine this scheme and symmetry arguments to
find approximating functions for the velocity vector
field in fluid flowing through regularly packed beds of
spheres.

Derived boundary conditions can also be used to
place restrictions on the approximating functions ad-
mitted, and improvement sometimes resules [26, 148].
Usually, however, several sets of approximating func-
tions are admissible and it is not possible to choose
one as the ‘“‘best.’”” Heywood and Moffatt [41] even
suggest as a qualitative criterion that the approximate
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solution be relatively insensitive to different but rea-
sonable choices of the approximating functions.
Methods have been devised for constructing approxi-
mating functions especially for eigenvalue problems in-
volving high-order ordinary differential equations of the
sort that arise in the theory of convective instability
[42, 43, 44]. ‘The approximating functions are just
eigenfunctions of one or another lower-order, simpler
yet related eigenvalue problem on the same domain.
Polynomials are popular approximating functions; they
have even been used in cylindrical and spherical do-
mains [45)] where proper regard must be taken of possi-
ble singularities. Falk [46] uses Hermite polynomials,
which are orthogonal on a semi-infinite domain. Other
authors [39, 47] emphasize that numerical difficulties
(for large N) can be avoided in the Galerkin method if
the approximating functions are orthonormalized.
Selecting approximating functions remains somewhat
dependent on the user’s intuition and experience, and
this is often regarded as a major disadvantage of MWR,
Clearly, the question of methods for arriving at optimal
choices of approximating functions warrants thorough
investigation. Leads may exist in the local solutions
and regional expansions used in perturbation meth-

ods [47a].

Comparison of Different Criteria

Comparisons of different criteria as applied to the
same problem exist only for relatively simple, linear,
initial-value problems [12, 25, 48] and boundary-value
problems [4, 13, 1]. In the literature on eigenvalue
problems the Galerkin method predominates, although
there are a few comparisons with the collocation and
least-squares methods {1, 4]. The results of these
comparisons may be summarized by Crandall’s re-
mark [1] (page 375): **The variation between results ob-
tained by applying different criteria to the same trial
family...is much less significant than the variations
that can result from the choice of different trial fami-

lies.”” However, there may be a great difference in the
work necessary to obtain the approximate solution when
using different criteria. Crandall’s experience evi-

dently is based entirely on linear problems. The only
comparison for nonlinear problems appears to be the un-
published thesis by Collings [49], as referenced by
Ames [2]. Ames comes to the conclusion that the
Galerkin method is superior, but cautions that this
stand is based on limited experience and may not hold
in general [2].

For linear, ordinary differential equations Frazer,
Jones and Skan [4] argue that the collocation, least
squares, and Galerkin methods are equivalent in the
limit as N——>3oc. Other similarities exist between the
methods [1]; e.g. when the approximating functions are
chosen to be the eigenfunctions of the linear operator,
ie. L(uj)=A uj, then the least-squares and Galerkin
method coincide.

For self-adjoint (hence necessarily linear) eigen-
value problems, the eigenvalues are real, and Cran-
dall [1] emphasizes that the Galerkin method leads to
symmetric matrices in Equation (15)—and hence real-
valued approximations-—whereas the other methods may
give complex eigenvalues as approximations to the

exact real eigenvalues. The least-squares method is
particularly unsuited for linear eigenvalue problems be-
cause it turns the linear problem into a nonlinear
one [1}.

The least-squares procedure for eigenvalue problems
as outlined by Becker [50] differs somewhat from that
of Crandall [1]; Becker does not have such a difficulty
in the first approximation. Whereas Crandall uses the
weighting function dI/dc, for the first approximation,
Becker uses JI/JA, where A is the eigenvalue. Con-
sider the linear eigenvalue problem

L(u)+Au=0 (20)

with # = 0 on the boundary. For the first approximation
with a trial solution u* = cu,, the residual is

R(ux): Cx(L(u1)+ )\ux) (21)

The mean square error is then
I=c! f[L(ul) +Au,)?dv (22)
v
Crandall apparently would determine A from
Il /de, = 0 = 2, f[L(ul) FAuldv (23)
v

which is a quadratic in A and may lead to complex
values of A. Becker, on the other hand, would deter-
mine A from

Al /OA = 0= 2c2 f[L(”1) +Au)udv (24)

which is linear in A and gives real values as long as
the equation and u, are real. Becker’s procedure ap-
pears to be simpler for the first approximation,

For higher approximations both procedures lead to
nonlinear equations for this linear problem. Crandall
would use as weighting functions 9l/dc;, i = 1, 2, ...,
N, and Becker would use 9I/dA, dl/dcj, j = 2, 3, ...,
N. The latter is thus using the eigenvalue A as one of
the parameters and is also exploiting the fact that the
mean square error can be minimized as a function of
{0y = c;/c,}, rather than {c;} since

ey e vvv s eny M= cTI(L, 0y, oo, Oy, A). (25)

For initial-value problems, the least-squares method
must be applied carefully and has certain disadvan-
tages. The method is applicable if the time depend-
ence of the approximate solution is specified—in other
words, semi-direct methods cannot be used in the
method of least squares. Consider the problem du/dt =
L(u) and assume a trial solution of the form w* = ug +
3 aj;(x, t). Then the functional I, representing the
mean square residual, can be minimized:

T 2
sz f[Q”——L(u)] dv d. (26)
0 v Jt

Of course the solution depends on the value of T. If
the upper limit of integration is infinite, the solution
may no longer have this ambiguity. This was the ap-
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proach taken by Bickley {12] in his least-squares cal-
culations for time-dependent problems.

Oftentimes, however, the time dependence of the so-
lution is difficult to guess and the trial solution must

involve undetermined functions of time, u* =ug+
N
Z c;(t)u;(x). The mean square residual is
i=1
1= f [a—”—L(u)} “av @7
Lot

Now, however, ! depends on time and involves time
derivatives. Consequently it cannot in general be made
a minimum for all time by any set of functions c;(2);
this was shown by Citron [51] and Finlayson and
Scriven [25]. Consequently, if a semi-direct method is
used to solve this type of problem the term least
squares is a misnomer because the mean square resid-
ual is not being minimized.

The least-squares method is discussed at length in a
monograph by Becker [50]. Listing criteria which he
maintains a good variational method must satisfy, he
concludes that the least-squares method is the best
general criterion of MWR. Becker’s list includes the
following points: (i) errors should be minimized in some
sense; (ii) the functional should be positive definite;
(iii) the procedure should be capable of treating initial-
value problems, as well as others. These seem some-
what slanted toward the least-squares method; indeed,
items (i) and (ii) cannot be realized for all problems
except in the least-squares method. Yet no one has
shown that a solution is necessarily best because its
mean square residual is smallest; such a definition or
proof will certainly depend on the particular applica-
tion. In addition, the least-squares method can be used
to treat initial-value problems in only a limited way, as
shown above. Furthermore, an important point should
be added to the list of desiderata—the method should
be simple to apply. As already shown, this criterion
immediately eliminates the least-squares method for
linear eigenvalue problems because it turns a linear
problem into a more difficult nonlinear one. Becker
realized that his conclusion may not always be valid
[so] (page 61): ‘“*While the least-squares method seems
to be the most suitable general approach, in specific
applications (in which some specific criteria may be
added 'to our ‘general’ list) other methods may be pref-
erable.”” Becker illustrates the advantages of the
method of least-squares by solving a set of nonlinear,
time-dependent partial differential equations which
model the fuel depletion in a nuclear reactor; he finds
results that compare well with the more lengthy numeri-
cal solutions.

In this discussion of the various criteria of MWR, the
Galerkin method has been distinguished from the
method of moments by means of the weighting functions
used in the two. In the Galerkin method, the weighting
functions must be the same set of functions which are
used for the trial solution, whereas in the method of
moments the weighting functions can be some other set
of functions. This distinction is not always made [52]
and is probably unimportant in practice, although the

two methods have different histories and may have dif-
ferent convergence properties. There are inconsisten-
cies of terminology in the literature; for example,
Kawaguit {53] used the method of moments rather than
the Galerkin method as he claimed, for the weighting
functions differ from the approximating functions in his
work. Another example of confusing nomenclature is
the name method of integral relations, which refers to a
generalization of the subdomain method; it is ade-
quately reviewed by Belotserkovskii and Chushkin [54l.

C. Convergence Theorems

Galerkin Method

After introduction of the Galerkin method in 1915
some twenty-five years elapsed before the convergence
of the method was studied. Even today much remains
to be done; only a few theorems have been proved, and
these pertain exclusively to linear problems. Rep-
man [55] was the first to prove convergence of solu--
tions obtained by the Galerkin method though only for a
certain Fredholm-type integral equation. Petrov [56]
then studied the convergence of the Galerkin method for
eigenvalue problems of fourth-order ordinary differential
equations—in particular, the Orr-Sommerfeld equation
of hydrodynamic stability theory. Keldysh [57] treated
general ordinary differential equations and also second-
order elliptic partial differential equations. Mikhlin [11]
later simplified Keldysh’s proofs. The equations are of
the form

__ N\ 9, o
R = Z 3xi<Aij <9xj>+

i, j=1
m

9
2.5 a;‘,-

i=1

+ Cu=[ (28)

Both Keldysh and Mikhlin prove that the first deriva-
tives of the Galerkin approximate solution converge in
the mean to the first derivatives of the exact solution.

Whenever the Rayleigh-Ritz and Galerkin methods
coincide (see below), the convergence proofs for the
Rayleigh-Ritz method imply convergence of the Galerkin
method, too. Thus the Galerkin-convergence proofs
given by Kantorovich and Krylov [29] apply only to
specific problems with a minimum or maximum princi-
ple, whereas the convergence proofs mentioned here are
applicable to problems whether or not they have a cor-
responding variational principle. It has been claimed
[40] that completeness of the set of approximating func-
tions is sufficient to assure convergence, but the proofs
given by Mikhlin and others show clearly that this is
not enough.

Recently convergence proofs have become available
for certain eigenvalue problems associated with hydro-
dynamic stability investigations (58, 15].

Results applicable to unsteady-state problems are
less extensive. Faedo [59] applied the Galerkin
method to a hyperbolic differential equation and in-
spired the important work of Green [60], who proved the |
uniform convergence of the Galerkin method when ap-
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plied to the following equation
u Ou

- — —g(x u=f(x,t 2
ECRy glx, hu=[(x, 1) (29)
The Galerkin method has been used to prove the exist-
ence of weak solutions to (i) the Navier-Stokes equa-
tions with time dependence [61], and (ii) equations
representing the unsteady-state transport equation with
a known velocity field {62]:

m m
d ou du
L B. %%
2. a < ”ax].>+Zl Do
1=

i, j=1 '

Cu- —Fx,t) (30)
ot

Recently the Galerkin method has been applied to the
Taylor problem with time-dependent disturbances [63],
and a method has been developed to generate improv-
able, pointwise upper and lower bounds—and hence
error bounds—for the solution to Equation (30) [129a].

Other Methods

Convergence proofs are rarely available for the other
criteria of MWR. The notable exception is the least-
squares method, which is well-treated (for boundary-
problems) in the notable text by Mikhlin [11]. Mikhlin
proves conditions which insure that the method of least
squares gives a sequence of approximate solutions
which converge in the mean to the exact solution. Fur-
thermore, the mean-square-error of the approximate so-
lution can be determined. He also points out that the
least-squares method converges more slowly than the
Ritz method (when the latter can be applied) but may
give uniform convergence rather than convergence in
the mean. Some results for the collocation method are
given by Kadner [64], while the method of moments is
treated by Kravchuk [65].

Nonlinear Problems

Very little is known about the convergence of MWR
for nonlinear problems without a corresponding varia-
tional principle. Krasnosel’ski [66] presents theo-
rems—mostly without proofs—for the Galerkin method
applied to nonlinear integral equations. Glansdorff [67]
mentions a forthcoming proof of the convergence of the
local potential method, which is identical in applica-
tion to the Galerkin method; he treats the steady-state
heat conduction equation with temperature-dependent
thermal conductivity., Of course, as Ames [2] has
pointed out, convergence proofs are not as useful as er-
ror bounds. Even a computer does not make it possible
to calculate infinitely many terms and when truncating
the series one always wonders how good the resulting
approximate solution is. Comparison of successive ap-
proximations is an aid in such a case, but even an ap-
proximate solution that seems to be converging may not
be converging to the exact solution. The available
convergence theorems and error bounds are so scarce
that engineer and applied scientist must usually extrap-
olate from previously tested results for other problems
to new situations when applying approximate methods.
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D. Comparison to Other Methods

Separation of Variables

The Galerkin method is related to a wide variety of
other approximate methods as well as to some exact
methods of analysis. In particular, it can be shown
(29, 22, 24] that if a problem yields to the method of
separation of variables and if the Galerkin method is
applied in a certain way*, then the two solutions are
the same, provided the Galerkin method is carried
through to completion. Of course in numerical calcula-
tions, after obtaining an exact solution in the form of
an infinite series, one calculates only a finite number
of terms as a matter of practical necessity.

Variational Methods

There is also a close relationship between the
Galerkin method and the Ritz or Rayleigh-RitzT method
when the latter can be applied {14, 69, 70, 1, 21, 3, 29,
71, 72]. In particular, if the same trial functions are
used, the resulting calculations are identical. Contrary
to a currently prevalent opinion, this equivalence still
persists when the trial functions do not satisfy the
natural boundary conditions {23, 11, 25, 24], which they
need not do in the Rayleigh-Ritz method. The boundary
residual is either added or subtracted to the differential
equation residual, and the calculations are again equiv-
alent to the Ritz or Rayleigh-Ritz method. The choice
of adding or subtracting is dictated either by mathemat-
ical convenience—part of the differential-equation
residual can be integrated by parts to cancel part of the
boundary residual—or by the physics—the differential
equation and boundary conditions both come from macro-
scopic balances taken over the volume and surface,
respectively; these macroscopic balances can be com-
bined in only one way, and the residuals are combined
in exactly the same way. A very important difference
between the Rayleigh-Ritz method and the Galerkin
method is that in the former some functional—possibly
representing an eigenvalue—is being minimized or
maximized.  Consequently the approximate values of
the functional represent either upper or lower bounds.
In the Galerkin method this information is missing;
exactly the same values would be obtained, but one
would not know that these were upper or lower bounds.
However, when the variational integral is of no signifi-
cance, the Galerkin method, because of its generality,
may be preferred. The variational and Galerkin meth-
ods are compared schematically in Figure 1.

Most variational principles are merely stationary
principles, rather than minimum or maximum principles.

*The approximating functions in the Galerkin method must
be the eigenfunctions found by the separation of variables
and the Galerkin method must be applied to the initial condi-
tions as well as to the differential equation. Such a result
means simply that if the exact solution is contained in the
trial function, the Galerkin method will find it.

TThough there is basically but a single method, it is con-
venient to follow the custom (scarcely universal) of distin-
guishing between the *‘Rayleigh-Ritz method’’ when it is ap-
plied to minimum or maximum principles and the ‘‘Ritz
method”’ when it is applied to merely stationary principles,

Sy
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Figure 1: Comparison of Variational and Galerkin Methods for
Linear Problems.

In such cases, the Ritz method is again equivalent to
the Galerkin method. The calculations are identical;
the results are identical; but in the variational method
one knows that the variational integral is being made
stationary, i.e., insensitive to changes in the trial so-
lution. If the variational integral has physical signifi-
cance and is the quantity of interest, then the varia-
tional methods have an advantage over the Galerkin
method even though the answers are the same.

Adjoint Variational Methods

Variational principles exist for linear problems only
if they are self-adjoint. For non-self-adjoint linear
problems, variational principles can be formulated for
the original equations and their adjoints, and again
MWR is related to the corresponding variational meth-
ods. The impetus for using the adjoint operator in vari-
ational formulations seems to stem from Morse and
Feshbach [73], who gave a variational principle for the
unsteady-state heat conduction equation; Roussopoulos
[74] also gave a variational principle for any linear
non-self-adjoint problem. Schmit [75] and Washizu [76]
have applied such a principle to the unsteady-state
heat conduction equation, while Selengut [77, 78] de-
veloped the idea for nuclear reactor problems. Many
other examples exist, such as those of Nichols and
Bankoff [79] for convective diffusion of heat, Finlay-
son [24] for convective diffusion of a multicomponent
mixture of chemical species; Lewins [80], Slattery [81],
Flumerfelt and Slattery [82] for extensions to nonlinear
problems; and many authors [83~94, 38] for nuclear re-
actor and associated problems. In applications to
linear non-self-adjoint problems, the method of weighted
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residuals yields the same results as any of these varia-
tional principles as long as the weighting functions for
the original equations are taken as the approximating
functions for the adjoint, and vice versa [75, 24]. The
question then arises as to whether this variational
method, which can be regarded as an application of one
form of MWR, is preferable to Galerkin’s method, which
does not require the complication of an auxiliary ad-
joint system. There is some evidence that the adjoint
variational principle leads to slightly better results[95-
97], and Clark and Hansen [98] imply that the use of
adjoint weighting functions might speed convergence.
Kaplan and Bewick [38] claim that the variational
method is the best strategy in that it gives better an-
swers more often. However, they go on to say:

““Of course, practical considerations may intro-
duce yet another meaning of the work ‘‘best’’;
namely, ' ‘‘most economical.”” In this sense we
find that the Galerkin method (which uses the trial
functions also as weighting functions) is, in most
instances, preferable to the variational method,
since it gives results which are almost as good but
does not require separate calculations of the
weighting functions.”’

In essence, the adjoint variational method trades in-
creased complexity for possibly better results: there
still is no clear-cut answer to the question of whether
the Galerkin method or the adjoint-variational method
is best.

For certain initial-value problems there may be no
difference between the variational method and Galerkin’s
method if the semi-direct approach is used in both.
Whenever the corresponding steady-state problem is
self-adjoint, it is reasonable to expand the unsteady-
state solution and its adjoint in terms of the same func-
tions of position with unknown functions of time as co-
efficients:

N

w=us+ ) e ui(x) (31)
i=1
N

wt =us ) eHOuX) (32)
i=1

Because the approximating functions are the same for
both # and u*, the weighting functions in the adjoint
method are the same as those in the Galerkin method.
Consequently, the solutions are identical, whether
derived by the adjoint method or the more direct Galerkin
method.

The adjoint system is also useful for eigenvalue
problems. Roberts [99] presents the general theory, and
examples can be found in the works of Chandrasekhar
[42] and DiPrima [100] as well as others. While intro-
duction of the adjoint system does increase the com-
plexity of the problem—particularly the boundary con-
ditions—some advantage is gained over the straight-
forward application of MWR because the eigenvalue is
made stationary, and hence insensitive to changes in
the trial function. This advantage does not usually ap-
ply to boundary and initial-value problems since the
variational integral is seldom of interest in those cases.



Method of Least Squares

Mikhlin [11] points out that for boundary-value prob-
lems the least-squares method for

Lu=f inV (33)
Bju=0 onS$ (34)

is equivalent to applying the calculus of variations to
the equation

L¥(Lu-f)=0 (35)

Consider the following minimum principle: minimize the
functional

I= f(Lu — P dV+ f(Biu)z ds (36)

among all functions » having the appropriate continuity
and differentiability requirements. The natural bound-
ary conditions corresponding to this variational princi-
ple are of the form [50]

Ni(Lu~f)=0 (37)

where N; are differential operators. The Euler equation
is just equation (35) and the equivalence with equa-
tion (33) rests with the premise that the equation

L*y =0 (38)
Biu =0 (39)

has only the trivial solution. Note that the natural
boundary conditions (37) are similar to the compatibility
conditions mentioned above in connection with the inte-
gral method for magnetohydrodynamic boundary-layer
problems.

Method of the Local Potential

A procedure based on the so-called local potential of
Prigogine and Glansdorff [101~104] has been proposed
as a variational method for determining approximate. so-
lutions to boundary-value [105-108], eigenyalue [109],
and more recently initial-value problems [108]. Rosen
[110-113] used the same type of computational scheme
earlier. The actual applications of these methods have
been shown to be equivalent to the Galerkin method
[114, 24]. Moreover, it has been demonstrated that the
variational integral is not stationary in the local poten-
tial method and that no minimum principle exists in ap-
plications [114, 24]. Consequently, the advantages
usually associated with variational principles are miss-
ing from the local potential method, which can be re-
garded as a disguised application of the Galerkin
method. See Ref. 129b for a more detailed critique.

Lagrangian Thermodynamics

The so-called variational methods due to Biot [115~
121] and others [122-128, 51] are also equivalent to the
Galerkin method [25, 24]. In these Lagrangian thermo-
dynamic methods there is no variational integral which
is being made stationary [25, 79]; their sole signifi-
cance appears to be as means for generating a computa-

tional scheme. That scheme is, however, identical to
the Galerkin method, which is more straightforward and
applicable to a broader range of situations. There is
no reason that the Galerkin method should not be pre-
ferred, so far as the authors know. See Ref. 129b for a
more detailed critique.

E. Applications

The general features of MWR in its numerous ver-
sions and various refinements have been presented, and
its relationships to certain other approximation methods
have been sketched. Which of all these methods are
superior, and over just what ranges of circumstances
the superiority exists, are matters that can be settled
finally only on the basis of representative applications.
More systematic comparative studies and evaluations
are needed than have been reported to date. Until they
are forthcoming the investigator of a new problem can
expect little more help than he can get out of seeing
how others have handled more or less similar problems.
References 130-187 have been selected as much to il-
lustrate pitfalls, shortcomings, and failures as to cite
the attractive features and successes of different ver-
sions of MWR. The preponderance of recent papers ac-
curately reflects the upsurge of applications of these
methods in one field after another; the emphasis on
problems of flow and transport is conditioned by inter-
ests of the authors. The popularity of the, integral
methods which originated in boundary-layer studies [18,
20, 34-36, 136-153, 160-163, 166-169] can be dis-
counted in part as a tradition perpetuated by formal in-
struction beginning with elementary texts in fluid me-
chanics and heat transfer.

Beyond any guidance he can get from past experience
the problem-solver can look for reassurances in com-
parisons of different forms of trial solutions and of suc-
cessive approximations in any one form: the appear-
ances of convergence with more numerous adjustable
parameters and of insensitivity to form of approximating
functions do lend confidence to results. So do close
matches with established information on special cases
and limiting cases. It is also true that MWR, like vari-
ational methods, may yield better estimates of proper-
ties of the solution at large, such as an integral or
eigenvalue, than of the solution itself. The main ad-
vantage and disadvantage of MWR are contained in the
same feature, namely, that the results depend on more
or less arbitrary decisions by the user. Intuition, ex-
perience, any available information all can be rapidly
exploited but the reliability of the results is frequently
hazy. Hopefully this review sheds light on the basic
issues and will be useful to those interested in apply-
ing weighted residual methods and related techniques.

F. Areas for Further Research

Of the unsolved problems concerning MWR the follow-
ing are most important in the opinion of the authors:

(1) Choice of criterion in MWR. Systematic compara-
tive studies using representative (nonlinear) problems
are needed. The least-squares procedure for nonlinear
problems particularly warrants attention. The Galerkin
method and adjoint variational method for linear prob-
lems need to be compared.
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(2) Development of rational methods for selecting ap-
proximating functions, for example by systematically
applying symmetry properties of the problem. A related
question is whether linear combinations of functions
are mote effective than nonlinear forms, especially for
nonlinear problems.

(3) Definition of mathematical or engineering criteria
for identifying optimal approaches in (1) and (2). Op-
timization theory should be brought to bear on the de-
cisions that have to be made by users of weighted-
residual and other approximation methods.

(4) Derivation of error bounds for approximate solu-
tions by MWR. And though they are not as directly use-
ful, convergence proofs are needed, especially for non-
linear problems.
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