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Abstract—Data for heat transfer from packed beds are reexamined in the light of new insights. Much of the data
includes a length effect, resulting from a higher heat transfer coefficient near the inlet, making it unsuitable for use
in chemical reactor design, where the length is so long that an asymptotic heat transfer coefficient is desired. The
data is reexamined in order to exclude studies influenced by the length effect and retaining data giving an
asymptotic heat transfer coefficient. The asymptotic coefficient is correlated well over a large range of Reynolds
numbers (20-7000). The data also indicate that the Biot number decreases as the Reynolds number increases, but is
approximately constant for Reynolds numbers above 500, taking the value
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INTRODUCTION

The tubular fixed bed chemical reactor is widely used for
exothermic chemical reactions. The energy released by
the chemical reaction must be removed by cooling at the
walls and this leads to the desirability of having accurate
correlations for the heat transfer coefficient from packed
beds. Experimental data for the Nusselt number as a
function of Reynolds number often show considerable
disagreement from one study to the next, with discre-
pancies are large as 100% being common[1,2]. The pur-
pose of this report is to reexamine the experimental data
to see the cause of the discrepancy and to eliminate it.

Most data is obtained in a Graetz-type experiment. The
fluid passes through a packed bed and is cooled at the
walls. In an empty pipe, with either laminar or turbulent
flow, there is an entry length effect, and the heat transfer
coefficient at the bed inlet is infinite, but for positions
farther down the pipe the coefficient decreases and
eventually approaches an asymptotic value. In a packed
bed the same phenomena is much less likely because the
heat transfer coefficient depends more on the fluid flow
near the wall rather than on the temperature distribution.
However, evidence is given below to suggest that the
heat transfer coefficient does depend on length, and this
idea is the key to unraveling the discrepancies in the data
reported in the literature.

THEORY

The two-dimensional pseudo-homogeneous model for
heat transfer in a packed bed is[3]
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In nondimensional form this is
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If the effective thermal conductivity and heat transfer
coefficient are taken as constants, this problem has a
well-known solution

_ & J{An) exp[-a'Alz]
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where Jo(A,r) is the zeroth order Bessel function of the
first kind, and the A, are the roots to

AJ(Ar) = Bi|Ay). @

As the length of the packed bed increases only the first
term in the series is needed, but the position at which
this approximation is valid depends on the Biot number.
Table 1 lists the values of al, as a function of Biot
number, where a/, is determined such that the second
term in the expansion for the centerline temperature is
less than 1% of the first term. For lengths beyond a;, a
plot of log T vs z is a straight line. For simplicity we use
the value al;, =0.2 for all Biot numbers.

The Biot number can be expressed as a ratio of the
resistance to heat transfer through the packed bed, R/k.,
to that at the wall, 1/h,.. Thus small Biot numbers refer to
a large wall resistance, while for large Biot numbers the
resistance to heat transfer is largely interior to the bed.
The eigenvalue A, depends on Bi, but for Bi greater than
10, A, approaches 2.4048 and (A,/Bi)<1.
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Table 1. Minimum length for a one-term expansion to be valid in eqn (3)

Bi 0.1 0.3 1.0

0.21

3.0 10. 100 =

0.23 0.20 0.18 0.14

The asymptotic solution can then be approximated as

T ={2J(Air) exp [—a'AZ1H[AJ{(A))]
Al = 2.4048

&)

and is independent of Bi, although it still depends on a’,
and thus k.. This suggests that if the Biot number is high,
it would be difficult to measure the heat transfer co-
efficient, since the temperature solution is independent of
Bi. Of course the Biot number under those conditions is
less critical. We find below that the Bi decreases as
Reynolds number increases, so that the scatter of data for
h. and Bi at low Reynolds numbers (high Bi) is not
surprising, nor is it of great consequence.

Nearly all the heat transfer data is obtained in the
same way, namely the radial temperature profile is
measured at several bed depths with the thermocouples
placed just above the packing. The difference in studies
results from the analysis of the data to determine &, and
h.. Four widely used methods are outlined.

Method 1. The effective thermal conductivity is
determined by solving eqn (1) for k., and the temperature
derivatives are obtained by differentiating the tem-
perature profiles. This local value of k, is averaged to
obtain a constant k. used for the entire bed. The h, is
found from eqn (4) with A, obtained from the slope of
the straight line of log T vs z, which is —a'A% This
method was used by Coberly and Marshall {4].

Method 2. First A, is found from the radial tem-
perature profile at the exit of the bed

T.z=1) _21(A)
T(r=0,z=1) A, ° ©)

The slope of log T vs z gives —a'A,* as before, and since
A, is now known, k, may be found from a'. Bi is found
as a function of A, from eqn (4). With k. known, the A,
is found from Bi. This method was used by Maeda(5]
and Yagi and Wakao{6] and others listed below.
Method 3. The k, is found as in Method 1. The A, is
found from an overall energy balance for the test section

_ GRGITz) - Tzl
=GN T= T - @

The fluid temperature at the wall, T, which is different
from the coolant temperature, T, is estimated by ex-
trapolating the measured bed temperature to the wall.

(T-Ton = [ im-Tr =R ez, ®

27 21 Jg

This method was used by Felix[7].

Method 4. The k. and h, are found by comparing
calculated results using eqn (3) with the experimental
data and adjusting k. and h, to give the best fit in a least

squares sense. Valstar[8] minimized the errors in tem-
perature values throughout the bed, whereas De Wasch
and Froment[9] used only exit profiles.

All of these methods have been extensively discussed
in the literature, but usually without mentioning the fact
that if k, and k, depend on length then each method may
yield a different value &, and k., even in the absence of
experimental errors. The major emphasis of this paper is
that each of these methods of data analysis yields a
different heat transfer coefficient, which is not always the
asymptotic coefficient, and the data should be compared
with caution.

LENGTH EFFECT

Experimental evidence confirms the fact that the heat
transfer coefficient (h,) and the effective thermal con-
ductivity (k,) depend on length. Figure 1 shows data
from three investigations illustrating how the effective
thermal conductivity decreases as the length is increased.
Most methods of data analysis (Methods 1, 2 and 4)
cause an error in h, if k, is wrong, thus making h,
depend on length, too. DeWasch and Froment[9] (their
Figs. 6 and 7 and our Table 2) and Paterson{11] found
that k. and h, decreased with .ncreasing bed depth.
Finally we anticipate the conclusions below: Methods 3
and 4 do not give asymptotic heat transfer coefficients
and should give a coefficient above the asymptotic co-
efficients of Method 2. Data analyzed by Methods 3 and
4 do lie generally above that analyzed by Method 2.
Method 1 does not give an asymptotic coefficient, but
can be either above or below the asymptotic value. Data
analyzed by Method 1 follow this comparison, also.

2.2 T 2 T T T

2.0r b

1.0 I ) I LA
o] 0.2 0.4 0s 0.8 1.0

z
Fig. 1. The effective thermal conductivity vs bed depth. (The &,
shown in this figure is the average value of the local k,’s across
the radius of the bed.)

Symbol Ref. a’ Re,
| [12] 0.28 48
® 41 0.56 506
A [13, 14] 0.16 238
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Table 2. The k. and h.,’s reported by De Wasch and Froment[9] for different bed depths. Re, = 400, d; = 0.099 m,
d, =0.0057 m

L (m k_ (kcal/m hr °cy (keal/m? hr °C) al Bi

0.284 1.38 167 0.1267 5.99
0.582 1.28 158 0.2399  6.13
0.875 1.14 152 0.3266  6.60
1.016 1.12 146 0.3695  6.42

1.0 T T T T

To illustrate the errors in k, and h, introduced by the
length effect, let us calculate a temperature profile using
the measured k, and h, for beds of different lengths.
These calculations are then used as simulated experi-
mental data, and k, and h, are deduced using the diff-
erent methods. Differences in &, and k. so deduced are
due entirely then to the method of data analysis, since
the data is identical. The parameters used for the
simulated data are reported in Table 2, as read from the
graphs of actual experimental data obtained by DeWasch
and Froment[9] for four different bed depths.

Methods 2 and 4

First analyze the simulated data using Method 4 for a
bed depth of 1.016 m. The k, and h, are determined to
give an exact fit of the temperature profile at the bed
exit, but they account for the k, and h, throughout the
bed, including the entrance region where k., and h.
depend on length. In Method 2, however, only the shape
of the temperature profile at the outlet is used (not the
absolute value) to determine A, and then a' (or k) is
found from the slope of the log T vs z curve, which
thereby matches the local rate of heat transfer regardless
of what happened upstream. Method 2 thus gives
asymptotic values of k, and h,, at least if the bed is long
enough for those asymptotic values to hold. Next the
values of k. and h, so determined are used in a cal-
culation of eqn (2), with k, and h, (hence o' and Bi)
constant with length. Figure 2 illustrates the predictions
of the two methods. Method 4 matches exactly the outlet
average temperature, as it should, whereas Method 2
matches exactly the local rate of heat transfer as deter-
mined by the slope of the curve. The temperature at the
bed outlet is not predicted correctly by Method 2
because the calculation assumes h, and k., are constant
throughout the bed, while they are not. However, once
the asymptotic region is reached, Method 2 correctly
predicts the rate of heat transfer, whereas Method 4 does
not. If the bed depth were very much longer, so that the
region over which h, and k. were at their constant
asymptotic value constituted, say, 95% of the bed, then
Method 2 and 4 would give equivalent predictions. The
length of bed needed to make negligible the entrance
effect is very much larger if the data is analyzed using
Method 4 than is the case for Method 2, and seldom are
experimental studies done in such long beds. Con-
sequently Method 2 yields an asymptotic heat transfer
coefficient, but Method 4 does not.

Method 3
Whether or not this method gives an asymptotic heat

Tm

[oN] { i 1 I
o 0.2 0.4 06 0.8 IO

Z
Fig. 2. Comparison of Method 2 and Method 4: 1, the assumed
experimental result; 2, predicted by Method 2; 3, predicted by
Method 4.

transfer coefficient depends on the location of the test
section, z; in eqn (7). If this includes the whole bed, the
h, is not an-asymptotic one, and would tend to be above
the asymptotic h,. This effect is illustrated in Table 3,
where the h, clearly depends on the location of the test
section, and decreases as the test section is moved
downstream.

Method 1

This method has an entrance effect because k, is the
average over the whole bed, and the h, depends on the
k.. For Method 1, a sensitivity analysis based on com-
puting d In h,/dIn k, shows that errors in k. give much
larger errors in k., and in the opposite direction. For
Bi =2 (Bi =4) the value of dln h,/dIn k, is —1.3 (-6.5).
A k, that is 5% high due to the length effect gives a A, in

Table 3. The h,, determined by method 3 vs bed depth

z'1 (m) 2'2 (m) h (kcal/m2 hr °C)
0 1.016 146
0.284 1.016 137
0.582 1.016 121
0.875 1.016 122
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Method 1 that is about 30% low when Bi=4. Thus
Method 1 is particularly susceptible to the length effect.

The k, and h,, found by the different methods of data
analysis are given in Table 4. We emphasize these diff-
erences are entirely due to the method of data analysis,
since the simulated data were identical. As predicted,
Method 2 gives the asymptotic h,, Methods 3 and 4 give
higher h, and Method 1 gives a lower h,. The h, given
by Method 2 is the least affected or is unaffected by
length. It thus gives the best value of asymptotic heat
transfer coefficient.

To further support the idea of length dependence, we
plot in Fig. 3 data from various sources for spherical
packing. The data analyzed with Method 2 (denoted by A
and V in Fig. 3) give a Nusselt number generally lower
than the other data which, because of the conditions of
the experiments and method of data analysis are predic-
ted to include a length dependence. The same thing holds
true for cylindrical packing (Fig. 4) except now the data
analyzed by Method 1 by Pogorski lies below the
asymptotic coefficient, as predicted.

It is still unclear how long the bed should be for the

CHI-HSIUNG L1 and B. A. FINLAYSON
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Fig. 4. Experimental data for wall heat transfer coefficient with
cylindrical packing.

1.0
local &, and h, to reach the asymptotic values. So far no L
such experimental results have been recorded. However, i
several experimental temperature profiles reported in the
literature (see Fig. 5) indicate that whenever a'z is L
greater than 0.2 the plot of log T vs z is a straight line.
This is consistent with the result derived above under the
assumption of constant k, and h,: the temperature Te F
T T T T [ T T T T ‘ T T T T ol
% &?;% I
0% $o8 5 L 4
i ﬁé@ W 0 o2 o4 X3 08 TOo
L .Enngtﬂﬂ%d&g +¢+%++g:vocg i . . ; . . K
" ' $3 . :ARA ° Fig. 5. Axial temperature profiles along the center of the bed (®
. "y ¢ L2 | marks a'z =0.2).
Ne [ N X
ol e 6 % sey s B Syx:bol Ref. o Bi RQeZ
5 4 ens s i (12} 0.22
a0t 4 ] 4] 0.56 454 506
i . ] A 7] 171 0.92 680
. R @] [6] 0.52 428 234
1.0 1 | 1 Lol 1 Lo .
) 102 103 10*  profile can be expressed by a one-term asymptotic solu-

Rep

Fig. 3. Experimental data for wall heat transfer coefficient with
spherical packing. (A and V determined by Method 2.)

tion when o' is greater than 0.2, and a straight line results
on a plotted log T vs z. If the local k, and A, still change
with bed depth for o’ greater than 0.2, the experimental

Table 4. Comparison of the k, and h,, determined by the different calculation methods

Method k, (kcal/m hr°C) h, (kcal/m? hr °C Bi
*
1 1.23 77.0 3.10
2 0.97 123 6.30
+ *
3 1.23 137 5.53
A 1.12 146 6.42

*
Using 1(e = the average of those in Table 2.

L = T =

z) 0.284m, z, 1.016m
+
L

L = 1.016m
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Table 5. Key to the experimental data presented in Figs. 3, 4, 6,

9, 10
Symbol Author Ref.
o Coberly and Marshall [4]
B Felix M
A DeWasch and Froment 9]
* Hashimoto et al. [15]
[ ] Hawthorn et al. [16]
v Kunii et al. {17
w Maeda [5]
v Phillips et al. 23]
O Plautz and Johnston [18,19]
® Pogorski [13,14]
C:) Quinton and Storrow [20]
a Valstar [8]
A Yagi and Wakao [6]
O Ziolkowski 21

temperature profile would not yield a straight line. Based
on this reasoning we use ' greater than 0.2 as a criterion
to determine when the entrance region does not affect
the k, and h, determined by Method 1 and Method 3.

We next examine the effect of axial dispersion on k,
and h,. If an axial dispersion term, —y' 3*T/d2%, is added
to the left hand side of eqn (2), the equation can be
solved assuming a’, ¥’ and Bi are constant. If we use the
solution for a’> 0.2, when these assumptions are valid,
we can determine the error in k, and h, assumed by
analyzing the data ignoring axial dispersion. The detailed
analyses are derived elsewhere[22] and show that for
methods 1, 2 and 3 the data analysis gives the same
result,

Ak _Ah,_1-ga,
ke hw 1+al

®

a’=1+4a'y'A? (10)

where Ak, is the error in k, due to the neglected axial
dispersion effect. Phillips et al.[23], have proved eqn (9)
for k, when using Method 1. For a, close to 1 (as
assumed) eqn (9) can be further simplified to

Ak, Ah, ),
X =Ah = —a'y'A’ (11

Using the approximation from orthogonal collocation{24]
that

. 6Bi
A= Bi+3 (12)
and Pe,, =2 gives
Ak, _Ah,_ 1 é)z 3Bi
k, h,  Pe (R Bi+3 (13)

This expression can be used to estimate the per cent
error caused by axial dispersion. For Method 4 the result
was derived by Young(25].

Ak, _Ah, 1 (d,,)2 3Bi . d,

k.~ h, _ Pea\R)Bi+3 2L’

(14
We see that axial dispersion causes errors in h,
measured by all methods, but only in the case of Method
4 are the errors dependent on length. Gunn and
Khalid[10] found axial conduction important in their
measurements, which were analyzed by Method 4.
Equation (14) shows that the length of bed could
influence the results. However, in the examination of the
data described below, we use eqn (13) to estimate the
importance of axial conduction, and seldom is data
discarded because of axial conduction.

We next examine the effect of a non-flat temperature
profile at the inlet to the bed. Felix[7] derived the solu-
tion for the following inlet profile:

T=1 O=r=r

T=T+br r=r=I1.

If we take r, =0 and use this solution, we find that data
analyzed by Methods 1, 2 and 3 are unaffected by this
problem, provided a’z=0.2. Method 4 is affected,
however, and the error is

Sl b (BB 4,2
a' a'z\ 6Bi A’ BiJ

For b =02, a’z=0.2 and Bi =1, the Aa’ = 0.3a’, giving
significant error. For Bi = 5 the error is reduced to Aa’ =
0.1a'.

We see that the data for h,, is affected by the length of
the bed, and different methods of analysis give different
h,. We do not have a well-justified explanation of the
cause of the length effect, but several possibilities exist.
Possibly the developing velocity and temperature pro-
files influence the results. In a packed bed the velocity
profile would be developed within a few particle di-
ameters of the inlet, due to the presence of the packing.
In a non-isothermal bed, however, the axial velocity
profile can change because of a changing temperature
profile (see Schertz and Bischoff[26]), and, because of
continuity, anytime the axial velocity profile changes a
radial velocity is introduced. This might affect the wall
heat transfer coefficient, especially since the radial flow
would be more pronounced near the wall. None of these
effects can at present be conclusively shown to be the
cause of the “length effect”, but are possibilities which
are consistent with the data. The importance of differen-
tiating between overall coefficients, applicable to the
whole bed, and asymptotic coefficients, is, however,
clearly established. Method 2 gives an asymptotic h,, or
at least the best estimate of it, compared to Methods 1, 3
and 4.

Finally we examine the crucial question: which k, and
h,, should be used for chemical reactor design? Should
the h. be one which fits the heat transfer data of the
whole bed or only the one representing the asymptotic
local heat transfer rate? Table 6 lists typical values of
bed lengths, particle diameters and tube diameters for
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Table 6. Design parameters for the packed bed reactors operated in the chemical industry

Reaction L/R dP/R a' Reference
Ethylene oxidation 190
Methanol oxidation 70 %

0.04 - 0.25 0.3-6 (2]

Vinylacetate oxidation 110
Benzene hydrogenation 60
Naphthalene oxidation 240 0.20 6 [2, 27]
Butane dehyrogenation 106 0.10 1.32 {28
O-xylene oxidation 200 0.24 6 [291
Methane reforming 126 0.30 4.7 [0]

*estimated values

industrial reactors. The beds are so long that a'> 0.2 for
most cases. This means that if a heat transfer experiment
were done in such a bed the asymptotic heat transfer
coefficient would be measured if the data were analyzed
using any of the methods (within experimental error). To
reproduce data in these long beds, the asymptotic heat
transfer coeflicients would have to be used. When heat
effects due to chemical reaction are present, the shape of
the temperature profile could be changed so that even the
asymptotic value was inappropriate. However, in the
absence of information on the effect of chemical reaction
on heat transfer coefficient, the best we can do is use the
asymptotic heat transfer coefficient.

The asymptotic heat transfer coefficient is lower than
any average h,, for the entire bed. Thus a reactor design
based on the asymptotic h, is conservative: the actual
reactor would be less likely to exhibit a “runaway”
situation than the design would indicate.

EXAMINATION OF HEAT TRANSFER DATA

Experimental data was examined in detail to decide
which data was influenced by length effects or axial
conduction. In many cases the original thesis was ex-
amined, and in some cases the data was re-analyzed
using Method 2. A complete tabulation is available[22).
We are interested in only the asymptotic heat transfer
coeflicient.

Data obtained by Maeda[5], Phillips et al.[23], Yagi
and Wakao [6], Hashimoto et al.[15], and Kunii ef al.[17],
is accepted since the h, and k, were determined by
Method 2. Data obtained by Felix[7] was analyzed by
Method 3, and it is accepted if the testing section did not
fall in the entrance region (i.e. if the region over which
h,, is deduced is for @'z =0.2).1 Coberly and Marshall[4]

tFelix’s testing section usually began at z =Sin. We have
applied the stringent criterion that &'z, = 0.2, but a less stringent
criterion could be argued. Unfortunately we have no basis on which
to decide, and so have used the number 0.2. ’

made measurements for ; by ;in. cylindrical packing, but
plots of log T vs z did not reach a straight line, so this
data includes a length effect and is not used. Data for
i by iin. cylindrical packing was originally analyzed
by Method 1. Here it is re-analyzed by Method 2 to
eliminate the length effect, and this recalculated data is
used below. Hawthorn e al.[16], did experiments in
very long beds (a@'>7) for constant wall heat flux. A
mathematical model was used to calculate the radial
temperature profile and the calculated temperature drop
from the center of the bed to the wall was subtracted
from the measured temperature drop from the center of
the bed to the cooling medium. These numbers were
compared, and the difference was ascribed to the tem-
perature drop very near the wall, which is modeled by
the heat transfer coefficient. Due to the length of bed the
length effect is negligible. This is one of the few sources
of heat transfer data derived from a chemically reacting
system at high temperature. We re-analyzed Hawthorn’s
data using Pe, =8 rather than 10, and the revised cal-
culations are presented below (the effect of Pe, is small).

Data for annular beds is reported by Yagi and
Kunii[31], Baddour and Yoon[32], and Kunii and
Suzuki[33]. A constant temperature difference was
maintained between the inner and outer surfaces along
the entire bed depth. Thus the temperature varied only
radially and there is no length effect. The data, however,
applies to an annular bed, and for large d,/R the packing
at the inner surface may be different from that of a
cylindrical bed. Thus the data must be put in a separate
classification.

Unfortunately a large number of data must be rejected
because they include a length effect and thus do not give
an asymptotic h,. Valstar[8], De Wasch and Froment[9],
and Ziolkowski[21] all used Method 4 to analyze their
data and it thus is affected by the length. Campbell and
Huntington[34, 35] used Method 1 to analyze a constant
wall heat flux experiment, even though the Method as-
sumes a constant wall temperature. In some experiments
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gas was cooled by the natural convection of air in the
room, but no correction was made for the heat transfer
resistance external to the pipe. In some cases the cal-
culated h, is less than the measured overall heat transfer
coefficient, which is impossible physically. For these
reasons the data by Campbell and Huntington is not
included below. We note that their data for k, is ac-
ceptable since it is determined by differentiating the
temperature profile. Plautz and Johnston[18, 19] found
h, using Method 3 and k, by making calculated tem-
perature profiles agree with experimental ones over the
whole bed. Both h, and k, thus include a length effect
and are not used below. Calderbank and Pogorski[13, 14]

used Method 1 but most of the beds are so short (a' <

0.2) that the experiment includes a length effect re-
gardless of the method of data analysis. This data is not
used below.

Aerov and Umnik[36] report data which is
frequently[1, 2] reported as following the correlation:

h.d,
ks

0.75
= 0.155(%) Pr'®, (15

The original Russian report, however, gives the correct
correlation as

ho(4d,\( € \_ .ﬂ.»_)w "
k,(s)(1—e)'°'155(6e(1~e), Pr(16)

eqn (16) is about 45% higher than Yagi and Wakao’s
data, whereas eqn (15) is 35% lower. Aerov and Umnik
did not measure h,; they determined it from their
measured k, and correlations for the overall heat transfer
coefficient (see below). Unfortunately these correlations
include a length effect so that the data is not usable.

Quinton and Storrow[20] performed a careful ex-
periment keeping the wall flux constant. The boundary
condition in eqn (2) is replaced by

aT

_ _FR_
ar

s

(17)

where now T =T'[T!.
The solution valid for a’z >0.15

T= 1+2a'Qz+Q(% r’—i), (18)

The a*, and hence k., can be found from

.1 aTlez

—ZW (19)

a

Quinton and Storrow used exit temperature profiles so
that no entrance effect was incurred in finding k.. Local
overall and wall heat transfer coefficients can be defined
as

F,

- . - F°
i v AR TS VA

(20)

Using eqn (18) gives

1 1, R

_[7 = h_w + ZE . (21)
This relation, which is exact for a’z >0.15, was used to
calculate h, from the k, and a U which was the arith-
metic mean of the local overall heat transfer coefficients
over the whole bed. Thus U included a length effect, and
so did k.. For one case the h, so reported is about 25%
higher than that calculated from the asymptotic U. Thus
the data for h, cannot be used.

CORRELATION OF DATA

The data which is accepted as being free from length
effects is put to two additional tests. We require that the
error due to axial dispersion effects be less than 5%, as
calculated by eqn (13). We also discard data for Bi> 12,
since then the temperature profile is insensitive to h.,
being determined primarily by k.. For Bi> 12, less than
20% of the total thermal resistance exists at the wall, and
an experimental error of +10% in the total rate of cooling
leads to an error in h, of =50%.

The data for A, is correlated in terms of the Nusselt
number. Spherical and cylindrical packing give different
results and are correlated separately. The best cor-
relation for spherical packings is

hody_ . 17(G—dp)°'79 )
ke p

005=<d,/d, <03 =
20 = Re, =7600

Constant wall temperature, spherical packing.

This correlation is compared to the experimental data in
Fig. 6 and predicts the data with an average deviation of
14%, and a modified correlation coefficient of R2=0.98
from the linear regression analysis. The R? represents
the fraction of the variation of data which can be ex-
plained by the correlation. Other forms of correlations
tried are listed in Table 7. The form of the correlation

|O3_ T T T 17 T T T 1] T T
102~
Nu
10
— Ap, @
24 Nu=0.17Re 7 |
- VaY
£ &
1.0 ] Lol | | i L
10 102 103 o

Rep

Fig.6. Accepted data of the asymptotic wall heat transfer co-
efficient for spherical packing.
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Table 7. Correlations tested for heat transfer coefficient

average
deviation
Correlation a+ b+ 7 iz
hw’ Spherical Packing
1. Nu=a Res 0.17  0.79 14 0.98
2. Nu = atb Re Pr 10.7 0.033 73 0.94
3. Nu_ = a ReP 0.029 0.94 21 0.97
m m
4. Nu = a(RePPr)O'33+b Reg's P04 133 0.14 38 0.98
hw’ Cylindrical Packing
5. Nu=a Res 0.16  0.93 33 0.85
6. Nu = a+b Re Pr 5.21  0.126 62 0.76
7. Nu_ = a ReP 0.03  1.06 39 0.85
m m
8. Nu = a(RePPr)0'33+b Reg'8 Pro'A 0.36 0.38 49 0.79
*
U , Spherical Packing
*
9. Ud [k = a+b Re Pr 3.88  0.03 104 0.96
*
10. Ud_/k, = gRe® 7.13 0.47 17 0.92
t/5¢ o
* b
1. (U4 /kp)exp(4.6 4 /) = a Re) 2,72 0.72 18 0.96
* b
12. (U4 /iexp(6 4 /d) = a e 2.03  0.80 21 0.96
*
U_, Cylindrical Packing
*
13. Ud /k; = a+b Re Pr 0.76  0.07 63 0.87
*
14, U'd_/k_ = a Re® 1.84  0.76 35 0.79
t'f P
* b
15. (U'd /k)exp(4.6 ¢ /d) = a Re) .39 0.90 27 0.88
*
16, (U d /k Yexp(6 d /d )= a Re® 1.26  0.95 27 0.89
t' T f Pt P

% a and b are found from a linear regression analysis.

preferred by Beek[1], form 4 in Table 7, is less suc-
cessful in predicting the data, with an average deviation
of 38%.

We note that all the experiments were done with air,
so there is no Prandtl number dependence. A reasonable
extension would be to regard the constant 0.17 = 0.17
(Prf0.7)"*, but this is not proved by these data. The
correlation (17) is very close to that proposed by Yagi
and Wakai[6], but here it correlates their data as well as
that by Kunii et al.[17]. The data of Felix[7] and Plautz
and Johnson[18, 19], which has a slight length depen-
dence at high Reynolds numbers, is slightly above this
correlation. At lower Reynolds numbers the Felix and
Plautz data have more length dependence and the data is
significantly above the correlation. Thus we see again
that the reason for the large scatter in heat transfer data
is partially due to a mixing of “overall” and asymptotic
h,.

The best correlation for cylindrical packings is

h.d, de)o.sa
k. M

20 < Re, <800
0.03=<d,/d,<02; d, =6V,/S,

=0.16(

23)

Constant wall temperature, cylindrical packing.

This correlation gives an average deviation of 33% and
R?=10.85 and is compared to the data in Fig. 7. There is
clearly more scatter in the data for cylindrical packings,
and the heat transfer coefficients are larger.

For annular beds there is very little data available for
the heat transfer coefficient on the inner wall. Yagi and

T T T T | T T T T ] T
2 _
101~
w
L |
L 8 4
B
Nu Nu=0.16 Reg >
10— I
- |
L N
*
1.0 L 1 [EE| I I Lot I
2 3
10 [¢]
10 Rep

Fig.7. Accepted data of the asymptotic wall heat transfer co-
efficient for cylindrical packing.



Kunii{31] correlate their data with the form

h.d,
k;

=a +0.041 Re,Pr (24

and “a” depends on the type of packing material.

The data of Hawthorn et al.[16] is the only accepted
data for the boundary condition of constant wall flux.
Furthermore the experiment has a high average tem-
perature of 800°F and chemical reaction is taking place.
This data is compared in Fig. 8 with the correlation for
spherical packing, eqn (22). The constant flux Nu is
about 20% higher than the value for constant wall tem-
perature. We note that the &, is not actually used in the
boundary condition for constant wall flux, eqn (17).

As shown in eqn (2), the variables affecting the rate of
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heat transfer are not k, and h, separately, but in the
combinations &’ and Bi. The Biot number, in particular,
is the ratio of h,, to k,/R. The data in Fig. 9 indicate that
the Biot number decreases as the Reynolds number
increases. Figure 10 shows data for the Biot number as a
function of Reynolds number. We see that we can use

-$)<_£_)_
B1<R —</)° 0.27 (25)
0.05=<d,/d, <0.15
500 =< Re,, <6000
soof- | ’ I o ]
Nu
100~
20l | I Lo L
10% 0%

Rep
Fig. 8. The wall heat transfer coefficient by Hawthorn et al.{16].

(BiN2dp /i)
T
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> 8 Av g -
B 7
o] i Lot I Lo I L
10 102 103 0%
Rep
Fig.9. Biot number vs Reynolds number. (a) Hydrogen; (b),
nitrogen.
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Fig. 10. Biot number vs Reynolds number.

which predicts the data with £25%. The Biot number is
the ratio of two experimentally measured quantities, k,
and h,. If the overall heat transfer rate is measured
accurately, but k, is, say lower than it should be due to
experimental error, then h, is larger than it should be.
Errors in Bi (=h,R/k,) are thus magnified. Thus a scatter
of the data of +25% is not surprising. Some data in Fig. 8
is not included in Fig. 5§ or 7; it is included in Fig. 8
because it is just at the limit of acceptability as to the
length effect, and it provides the void fraction depen-
dence, which is important. This is also the reason there is
no void fraction dependence in the correlation (22): the
accepted data did not cover a wide range of € values.
Equation (25) is thus a new result which can be used
along with Pe, =8-10 for high Reynolds numbers. We
note that a Bi constructed from k, and h, has a slight
Reynolds number dependence, but at these high Rey-
nolds numbers, the variation of Bi with Re is within the
scatter of the data.

ONE DIMENSIONAL MODEL
The possibility of replacing a two-dimensional model,
eqn (2), with a one-dimensional model, eqn (26), is well-
known[3].

dT, _  2UL
dz GC.R Tn 26)
T.=1at z=0.
The solution is
T. =exp (-2ULz/(GC,R)). 1))

There is a great scatter in the data for U, and some of
this scatter we attribute to the often-ignored length
effect.

The solution to the two-dimensional model, eqn (2), for
a'z2=02is

4Bi*

= —— — 2.7
T.(2) = ANAZL BD) exp[—Ala’z]. 28)
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Let us define an overall heat transfer coefficient U such
that the average temperature out of the packed bed is the
same in the one- and two-dimensional models. Then

GC,R
2L

U=- InT,(1). (29

Putting eqn (28) into eqn (29) gives

A’k GCd,\ AVA] +Bi) '

U= L
d 4L 4B

30)

We have used an overbar on Bi, A, and k, to denote the
fact that they are determined by Method 4 to exactly
reproduce the exit temperature profile. The second term
is less than 5% of the first term when

2, AMAB )
Al 4BJ

and a.;, is listed in Table 8 as a function of Bi. Many
packed beds used in experiments have a’ less than this
value, so that the U depends on the length of the bed
directly, in the second term, as well as through the
dependence on length of A2 and k..

Let us next define another overall heat transfer co-
efficient such that the asymptotic heat flux is the same in
the one- and two-dimensional models.

UX(Tu—Tw=h¥Te—T.) (32

Then we obtain

_ AT

*
U d

(33)

as derived by Crider and Foss[37]. Using the ap-
proximation eqn (12) enables this relation to be ex-
pressed as
1 1 R
T]—* = 71_?:, +m (34)
as derived by Finlayson[24]. Here k%, h¥ and U* are
asymptotic values at large z, such as those derived using
Method 2. Equation (34) is the best approximate equation
for one-dimensional model only when the wall tem-
perature is kept constant. If the wall heat flux is fixed
instead of the temperature, the exact relationship, eqn
(21), should be used.

Table 8. apn vs Bi for one-dimensional model

Bi {x[;'lin
0.1 0.0385
0.5 0.1053
1.0 0.2011
3.0 0.5053
5.0 0.6910
10.0 0.9191

The difference of A2k./d, in eqn (30, 33) is due to the
fact that A2k, depends on length. The additional term in
eqn (30), however, is the effect of the temperature profile
being different at different positions, and this effect is
less important in long beds, but is usually important in
experimental studies.

To illustrate the difference in U and U*, consider the
example in Table 2. There we have

k, = 1.12 kcal/m hr°C k* =097
h,, = 146 kcal/m? hr°C B =123
A2=428 A¥ =424
Bi=642 Bi*=6.30

U = 53.2 kcal/m? hr°C U*=415

The difference between U and U* is more than 25%
and is due to the length effect. Data summarized in Fig. 11
show that U decreases with increasing bed depth and is
always greater than U*. Furthermore experimental data
for U from Maeda[5], Leva[38], and Versehoor and
Schuit[39] included a length effect and are above data for
U* given by Yagi and Wakao[6], as expected.
Froment[29] noted the U measured by Yagi and Wakao
is lower but gave no reason.

A new set of data for U* is obtained by using the data

20 T I T T T T T T T

Fig. 11. The overall heat transfer coefficient vs bed depth.

Symbol  Ref. Ld,/R*® o Re, U,...t U*t
[ | [ 100 028 48 563 545
[ [4] 262 056 506 1283 1156
A 71 546 171 680 1637 1571
O 91 232 198t 878 693

tUnits of U are Btu/ft* hr°F.

tThis data is obtained through private communication. The
Reynolds number, 198, is the average value of the Reynolds
numbers for four different bed depths, which are 198, 201, 199
and 195.
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for A% and k* in eqn (34). The best correlations are then

-[i—d' exp (6d,/d,) = 2.03 Re,** (35)
£

20 < Re, = 7600
0.05=d,/d, <03

Spherical packing
and

%‘ieXp (6d,/d,) = 1.26 Re (36)
f

20 < Re, <800
0.03<d,/d, <02

Cylindrical packing.

Other correlations tried and the per cent deviation are
listed in Table 7.

CONCLUSIONS

For both one- and two-dimensional models, the heat
transfer coefficients vary along the length of a packed
bed. The values need for reactor design are the asymp-
totic values, which are not affected by the length effect.
Analysis by Method 2 gives an asymptotic heat transfer
coefficient provided a’z=0.2. The best correlations of
data for asymptotic values are given by eqns (22), (23),
(35) and (36).

The Biot number is approximately a constant as the
Reynolds number is increased, taking the value given by
eqn (29).
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NOTATION
A, eigenvalue of the equation, A,J,(A,)= BiJ(A,)
Bi Biot number h,R/k,
C, fluid heat capacity
d, particle diameter
d, tube diameter
F, wall heat flux
G mass flow rate based on the area of empty tube
h, wall heat transfer coefficient
J. nth order Bessel function of the first kind
k, radial effective thermal conductivity
k; fluid thermal conductivity
k, axial effective thermal conductivity
L length of packed bed
Nu Nusselt number, h,d,/k;
Nu,, modified Nusselt number, (h,d,/k;)(e/1—¢)
Pe, radial Peclet number, C,Gd,/k,
Pe,;, axial Peclet number, C,Gd,/k,
Pr  Prandtl number, C,ulk
radial coordinate in bed

r dimensionless radial coordinate, r'/R
R radius of bed
Re,, modified Reynolds number, Gd,/{u(1 - ¢€)]
Re, Reynolds number, Gd,/n
S, surface area of packing particle
T’ temperature
T dimensionless temperature, (T’ — T )/(T:—T)
T. dimensionless center temperature
T; inlet temperature
T, mean temperature
T, dimensionless mean temperature
Tr fluid temperature at the wall
T. coolant temperature
U overall heat transfer coefficient
V, volume of packing particle

!

z' axial coordinate in bed
z dimensionless axial coordinate

Greek symbols
a' Ld,(R*Pe,)
Y  kNLGC,)=(d,L)/Pe,,
L viscosity
€ void fraction

Superscripts
— axial average
* local value
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