
Modeling a Ferrofluid in a Rotating Magnetic Field 
 
Bruce A. Finlayson 
1University of Washington 
*Corresponding author:  Dept. Chemical Enrg., Box 351750, Seattle, WA 98195 
 
 
Abstract: Comsol Multiphysics is used to solve 
the problem of a ferrofluid placed in a rotating 
magnetic field, known as the spin-up problem. 
The spin-up phenomenon occurs when the fluid 
is contained in a cylinder and a homogeneous 
magnetic field rotates uniformly in the circular 
cross-section.  This work shows how to 
implement the pertinent equations in Comsol 
Multiphysics and shows that the simulations 
agree with the experimental observations made 
over the past 40 years.  Simulations are also used 
to show the proper boundary condition is zero 
spin on solid walls, because that is the only one 
that gives results in agreement with experiments. 
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1. Introduction 
 
 A ferrofluid is a suspension of nano-sized 
magnetic particles, often magnetite with a 
diameter of 10 nm. The particles are coated with 
a surfactant which increases their diameter to 
about 25 nm; the surfactant keeps the particles 
from agglomerating in a magnetic field. The 
suspension is in an aqueous fluid or organic 
fluid. The spin-up phenomenon occurs when the 
fluid is contained in a cylinder and a 
homogeneous magnetic field rotates uniformly in 
the circular cross-section. Applications of 
ferrofluids include rotary seals (in computer hard 
drives) and multistage rotary seals (in silicon 
manufacture), inertia dampers and coolants (in 
high-end loudspeakers) (1). More recently they 
have been used in microfluidic devices and 
nanodevices (2,3) and show promise for use in 
biomedical fields (4).  
 The spin-up phenomenon was first reported 
in 1967 by Moskowitz and Rosensweig (5) and 
is illustrated in Figure 1. They found that the 
fluid on the top, free surface rotated faster as the 
strength of the magnetic field was increased, and 
it was larger for faster spinning of the magnetic 
field. Later (6) they discovered that the rate of 
rotation of the fluid was in the opposite direction 
to the direction of the rotation of the magnetic 
field, although the direction of torque on the wall 

 
Figure 1. Diagram of the spin-up experiment 

 
followed the magnetic field.  Brown and 
Horsnell (7) reported similar ‘wrong-way’ 
behavior; if the ferrofluid was contained in a 
freely suspended beaker, the beaker rotated in 
the same direction that the magnetic field was 
rotating, but the fluid (especially in a thin layer 
near the boundary) rotated in the opposite 
direction. They also saw violent agitation as the 
magnetic field was increased.  Zaitsev and 
Shliomis (8) provided a theory for the spin-up 
phenomenon using the continuum theory of polar 
fluids developed by Dahler and Scriven (9). In 
the work by Dahler and Scriven, the fluid was 
allowed to have a structure which could rotate. 
The total angular momentum was conserved, and 
an equation was derived for the internal angular 
momentum; that is called here the spin equation.  
Zaitsev and Shliomis solved this equation under 
restrictive assumptions (constant torque, for 
example), but at that time no known value was 
available for the spin viscosity and the boundary 
condition on spin was uncertain. The results did 
show, however, that the fluid rotated in almost 
solid body rotation, except near the wall. The 
fluid always rotated in the same direction as the 
magnetic field, though. 
 The situation was further confused by a 
remark by Jenkins (10) that deGennes indicated 
the fluid would not move in this situation.  Other 
work showed it did, though. Glazov (11, 12) 
ascribed the movement to inhomogeneities in the 
magnetic field. Kagan (13) showed that flow 
reversal occurred as the magnetic field was 
increased, but he was using a colloidal fluid with 
larger particles than a typical ferrofluid. In 1989, 
Rosensweig and Johnson (14) measured the 
velocity on the free surface in an open container 
and found that the velocity exhibited solid body 
rotation except for a thin layer near the boundary 
(about 10% of the radius). They also found that 
the fluid rotation rate increased as the diameter 



of the vessel decreased. Rosensweig, et al. (6) 
presented a complete theory, but could only 
deduce that surface deflection would affect the 
direction of flow; they determined the direction 
of flow on the surface by experimentally 
monitoring small copper particles floating on the 
surface. Since ferrofluids are typically black, all 
these indications of flow were either assumed or 
based on observation at a top free surface.  
Rinaldi, et al. (15) put a ferrofluid into a 
rheometer and inserted the spindle. They did 
experiments in which the spindle was rotating, 
and others with a fixed spindle. The torque was 
measured when the magnetic field was rotating 
clockwise and counterclockwise. When the 
spindle was rotating, the torque was increased 
when the magnetic field rotated in the same 
direction and decreased (and reversed) when the 
magnetic field was rotating in the opposite 
direction. When the spindle was fixed, the torque 
was in the direction of the rotation of the 
magnetic field, clockwise or counterclockwise.  
More recently, Chaves, et al. (16) have used 
ultrasound to measure the internal velocity.  
They find, for their conditions, that the fluid 
rotates in the direction of the rotating magnetic 
field, except that if the top surface is exposed to 
the atmosphere, there is a region at the top in 
which flow reversal occurs. 
 This study was begun to utilize the power of 
Comsol Multiphysics to solve the continuum 
equations governing the situation in two- and 
three-dimensions without making limiting 
assumptions. The most common assumption is 
that the torque in homogeneous – identical in all 
regions. As we see below, that assumption alone 
means that certain phenomena will not be 
predicted that in fact occur experimentally. The 
Navier-Stokes equation is extended to include 
the spin vector and a spin equation is solved 
simultaneously with the flow. The magnetization 
for this non-conducting magnetic fluid is solved 
using Shliomis’s magnetization equation (17).  
The magnetic field is represented as the gradient 
of a potential. Some of these equations are quasi-
static, since they have no time derivative in 
them. This is true for the spin equation because 
the moment of inertial of the magnetic particles 
is so small. The boundary condition on spin is 
taken as one of four conditions: (1) zero spin on 
solid surfaces; (2) zero couple stress on solid 
surfaces; (3) Newtonian behavior at the surface; 
and (4) using the angular momentum equation as 

an algebraic equation throughout the domain so 
no boundary condition is needed. The work 
described below indicates which boundary 
conditions lead to results that are consistent with 
experimental findings and it also elucidates the 
mechanism that leads to the complicated flow, 
including flow reversal, that will not be seen in 
simple analyses. 
 
2. Theoretical Development 
 

The theoretical development generally 
follows Rosensweig (18) and Shliomis (17). 

 
2.1 Governing Equations  
 
The governing equations are (18): 
Navier Stokes equation with magnetic body 
force and spin term added  

   

 

ρ
∂v

∂t
+ ρv • ∇v = –∇p + 2ς∇xω +

        (η + ς )∇2v + μ0M • ∇H

 

Spin equation, a representation of conservation 
of angular momentum: 
    0 = μ0MxH + ζ (2∇xv – 4ω) + η' ∇2ω  
Magnetization equation, valid for small magnetic 
fields (17): 

   
 
∂M

∂t
+ v • ∇M = ωxM −

1

τ
M − Meq( )  

The magnetic equations are Maxwell’s equations 
for a non-conducting fluid 

 ∇ • B = 0,  ∇xH =  0,  B = μ0 (H + M) . 
Thus, the magnetic field is given by the gradient 
of a potential 
 H = ∇φ , 
and the magnetic flux equation is rewritten as 
 ∇2φ = −∇ • M . 
The applied, external magnetic field oscillates 
with a frequency Ω f . The variables are ρ -
density, v-velocity, t-time, p-pressure, ω-spin, η-
viscosity, ζ-vortex viscosity, M-magnetization, 
H-magnetic field, μ0-magnetic permeability of 
free space, η' -spin viscosity, τ - Brownian 
magnetic time constant, B-magnetic flux density, 
φ -magnetic potential. The spin equation is 
obtained by writing an equation for total angular 
momentum including the spin of local structure, 
and subtracting off the angular momentum 



equation derived from the linear momentum 
equation. Then, because the particles are so 
small, the time and convective derivatives are 
dropped since the moment of inertia of the 
particles is small. The result is a quasi-static 
equation for spin involving the vorticity, the 
magnetic torque, and diffusion of spin, governed 
by a spin viscosity. The other assumption in 
these equations is that the magnetic field is small 
enough that the magnetization-magnetic field 
equation is linear; this assumption will be 
removed in future work. 
 When the flow begins, it eventually 
approaches a steady rotational flow, mainly 
because the magnetic torque is constant over 
most of the domain. Thus, the solutions here use 
a quasi-static approximation for the velocity, too.  
Since the flow is primarily circular, in which 
case the convective term is zero, that term is 
neglected, too. Future work will include those 
effects as well, but they add significantly to the 
computational task and are not central to the 
conclusions. 
 While the equations are written in terms of 
spin, it is useful to replace the variable spin by 
the excess spin defined as the spin minus one-

half the vorticity, 
  
ωexcess = ω −

1

2
∇xv .  The 

identity 
     ∇

2v = −∇ × (∇xv) + ∇(∇ • v)  
and continuity ( ∇ • v = 0) is used to transform 
the momentum equation. 

  

0 = –∇p + 2ς∇x ω −
1

2
∇xv

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ + η∇2v +

                                               μ0M • ∇H

 

The momentum equation and spin equation are 
then: 

  0 = –∇p + 2ς∇xωexcess + η∇2v + μ0M • ∇H  

  
4 (ω − 1

2 ∇xv) = 4ωexcess =
1
ζ

μ0MxH + η' ∇2ω[ ]
 The equations are put into Comsol 
Multiphysics in non-dimensional form. In all 
cases, the transient form of the equation was 
used, and for quasi-static variables the 
coefficient multiplying the time derivative was 
set to zero. The transient Navier-Stokes equation 
was augmented to get the momentum equation. 
Two transient convective diffusion equations 
were augmented to get two magnetization 

equations (with zero diffusion). The transient 
diffusion equation was used for the spin 
equation, and a transient PDE mode was used for 
the magnetic potential equation. The time 
dependent terms were set to zero in the equations 
for momentum, spin, and magnetic potential. 
Transient simulations were done, and it took 
only a short dimensionless time for the 
magnetization to reach its cyclic situation that 
would repeat for many cycles; the other variables 
reached their quasi-static situation immediately 
and only changed while the magnetization was 
coming to its cyclic state. Thus, after a short 
start-up time, the results of variables other than 
magnetization were constant in time.  All results 
reported here are dimensionless unless otherwise 
indicated. The key dimensional group was 
identified by Rinaldi, et al. (15) and varies with 
the square of the strength of the applied magnetic 
field, K: 

   ε =
μ0χiK 2τ

ζ
 

2.2 Boundary Conditions  
 
 Boundary conditions must be specified for 
velocity, spin (unless the spin diffusion term is 
dropped), and magnetic potential. The velocity 
conditions are the usual ones: no slip on solid 
boundaries and slip on fluid boundaries. The spin 
boundary conditions are uncertain, and four are 
considered below. The magnetic potential 
boundary conditions for a rotating uniform 
magnetic field are 
   φ = φapplied x cos(t) + y sin(t)[ ] 

The pressure is specified at one point if there is 
no free surface. 

 
2.3 Fluid Parameters  
 
 The estimation of parameters is an art, but we 
use values appropriate for a kerosene-based 
ferrofluid (EMG-900) manufactured by Ferrotec 
Corporation. A magnetic field of 50 gauss was 
oscillated at 85 Hz in a cylinder with a radius of 
2.47 cm. The spin viscosity is taken 100 times 
the literature value since a small spin viscosity 
causes a thin boundary layer for the spin near a 
solid wall. While solutions (not shown) have 
been obtained with the literature value; the mesh 
must be refined near the wall and the solution 
takes longer to compute, but otherwise the  
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Figure 2. (a)Arrow plot of velocity; (b) spin (from 0 

(blue) to 0.202 (red). 
 

 
Figure 3. Torque (from 0.918 (ble) to 0.975(red). 

 

 
Figure 4. X-component of magnetization versus time. 
 
phenomena are similar to the results reported 
here.   
 
3. Results  

 
3.1 Two-dimensional simulations 
 
 The first case presented is for a boundary 
condition of zero spin on the boundary in two 
dimensions. The parameter ε=0.155 in this base 
case. An arrow plot of the velocity is shown in 
Figure 2(a), and the fluid is rotating in the same 
direction as the magnetic field is rotating. The 
spin is shown in Figure 2(b): it is high in the 
center (0.202) but drops down to zero near the 
wall to fit the boundary condition. The half-
vorticity is smaller; the color plot looks the 
same, but its peak value is only 0.0049. The 
excess spin gives a similar plot, but the peak 
value is obviously 0.197. The torque at a 
particular time is shown in Figure 3. The torque 
is constant over most of the domain, but there is 
a small region near the walls in which it 
increases; this region rotates with the magnetic 
field and is discussed below. The magnetic field 
(both x- and y-components) are varying in time, 

 
Figure 5. Vertical velocity along line y = 0. 

 

 
 

Figure 6. Torque along line y = 0. 
 
and a typical plot of the x-component is shown 
in Figure 4. Even though the magnetic field is 
changing, the spin in most of the domain does 
not change in time. The spin is constant in the 
center and drops to zero at the boundaries.  As 
the spin viscosity gets smaller, the boundary 
region becomes smaller, creating a spin 
boundary layer. The vertical velocity at the same 
point is shown in Figure 5. Note that the velocity 
peaks at a relative radius of about 0.63; the 
location at which this happens depends strongly 
on the spin viscosity and size of the vessel, and a 
measured velocity profile can be used to deduce 
the spin viscosity. The torque at the same point is 
shown in Figure 6; it varies with time near the 
wall, because the magnetic field is varying there. 
 There are two important insights given by 
these results. First, the torque is constant over 
most of the domain, but there is a thin layer near 
the wall that has a time-varying torque. The 
reason for this is illustrated in Figure 7; as the 
spin goes to zero near the wall, the term in the  



 
 

Figure 7. Diagram showing the difference in 
magnetization caused by the magnetic field and spin 

directions. 
 
magnetization equation, ω × M , is different at 
the surface normal to the applied field compared 
with the same term at a boundary location 
tangent to the applied field. Furthermore, these 
regions rotate with the magnetic field. It is 
shown below that this thin layer becomes bigger 
as the applied magnetic field is increased and 
ultimately this leads to flow reversal. Thus, 
theories based on a constant torque everywhere 
have limited utility. 
 The second insight relates to the excess spin, 

ωexcess = ω −
1

2
∇ × v . If the spin viscosity is 

zero, or the diffusion of spin is neglected, then 
this excess spin is proportional to the magnetic 
torque because of the spin equation.  
   4ζωexcess = μ0MxH  
The linear momentum equation is then 

  
0 = –∇p +

1
4ζ

∇x μ0MxH[ ]+ η∇2v + μ0M • ∇H

Clearly, if the magnetic torque is constant in 
space, the curl of it is zero and the equation 
reduces to the standard Navier-Stokes equation.  
(The magnetic body force is never of importance 
in this flow; see below). Since the velocity is 
zero on the boundaries and there is no driving 
force, the solution will be quiescent everywhere. 
The results also show that the predominate effect 
of the magnetic field is to create the spin; the 
half-vorticity caused by the spin is, in this case, 
40 times smaller. Thus, theories relating a 
rotation rate of the fluid to the applied magnetic 
torque are incomplete since they don’t ascertain 
how much of the torque is transferred to the spin 
and how much is transferred to the half-vorticity. 
All the solutions show that the half-vorticity is 
much smaller than the non-observable spin.  
 Next consider solutions obtained with the 
other three boundary conditions. If one assumes 
zero couple stress on the boundary (first 
derivative of spin equals zero), it is not necessary 

for the spin to drop to zero near the wall, and the 
thin region in which the spin and magnetic field 
interact will not exist. Simulations for this case 
confirm that there is no flow. Thus, the boundary 
condition of zero couple stress is not appropriate, 
since experimental observations indicate there is 
flow. It is possible, of course, to have a boundary 
condition relating the spin and its derivatives 
(the couple stress), but that possibility is not 
examined here. 
 The third boundary condition makes the spin 
at the boundary equal half the vorticity, for zero 
excess spin. This boundary condition leads to 
reverse flow for all magnetic fields, no matter 
how small, and this is not observed 
experimentally. Thus, this boundary condition is 
not appropriate. 
 The fourth boundary condition uses the 
angular momentum equation with no spin 
diffusion at the boundary. Actually, to use any 
differential equation there one has to admit that 
the spin diffusion term cannot be included 
anywhere, since it requires a boundary condition 
(not a differential equation) at two points – the 
center and the solid wall. As soon as the spin 
viscosity is set to zero, and the spin is solved 
algebraically from the spin equation, there is no 
flow in the simulations. Since flow is observed 
experimentally, this boundary condition is 
rejected as well. 
 In conclusion, only the boundary condition 
of zero spin gives results that are in accord with 
experimental observations. There is still the 
possibility of the spin being proportional to the 
couple stress (a kind of slip for the spin vector), 
but that case is not considered here. What one 
can say is the results with zero spin probably 
give a larger effect than any such linear 
combination, since the zero couple stress 
condition gives no flow at all, and the results 
would probably be between the two special 
cases. 
 Solutions were also done in which the 
magnetic body force term was ignored, and the 
results changed only slightly, in the fourth 
significant figure.  Those terms are left in all 
calculations, but they seem to be unimportant. 
 Next consider cases that expand the standard 
case to higher magnetic fields. The only 
parameter in which the magnetic field appears is 
the ε, in these non-dimensional equations. Thus, 
consider cases with increasing ε.  The flows and 



torques are similar in shape, but differ in 
magnitude as the parameter is increased.  

 
 
Figure 8. Arrow plot for large magnetic field, ε=155. 
 
However, at a certain point flow reversal occurs. 
Figure 8 shows an arrow plot of the velocity for 
a larger magnetic field in which case flow 
reversal has completed and the flow is circular, 
but in the opposite direction. 
 Table 1 shows that as the magnetic field is 
increased (ε varies with K2) the maximum spin 
increases, but not linearly. This occurs even 
though flow reversal has occurred; spin reversal 
does not occur. 
 

Table 1: Maximum spin versus relative magnetic 
field 

Relative K ω(1/s) 
1.0 16.7 
3.2 129 
10.0 387 
13.2 431 
17.8 466 
31.6 504 

 
Table 2 shows how the torque varies with 
magnetic field; it increases linearly with 
magnetic field. The angle between the magnetic 
field and magnetization is small but changes 
with magnetic field. 
 

Table 2: Torque and angle (º) between H and M 
versus relative magnetic field 

Relative K Torque(Nm)*e6 Angle(º) 
1.0 -1.3 0.0587 
3.2 -12.0 0.0413 

10.0 -74 0.0114 
13.2 -104 0.0073 
17.8 -145 0.0040 
31.6 -252 0.0020 

 
The rate of rotation of the fluid depends upon the 
magnetic field as well as other parameters. For K 
= 1, 3.2, 10, and 13.2 it takes values of 0.10, 
0.75, 1.58, and 1.26 s-1. The rate of rotation 
increases linearly until the magnetic field gets 
large enough for the flow to begin to reverse 
direction. 

Figure 9. Spin in three-dimensional simulation at H/R 
= 0.4; base case. 

 
3.2 Three-dimensional simulations  

 
 The three-dimensional problem was solved 
with the same equations, expanded to include the 
third dimension. The boundary condition on the 
free surface had to be adjusted to include the 
magnetic pressure terms. Since Comsol 
Multiphysics only allows a slip surface (and no 
pressure specification) or a pressure condition 
(and no restrictions on velocity), the simulations 
are only approximately the case desired. There is 
a net flow in and out of the top, free surface.  
The surface is also constrained to be flat. As 
discussed above, ignoring the convection terms 
in a two-dimensional circular flow is fine, but 
doing that in three dimensions is not valid. These 
limitations will be removed in future work, but 
the simulations reported here show interesting 
features. 
   For ε=0.155 flow is circular with little 
vertical flow.  The spin at H=0.4R is shown in 
Figure 9, and this curve is similar to what is seen 
in two-dimensional flows. This pattern is 
repeated for any of the heights, and the 
magnitude of the spin is unchanged. Thus, the 
spin in this case is approximately the same from 
top to bottom. The vorticity shows a similar 
behavior (i.e. color) except that the peak vorticity 
increases from the bottom to the top. This is 
expected, since the solid boundary at the bottom 
constrains the flow. When the parameter ε is 
increased by a factor of 100, the spin reverses 
and is a minimum in the center. All of these 
results need to be confirmed by a model 
including the missing terms, but they are very 
intriguing. 

 



4. Conclusions 
 
 Comsol Multiphysics was adapted to solve 
the equations governing the spin-up of a 
ferrofluid in a rotating magnetic field. The rate of 
rotation increases with magnetic field, as had 
been observed by Moskowitz and Rosensweig in 
1967 (5). Reverse flow occurs, especially at high 
magnetic field, as had been observed by several 
authors (5, 7, 13, 16). The torque is always in the 
same direction, even though reverse flow occurs, 
as had been observed by Rosensweig’s group (6, 
14). Non-uniform effects are important, as 
surmised by Glazov (11,12) and Brown and 
Horswell (7). The velocity profiles are similar to 
those obtained experimentally by Chaves, et al. 
(16). Finally, the calculations presented here 
represent an improvement on the original theory 
due to Zaitsev and Shliomis (8) in that a constant 
torque is not assumed here, and the theory of 
Rosensweig’s group (5,6,14) in that the magnetic 
torque mainly goes to the spin vector, not the 
fluid rotation as they had assumed. In addition, it 
is shown that the boundary condition must be 
either spin zero or spin proportional to the couple 
stress; three other options were shown to give 
results contrary to experiment. 

This application of Comsol Multiphysics 
reveals its power, since previous solutions were 
limited in scope by the assumptions, which were 
necessary in order to obtain any solution at all.  
Much additional work remains, but the path is 
clear. 
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