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Status in 1967 when I started my career

* Perry’s Chemical Engineers” Handbook, 4th Ed. (1963) (nothing in
earlier editions):
— To solve ODEs: Euler, Adams, simple Runge-Kutta methods
— To solve PDEs: diffusion/conduction steady problems in 2D (finite
difference) or unsteady problems in 1D
— None of this was reflected in Sections on Fluid Flow or Heat
Transmission
* Luther, Carnahan and Wilkes, Applied Numerical Methods (1969)
— Detailed treatment of numerical analysis, but only explicit
techniques with specified time steps



Changes in Perry’s Handbook

e 5th edition, 1973
— For PDEs added alternating direction method and

Thomas algorithm for solving tri-diagonal matrics
(essential for finite difference methods)

e 6th edition, 1984

— 2/3 page on finite element method, plus fast Fourier
transform, splines, least squares, nonlinear regression,
multiple regression

— In fluid flow section, gave contraction losses, laminar
entry flow, vortex shedding

— In heat transmission and mass transfer, still graphical
and algebraic

* 7th edition, 1997
— Better methods for ODEs, errors, implicit
— Added boundary value problems (BVP). finite difference. finite
element, orthogonal collocation, shooting methods

— In fluid flow section, more recognition of numerical results:
laminar entry flow, sudden contraction, vortex shedding. k-epsilon
turbulent models. LES, DNS

— In heat and mass transfer, nothing
« 8th edition, 2008

— Stiffness for ODEs

— Molecular dynamics

— BVP using spreadsheets and the finite difference method
Finite volume methods for PDEs

In fluid flow section, mention of numerical results for power law
fluids (1978 papers) and viscoelastic fluids (1987 papers)

In heat and mass transfer. some linear algebra in radiation section



Numerical Analysis is now used to solve problems ranging
from the orientation of nanoparticles to predicting global
climate change.

It wasn't always that way.

“Moore’s Law” for MHD simulations

10 T frcem bt rovoor ardveaes oot Saproved aigorithme
g é 1 Micro-turbutente 2
= 10' E N s | alobal o
S 10¢ 1 [ oMectve speed
2 Pentium 80786 s |raes J
210 Pentium | e & g 10
"{-": 10 § 16 [
- = |
ol - 4 I
2 g ]
_’, f o ::';-.!:\vm ats
5 i " i lg T P, A € T i AL 2 IR B ,J

1970 1975 1980 1985 1990 1995 2000 2005 2010 % e e
YEAR '
. 1 '
Physics Today, Jan. 2000, p. 40 Algorithms help, too! MHD

Simulations, faster hardware
and improved algorithms, SIAM
Newsletter

Numerical Methods for Stiff ODEs

* Runge-Kutta methods existed with error control and automatic step-
size adjustment.

* Most engineers used Crank-Nicolson methods. but had to guess a
stable step size.

¢ Gear. 1971; Hindmarsh, 1975, GEARB. later LSODE
~When different time constants are important - you want to
resolve something occurring on a fast time scale but need to
do so over a long time - explicit (RK) methods take a long
time.
~Implicit methods can be 1000 times faster.
~Gear’s method allowed for automatic step size adjusment,
automatic change of order if that was useful, and basically
automatic solution of ordinary differential equations (IVP)

Stirred tank reactor example
with a limit cycle

But, the methods are useful for partial differential equations, too!



Nonlinear
Analysis in
Chemical
Englneermg

( Bruce.A.Finlayson

1980 - orthogonal collocation, finite difference, finite element,
with programs (still available at www.ravennapark.com)

Orthogonal Collocation - a good 1dea

Lanczo, 1938 - collocation method w ith orthogonal polynomials

Villadsen and Stewart, 1967 - solved in terms of value at
collocation nodes rather than coefficients - the programming is
much simpler
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Stiff methods essential for partial
differential equations

Depends upon the eigenvalues of the matrix of the Jacobian.
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For a diffusion problem, one eigenvalue is due to the problem (is
small) and the other is due to the method (and is big).

As N — o or h — 0, the largest || gets bigger.

The more accurate your model, the stiffer the problem.

Application to catalytic converter

Involves unsteady heat and mass transport with a complicated
rate expression, perhaps eased by occurring in a thin layer of
catalyst. The problem may be only one-dimensional, but it must
be solved thousands of times in a simulation, even if in steady
state. The solid heat capacity makes the time scales very
different. Orthogonal collocation models were “4 to 40 times
faster (Chem. Eng.J. 1,327 (1970).
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Catalytic Converter

Phenomena included:

Chemical reaction
Flow
Axial conduction of heat

Diffusion

Geometry

What is the importance of the shape of
channel?
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Model I-A is lumped
Model II-A 1s distributed, using orthogonal
collocation on finite elements

o U T SO e S ey e TP

K 2

Sfehdy 's}’ufe”rriodéfﬁrc dictigns for {qu‘dre gmmctry 1n

,lS]j’TIﬁ)'L,?"S,, P;vAD17r A & Ly
ratiire; —-=-"Fluid- dvérage tems
madel |-As NS == 4.0, -5

: g ,’pr:y}thrc'."PZ»kinét,i

Finite Element Method

Began in Civil Engineering for structural problems. The
finite elements were beams and rods. It solved the same
kind of problems done in Physics 101, except in more
complicated structures. Then it was expanded to
differential equations.

The dependent variable was expanded in known
functions.
N+2

c(x)= z a.F,_i(x)



Key ideas in Finite Element Method

Cover domain with small triangles or rectangles, or their
3D equivalents.

Approximate the solution on that triangle using low order
polynomials.

Use Galerkin method to find solution at nodal points.
Can use higher order polynomials.

Requires lots of memory, fast computers.

The function xA2 exp(y-0.5)
looks like this when plotted:




Here 1s what we expect in a contour plot
of the function:

With square elements with one value: N =48, 16, and 32:




[et functions in the block be bilinear
functions of u and v.

.

e NI=(l-u)(l-v)

e N2=u(l-v)
e N3=uv
e Nd=(1-u)v

* For example:
* N3(1,1)=1;N3(0,1) =N3

Compare constant interpolation on finite
elements with bilinear interpolation on finite
elements.

Constant interpolation with Bilinear interpolation
32x32 = 1024 blocks. with 4x4 =16 blocks.



Hole Pressure Problem, Nancy Jackson, 1982

Examined hole
pressure for
viscoelastic fluids
and learned that all ] )
four assumptions
made by Lodge to
relate to the first
normal stress
difference were
wrong. but they all
averaged out.

(b)

Fig. 3. Finite element mesh: (a) 29 elements; (b) 110 elements.

J. Non-Newt. Fluid Mech. 10 71 (1982).

Three-dimensional hole pressure
(work done by junior Stephanie Yuen, 2007)

Comparing 2D and 3D calculations. Hole pressure
is used in rheology to measure the first normal stress
difference.




Equations for Viscoelastic Fluid

ReveVv=-Vp+Verz
Vev=0

Newtonian Fluid:

T=nd, d=Vv+ Vv’

Maxwell Model (1, A constant), White-Metzner Model
(M. A vary with shear rate) :

‘C+/1[V°VT—VVT ¢ ’E—T'Vv] =nd
Phan-Thien-Tanner Model:

T+ A[V'VT—W *T—Te Vv]+s&tr(t)t:nd
n

Stick Slip
no slip slip
a2y T
developed normal flow
viscoelastic pressure
flow

centerline



Stick Slip, Standard Method, We =0:001:0.1
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Stick Slip with DEVSS Method

s - "t

Maxwell fluid,
We =0:0.05:045

PTT fluid We =5

Differential-Elastic-Viscous-Split-Stress (DEVSS)

Guenette,R. and M. Fortin, /. Non-Newtonian Fluid Mech. 60 27 (1995)
R.G. Owens and T. N. Phillips, Computational Rheology . Imperial College Press (2002)



Comparison to Experiment
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Ref: D.G. Baird, J. Appl. Poly. Sci. 20 3155 (1976)
N.R.Jackson and B. A . Finlayson, J. Non-Newt. Fluid Mech. 1071 (1982)

Convective Instability, Michael Harrison (2003)
Heat transfer between flat plates, heated from below

20

In 1961 Chandrasekhar’s book
solved many convective instability
problems.- All that could be done,
though was find the onset of |
convection, and the eigenvalue
problem was sometimes solved with -
mechanical calculators.
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Trapping of DNA using thermal diffusion, Pawel Drapala (2004)

senment (Braun 188103-2), The concentrate is
2). and pilled on the bottom of the contamer (4).
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Figure 9. FEMLARB's concentration profile @ a findl trinsient value of 5 scconds

Patterned after experiments by
Braun and Libchaber, Phy. Rev.
Letters 89 188103 (2002).

Determine Pressure Drop Coefficients for Slow Flow
(to mimic those available for turbulent flow)

Table 111, Coefficient K | for contractions
and expansions for

Re negligbily small Picture K,
2:1 pipe/planar 7.3/3.1
3:1 pipe/planar . 8.6/4.1

4:1 pipe/planar - 9.0/4.5
Apx, _ o
'nV‘. 45 degrees tapered, planar, 3:1 s 4.9
28.07 degrees tapered, planar, 3:1 . 10.8
3:1 square (quarter of the geometry) 8.1

v, = average velocity, x, = thickness or diameter, both in the small section

Table in Ch. 8, “Micro-component flow characterization,” Koch, Vanden Bussche, Chrisman (ed).
Wiley (2007). The chapter has 11 authors, 10 UW undergraduates plus Finlayson.



K=Apiput2  Re=p D ulorifice) / Later, undergraduates
e SR . could solve harder
problems using
Comsol Multiphysics

I %]:fflg;ess of (FEMLAB).

. Compare Theory to Experiment
10 v
)

Kusmanto, Jacobsen,
and Finlayson, Phys.
Fluids 16 4129 (2004)

0 LD =0.092
O LUD=028
LD =075
LD =1.14
mum. LD =0.082
num. LD =0.28
— mum. LD =0.75
mum. LD =1.14

PPOO
b

Streamlines and pressure R G~ =
profiles for Re = 0 (left) AN
and 316 (right) A - ek -

Re

H-sensor - used to separate chemicals by
diffusion (solutions by Krassen Ratchev, 2008)

boundary 13

D=10" m?/s

boundary boundary 16

boundary 3 boundary 13

D=10""" m?*/s

boundar 10

boundary 2



Mixing in a Serpentine Microfluidic Mixer
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H=0125

Figure 8. Comparison with experiment (6]
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Figure 9. Velocity profiles and concentration profiles inside serpentine mixer

For Re = | or so.the
flow problem is easy.
But., the Peclet
number can be large
(2000). Then the
mesh for the
concentration
problem has to be
refined significantly.
Comsol allows
solution of the flow
problem and the
convective diffusion
problem on different
meshes. thus
speeding up the
solution time.



Mixing in a Three-dimensional T
(work done by junior Daniel Kress)
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Variance as a function of length in the outlet leg

The work showed that the 3D case followed the
same curve as the 2D case (T-sensor).

Mixing in Microfluidic Devices
(11 undergraduate projects)
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Spin-up of ferrofluid

Governing Equations

due to Rosensweig (1985)

Extended Navier-Stokes Equation:
N
p %— +pve Vv =-Vp+2cVxm+(n+ g)Vzv +u,M+VH
ot

Conservation of internal angular momentum (spin equation):

0=u,MxH+2Vxv-4o+n V?'o)

Magnetization (Shliomis, 1972):

o VM—coxM—l(M— )
v - ; Meq

o

Maxwell’s Equations for non-conducting fluid:
VeB=0, VXH = 0, B= to(H+M)
H = V¢ V2% =-VeM



Rotating H and Magnetization
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Torque along y =0

Flow reversal at large H (relative H = 32)
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Spin viscosity 10x higher Relative spin viscosity = 1



Heat Transfer to Ferrofluids

Convective instability of
ferromagnetic fluids

B. A. Finlayson, J. Fluid Mech. 40
753 (1970)

Using linear stability theory
to show when a fluid layer,
heated from below , would
become unstable.

s 2p2 44
Ra+N_ Raza,gﬁdpc NzyuKﬁde

Ra, N. vk pk(1+ %,)

¥

Heat Transfer to
Ferrofluid, Suzanne
Snyder, J. Mag. Mag.
Mat. 262 269 (2003)

X158 Oe
A316 Oe
+474 Oe
(1948 Oe
1264 Oe




Programs

* Microsoft Excel ®

 MATLAB®
e Aspen Plus ®
e FEMLAB ®

~Philosophy - students can be
good chemical engineers without
understanding the details of the
numerical analysis.

»By using modern programs with
good GUIs, the most important
thing is to check your results.
»Instead of teaching a small
fraction of the class numerical
methods. I now teach all the class
to use the computer wisely.

Introduction to Chemical Engineering
Computing, transport applications

»Chemical reactor models with radial dispersion, axial dispersion
»Catalytic reaction and diffusion
»One-dimensional transport problems in fluid mechanics, heat and mass
transfer

«Newtonian and non-Newtonian

«Pipe flow. steady and start-up

eadsorption
»Two- and three-dimensional transport problems in fluid mechanics., heat and
mass transfer - focused on microfluidics and laminar flow

«Entry flow

eLaminar and turbulent

«Microfludics ., high Peclet number

o Temperature effects (viscous dissipation)

«Proper boundary conditions



Steps in Solution

from Introduction to Chemical Engineering Computing ,

Bruce A. Finlayson, Wiley (2006)

Open Comsol Multiphysics

Draw domain

Physics/Subdomain Settings

Physics/Boundary Settings

Mesh (Need to solve one problem on at least three meshes, each more
refined than the last, to give information about the accuracy.)

Solve (Can solve multiple equations together or sequentially; can use
parametric solver to enhance convergence of difficult non-linear
problems.)

Post-processing (Plot solution, gradients, calculate averages, calculate
or plot any expressions youve defined.

Laser Evaporation of a Metal
Westerberg, McClelland, and Finlayson
Int. J. Num. Methods Fluids 26 637 (1998)

Uguad Pool

Sobd

Wates 10em »
Figure 1. Evaporation of aluminum from a plate on a water-cooled platform.
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Coating Problems, Fluid-Solid

L. E. Scriven Interaction,
Comsol

DOWNSTREAM
\ DIE LIP

UPSTREAM . Flow field, pressure, and sfrugtural deformétion:
DIE LIP of a set of micra-pillars in-a protein sensor calcy
“lated using FSI-simulations. The deformation-of.
thé pillars depends on the flowfiéld and the

- amount of adsorbed matérial : Seurce: Comsol

wcro\-‘éﬂex made visible 2 . o CEP 103 12 (2007)

tween coaling e lip & fre
about 1 m/s. Luigi" Sartor ‘and

Suszynsk o




Defects in Materials, Simulations with

Particles in lung billions of atoms and fast computers

CFX Update,No. 23, p. 26 (2003)

Abraham, et al., Proc. NAS 99 5783 (2002)

Conclusions

e Computer usage in chemical engineering has advanced
from non-existent to the solution of very complicated
problems.

e Continuum transport problems are being solved routinely
using desktop computers, sometimes with commercial
software.

* Current tools enable even undergraduates to solve
problems in 2D and 3D that were not solvable in 1960.



