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Nonlinear Ordinary Differential Equations

Error bounds are provided for approximate solution of systems of non-
linear ordinary differential equations for cases where there is no known
exact solution for comparison. Theorems are proved for problems of heat

and mass transfer of a multicomponent system in catalyst particles under-
going chemical reaction. Error bounds are provided for the pointwise error
as well as the effectiveness factor. Calculations based on the theorems show
the orthogonal collocation method can give results which are proved ac-
curate to 12 digits, thus providing essentially the exact solution. For prob-
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lems for which the theorems have not yet been proved, the results suggest
that the mean-squared residual gives a good indication of the accuracy
since the error decreases as the mean-squared residual decreases.

SCOPE

We study errors arising from the numerical solution of
differential equations governing heat and mass transfer,
with chemical reaction, in catalyst pellets. In numerical
analysis an estimate of the error is obtained by repeating
the calculations for various grid spacings and noting the
convergence as the grid spacing is reduced. We cannot
really say what the error is, however, because we do not
know how much the results will change if the grid spacing
is reduced further. We wish to obtain exact information
about the error without making additional calculations

.:using other grid spacings. For optimum usefulness we are

interested in problems which are difficult enough to war-
rant numerical solution in the first place; that is, no exact
solution should be available.

We provide such information for nonlinear ordinary
differential equations and use the orthogonal collocation
method in the numerical computations. The method for
obtaining error bounds employs the concept of the re-
sidual, which tells us how well the approximate solution
satisfies the differential equation. Theorems relate this re-
sidual. to the maximum error. Then as the residual becomes
smaller the error becomes smaller, too.

The primary importance of such theorems is in the com-
parison of different methods of solution. We can now take

a difficult problem whose solution is unknown, solve the
problem using different approximate methods, calculate
the maximum error for each solution, and compare the
methods and their solutions on a firm basis, since we know
exactly how large the error can be. In addition, when we
are doing a calculation in which the numerical answer is
more important than the methods used, we can examine
the residual and calculate the error.

Previous to this time information was available on con-
vergence of the orthogonal collocation method so that
we knew the numerical scheme would approximate the
exact solution provided we used a sufficiently fine grid
spacing. Some results were also available which indicated
the rate of convergence, that is, how fast the error de-
creased as the number of terms was increased. Only lim-
ited results were known about error bounds; knowing the
error decreased at a certain rate is of no help unless the
constants in the expression could be calculated, and often-
times these depended on the unknown exact solution. Few
of the theorems on calculable error bounds are applicable
to the problems treated here because of the strong non-
linearity. The paper then gives error bounds for solutions
to problems which are of interest to chemical engineers.

CONCLUSION AND SIGNIFICANCE

For many nonlinear problems of reaction in a catalyst
pellet it is possible to use the orthogonal collocation
method and the error bounds derived here to prove the
accuracy of the approximate solution, even though the
exact solution is unknown, For examples treated below
the first 12 digits of the approximate solution are proved
to be exact, so that the method gives, to all intents and
purposes, the exact solution. The error in the effectiveness
factor is also given. The error bounds illustrate the tre-
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mendous power of the orthogonal collocation method in
that the error decreases more rapidly than 10~V for the
examples treated here. Each additional collocation point
(N — N + 1) gives another digit accuracy. In finite differ-
ence methods with a truncation error 0(h?), the error de-
creases as N~2, Thus at least three times as many grid
points (N — 3N) must be used to reduce the error by a
factor of about 10. The error bounds derived here are lim-
ited primarily by the necessity to have a small enough
Lipschitz constant governing the nonlinear term. Similar
bounds can be derived for other problems which have
bounded Green’s functions and nonlinearities in the reac-
tion rate function.
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In problems for which an error bound has not yet been
proved the mean-square residual provides a convenient
criterion for judging the solution, since we expect the

results obtained here are general: the error bound is pro-
portional to the mean-square. residual, and decreases in
the residual force a decrease in the error bound.

High-speed digital computers are useful for solving
many difficult, nonlinear differential equations arising in
engineering. The computations yield an approximation to
the exact solution, yet it is difficult to assess the accuracy
of that approximation. One method of estimation, useful
in finite difference and collocation methods, is to increase
the number of grid points or collocation points (N) and
repeat the computations until the answer becomes in-
sensitive to N. This approach gives only an estimation of
the error, since we usually cannot say how much the re-
sults will change if N is increased further. We provide
theorems below which permit calculation of error bounds,
which are mathematically rigorous upper bounds on the
possible error of approximate solutions. We thus leave the
realm of speculation on the error and enter the realm of
knowing a maximum size of the error. The theorems apply
to very general situations, and with several applications
we demonstrate the usefulness of such results. For exam-
ple, for a nonlinear problem which has no known exact
solution, we can prove that the approximate solution gives
the first 12 significant digits of the exact solution.

The approximate solutions are generated using the col-
location method and usually the orthogonal collocation
method (Villadsen and Stewart, 1967, Finlayson, 1972).
In the orthogonal collocation method we expand the de-
pendent variable in the form

1@ =y + (1-2) S P (1)

i=1

where the orthogonal polynomials P; are generated by

1
j; w(x?) Py(x2) Pj(x2) x°~tdx =85 w=1 or 1 — x2
(2)

We substitute expression (1) into the differential equation
and require it to be satisfied at a set of collocation points,
which are roots to Py(x2) = 0. This criterion gives the
{a;} while the boundary condition determines y(1).
(Equation (1) is already written to satisfy the condition
dy/dx = 0 at x = 0.) The orthogonal collocation method

thus gives an approximate solution y(x), which depends
on N, and N is increased until the answers converge to
within some specified accuracy. Then we can estimate the
error in the approximate solution.

To provide error estimates we employ the concept of
the residual. Once the approximate solution is generated
we can substitute it back into the differential equation,
thus obtaining a function of x, which we call the residual
R(x). The residual is zero at the collocation points, since
that is how the {a;} were determined, and usually oscil-
lates about zero between collocation points. The residual
provides an estimate of how good the approximate solution
Is, since we expect as the differential equation is satisfied
at more and more points (by increasing N) the residual
becomes smaller and the solution becomes more accurate.
The theorems below provide a proof of these conjectures.

It has been suggested by others previously ( Yang, 1962;
Hulbert, 1965; Finlayson, 1965; Krasnoselskii, 1968) that
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the residual be used to characterize the accuracy of the
approximate solution. Error bounds, which utilize the re-
sidual function, have been derived in this way for elliptic
and parabolic partial differential equations [see Ferguson
(1971) for a listing]. For ordinary differential equations
the residual has been used to derive error bounds for
linear (Varga, 1966) and nonlinear (Ciarlet et al.,, 1967)
problems. By focusing on equations of interest to chemical
engineers we obtain stronger results than provided by
these authors.

THEOREMS ON ERROR BOUNDS

Consider the problem of chemical reaction in a catalyst
pellet in dimensionless form.

1 d (xa—lﬁ) =fi(c, € .. .sn)  (3)

@1 dyx dx
dc; )
d_ifzo at x=0 j=12 ...,n (4)
2  dg
S_hj..d_xj—i-cj:co,- at x=1 (5)

The parameter a takes values 1, 2, or 3 depending on
whether the catalyst shape is planar, cylindrical, or spheri-
cal. The modified Sherwood number in Equation (5) ac-
counts for a mass transfer resistance between the catalyst
and external medium. The reaction rate term is denoted
by f; and can depend on concentrations of all species {c;}.
The coupling between species occurs only through this
term. The nonlinear function is assumed to be Lipshitz
continuous, that is, there exist constants M i such that

lfj(clx C25 « v oy CTL) - f]'(cl,9 02’7 e rey Cn’)l

= 2 Mji ’Ci - C,"I (6)
i=1

for values of ¢; and ¢/ between some limits. For a single
equation (n = 1) the My can be replaced by

—  sup 1 [df(u) ]2 a=1 g L 77
M_Oétél{j; du u=c+t{ ¢ —c) * * ( )

Even though the exact solution ¢ is not known, a bound
can sometimes be found for Equation (7). For some
problems the Lipshitz constants M; are the maximum
values of the derivative |9f;/dc;|. In Equation (7) df/du
can sometimes be bounded if the exact and approximate
solutions can be proven to lie between some limits.

There are two types of error bounds of interest. Let
cj(x) be the exact solution to Equations (3) to (5) and

cj(x) be an approximate solution. A mean-square error
is defined:

~ ~ %
|e—c|la= [J: [c(x) — c(x)]2 xo—1 dx] (8)

while a pointwise error is defined:
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IC(x) —¢(x)] (9)

The following three theorems are proved in the Ap-
pendix.

Theorem 1: Assume the existence of a solution to
Equations (3) to (5) for functions f; satisfying Equation

-(8) or (7) for concentrations satisfying c. = c(x) = c*,

where ¢, and ¢* are lower and upper bounds on the exact

and approximate solution. Then the mean-square error is
bounded by

| e — cil|a = ||Gil]e

Ny { 2 [[Rllo? [1Gl|2? }/

i=1

|[Rillz + _ (10)

1-— { 2 ”Gi|[22 N; }‘/2
i=1

where N; = 2 M;2, G; is the Green’s function for the
i=1
Laplacian operator in Equation (3),

IGill: = [j: J: G2(x, t; Shj)xe—1 dx ta=1 dt ]Vz

: (11)
and R; is the residual,

L2 (w0

x0—1 dx dx

1 Ya
IRjl[2 = [ S R et dx] (13)

R = ) = Henon i) (12)

and the approximate solutions {07} satisfy the boundary
conditions, Equations (4) and (5). Note that the right-
hand side of Equation (10) can be calculated without
knowledge of ci(x).

Theorem 2: Under the conditions of Theorem 1 the
pointwise error is bounded by

KyM; 2 Kai ||Rill2
i=1

e = el = Kay |[Ry|Jo + ; (14)

1-— Zi KuM

and

H;a' — cjf|a = Ky [ 2 Al & - I[2 + “R»;Hz]
- (15)
where

Kij = f G (x,t;Shy) to=t dt  (18)

0=x=1

Ko = ' GR (1 Shy) o1 @t (17)

04x41 0
max
M;= ; | M| (18)

The pointwise bounds can be used to obtain error
bounds for the effectiveness factor.

Theorem 3: Under the conditions of Theorems 1 and 2
the error in the effectiveness factor is bounded by

n

2 My|lei—cil.

. S
I nj T’][ |fj(0107 Ca0y + > Cno)l

The various constants involving Green’s functions are
listed in Table 1. Note that both the pointwise and mean-
square error bounds are proportional to the mean-square
residual. As the residual is decreased the error is reduced
as well. Note that the error bounds make no reference to
the method of solution. Equations (10), (14), (15), and
(19) apply to approximate solutions derived using colloca-
tion methods, finite difference methods, or any method.
The only requirement is that the residual function be
piecewise continuous. If a second-order finite difference
method is used, in which case y”(x;) ~ (yi+1 — 2y +
Yi—1)/h?, for example, the solution must be interpolated
between the grid points using a quadratic in x, as sug-
gested by Varga (1966).

A corollary to these theorems is that the solution is

unique. Assume there are two solutions ¢ and c¢. Then

the residual is zero for ¢ and Equation (14) gives ¢ = c.
Consequently the assumption is contradicted and the solu-
tion is unique.

APPLICATIONS

We present results of computations using these error
bounds in order to illustrate their utility. All three exam-

Geometry Planar Cylindrical Spherical
142 t 2 (), t= 2 L =
- = -5 = y ¥ — pu—y — 4 =X
o T RIEY sh o rES sh T %
G(x,t; Sh) = . 9 2 In(s), ¢ = 2 1 Lt~
— = — —In(¢),t= — =1t
5 * sh " * st §
Glle 1 2[2 2] 1 2[1(2) 1] 1+2[1<2)+2]
Gl = TtslmTs 2 wmli\w/ T3 90 shLg\sn/ T4
X 1 2 1 1(2) 1 1(2)
' = 3t T3\ 6 TS\
Ky? = 1 (2) (2)2 1 1(2) 1(2)2 1+1(2)+1(2)2
ERRNTVARN T\ T\ 3 3 \sh/ "3 \5sk

TaBLE 1. VARIous NUMERICAL VALUES ASSOCIATED WITH THE GREEN’S FuNcTioNs DEFINED
BY THE ONE-DIMENSIONAL LAPLACIAN OPERATOR WITH A RapiaTiON TYPE
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ples are for diffusion and reaction in spherical catalyst
pellets, and approximate solutions are generated using the
orthogonal collocation method and regular collocation
method.

Example 1. Consider a second-order, irreversible, iso-
thermal reaction with no mass transfer resistance on the
boundary. Then in Equations (3) and (4) a = 3, n = 1,
Sh = o0, and f(¢) = ¢2c%, and we take ¢y = 1. For this
problem we can prove 0 == ¢(x) = 1 (Cohen and Laetsch,
1970; Ferguson, 1971), and if the approximate solution

obeys0£3(x) = ] then
—  sup [ 1 29
w=, " [ [ @

+t(c—c)l}2 x2dx ] -‘-¢2—:/~3_— (20)

Equations (10) and (15) reduce to

[IR||2/A/90
1 — 242/7/270

1o~ el=—z [# =115 cla+ 17 ] (22

”0—0”25 (2].)

The denominator in Equation (21) must be positive so
the error bounds apply only for ¢ < 2.86. We present
results for ¢ = 1. The collocation method was applied
twice, using different trial functions.

- N
ct =14 (1—x2) 2 agicos (i—1)ax  (23)

i=1

~ N
=1+ 2 b; (x2 — 1) (24)
i=1

For ¢; the collocation points were taken as the zeros to

cos(m — 1)ax = 0 and x = 1. For ¢, the collocation points
were x; = f/N. The solutions are tabulated elsewhere
(Ferguson, 1971), but the error bounds are listed in
Table 2.

We see that the cosine series diverges, since the error
gets larger. The residual also gets larger, and both phe-
nomena correctly reveal the nonconvergence of this ap-
proximate solution. Elsewhere we show that a least-squares
collocation method makes the solution converge when

‘using cbsine functions. In the least-squares collocation

method we evaluate the residual at more collocation
points than we have adjustable constants (N) and choose
the constants to minimize the sum of the residuals squared.
See Ferguson (1971) for further details.

The power series solution converges rapidly and a six-
term approximation is accurate to six digits. The colloca-
tion method, plus the error bounds, thus lead to a solution
whose accuracy is determined. Note also that as the num-

TasLE 2. ERROR BouNDs FOR PROBLEM WITH
SECOND-ORDER IRREVERSIBLE REACTION

Cosine series Power series

ber of terms is doubled from 3 to 6 the error is reduced
by a factor of 150, giving rise to very fast convergence
with increasing N. The error bound on the effectiveness
factor is 5.1 X 10~7 for N = 6 using the power series.

Bounds similar to Equations (21) and (22) can also
be derived for reactions of other orders as well as for
reaction rate expressions of the form f(c) = ¢*c/(1 +
ac]), @« = 0. See Ferguson (1971).

Example 2. Consider next a first-order irreversible,
non-isothermal reaction. The equations for concentration
and temperature can be combined in the standard fashion
to yield the problem

1 d daT

o dx (x2 dx) =) (25)

idl-'— (0) =0, T(1)=1 (26)
X

f(T) =¢* [T — (14 B)Texp {y — /|T|} (27)

We assume the existence of a solution to Equations (25)
to (27), and a variety of methods can be used to prove
1 =T(x) =1 + B. Unfortunately this large range of T
causes the Lipschitz constant to be too large (14.6). We
thus present a new method to bound the temperature.
We first rephrase the problem as an integral equation
by using the Green’s function for the Laplacian operator.

1
T(x) =1~ j:, G(x, t) f(T(¢))t2dt. (28)
Here G(x,t) is a positive function (see Table 1) and

f(T) is a negative function since T — (1 + B) = 0. Thus,
we can replace f(T) by its minimum value to obtain

min t
T(x)=1— {léTél + B f(T)} J; G(x, t)t2dt
(29)
or
min 1
rw=1-{,_, 2, ol fa-m}
(30)
We next carry out the iterative procedure
T(x)=T; Ty=1+8 (31)
Ti=1+ max (438~ f(Tm))  (32)

obtained by setting x = 0, since the maximum T occurs
there by Equation (30). We did calculations for ¢ =
0.25, B = 0.3, y = 18. The upper bound on T of 1 + 8
= 1.3 is improved to T(x) = 1.01564 using the iterative
procedure. Then the Lipschitz constant is

— 1 df
M=—0 | — =1548 (33)
\/3— ) ‘ dT T=Tupper bound (
Theorems 1 and 2 then simplify to
r l|R]l2
T—-T|p=—e—r— 34
I = 1 — M/N/30 (34)

T - T, é'{% (1548 (| T — T|}o + |[R]|} (35)

N fo—cles [o—cl.= |c—cp= [l—cf.= ,

2 10~2  0.0846 3.55 x 10-¢ 194 x 10-3 We used the orthogonal collocation method and ex-
3 — 0.2240 — 6.90 x 10-5 ~ .

4 546 x 102 02988 452 X 10-7 248 x 10-6  panded the temperature T in a series, Equation (1), using
8 L19 X 10-1 06513 7.93 X 10-8 435 x 10-7  two different sets of polynomials, those defined by Equa-
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Polynomials with w = 1

TabLE 3. ERROR BOUNDS FOR PROBLEM WrTH FIRST-ORDER IRREVERSIBLE NONISOTHERMAL REACTION

Polynomials with w = 1 — x2

T —T}.=

241 x 10—3
121 x 10—8
4.87 X 10—8
1.39 x 10—10
490 x 10— 14

Polynomials with w = 1 — «?

lloz — esllo=

3.860 x 10—3
2,677 X 104
1.491 x 10—4
1411 x 10—°
2.258 x 1012

tion (2) with w = 1 and w = 1 — 2 The error bounds
can thus be used to tell which polynomials are the best
choice. The results are in Table 3 and the polynomials
with w = 1 consistently yield lower error bounds (by
about 509 ). In addition the pointwise errors are about
six times the value of the mean-square error. The maxi-
mum error in the effectiveness factor is 4.6 X 10713, using
N .= 8 and polynomials with w = 1.

Example 3. The last example considers a system of
equations governing the reaction of three species, but only

two concentrations are independent. The reaction system is -4 —
C&23A&B. (36) log E
with the concentration of B and C taken as ¢; and ¢,. In
Equations (3) to (5) we take 8~ 7
fi=ac; — a1 —3 (c1+ ¢2) 13 (37)
fo = agcs — ay[1 — 3 (1 + ) I® (38) -8 _
Co1 = Cog = 0.1 (39)
a=01 a=10, a3=0.2, a=12 (40)
Here we assume the solution is positive. Then it can be -10 —
proved in a fashion similar to Equation (28) that c; = 0.4
(see Ferguson, 1971). The Lipschitz constants are de-
rived from
=12 —

2 S
filer, eg) — filen, €3) = 2 J; _aTJk (e’ — ck) dt
k=1 Clp=Cl + t(Ck* —Ck)

(41)

using the fact that ¢; = 0.1, ¢; = 0.2, and ¢; = 0.4.
M11 = 1.54, M12 = 1.44, M21 = 1.728, M22 = 1.928

The error bound in Equation (10) is then valid for Sh; =
3.01. Calculations were performed using the orthogonal
collocation method for Sh = 7, and Sh — . The error
bounds for the case Sh — o are in Table 4 for two sets
of polynomials. Again we see that the polynomials with
w = 1 have consistently lower error bounds and are thus
‘to be preferred. The effectiveness factor has a maximum
error of 7.5 X 10710 for reaction (1) and 5.9 X 10~1! for
reaction {2), using N = 8 and polynomials with w = 1.

The error decreases very rapidly. Figure 1 illustrates
the logarithmic decrease in error for Examples 2 and 3,

AIChE Journal (Vol. 18, No. 5)
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N IT — T|la= T —7|l.= [|IT —T|lp=
1 3.54 X 104 1.94 X 103 4.39 x 104
2 1.59 x 1035 8.76 x 10—5 2.21 %X 10—5
3 5.80 X 10—7 3.18 x 10-8 8.89 x 10—7
6 1.31 x 10—11 7.14 x 10—11 254 x 10—11
8 401 X 10-15 2.20 X 10— 14 8.94 x 10-18
TABLE 4. POINTWISE ERROR BoUNDs FOR PARALLEL CHEMICAL REACTIONS
Polynomials with w = 1
N 1 — exll = o2 — call = llex — exll =
1 2.761 x 10-3 3.405 x 103 3.132 x 103
2 1.592 x 10—¢ 1.957 x 104 2.179 x 10—4
3 7.815 x 108 9.554 % 106 1.220 x 10—¢
6 5.756 x 10—10 6.999 x 10—10 1.160 X 109
8 8.196 x 10—13 9.956 x 1013 1.859 x 1012

N - NUMBER OF TERMS

o] 2 4 6 8 10
| | | ]

-14 I I |

1«

Fig. 1. Variation of error bound with the number of terms in the
orthogonal collocation method (0 — Example 2, E = ]l; — Tl

x — Example 3, F == |lea — co ||.; both for polynomiais with
w=1)

which follow the relation
| T = T|}. = 0.1 x 10-152N (42)

|| 6 — cal|o = 0.1 X 10-138N (43)
Thus each additional term in the trial function, Equation
(1), gives rise to at least a faetor 10 decrease in the error.
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This rapid convergence should be contrasted with the rate
of convergence for usual finite difference methods, which
is much slower since they converge as (1/N)2. The com-
putation time associated with the calculation of the error
bound is about 509, of the total time (for N = 8).
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NOTATION
a = 1, 2, 3 for planar, cylindrical, spherical geometry
a; = coefficient in trial function, Equation (1) or (23)
b; = coefficient in trial function, Equation (24)
c = concentration, dimensionless
fi = jth reaction rate function
G; = Green’s function, listed in Table 1
h = grid spacing in finite difference solution
Ki; = constant defined by Equation (16), listed in
Table 1
Ks; = constant defined by Equation (17), listed in
Table 1
Mj; = Lipschitz constants obeying Equation (6)
M j = max IM jil
i
M = Lipschitz constant for single equation, Equation
(7)
N = number of interior collocation points
Nj — 2 M].i2
i=1

number of independent chemical species
orthogonal polynomial

residual, defined by Equation (12)
modified Sherwood number for jth species
position

temperature, dimensionless

position, dimensionless

dummy dependent variable

weighting function in Equation (2)

o or S 3
EEnRTESY

i nnn

Greek Letters

= constant in rate expression

= dimensionless heat of reaction

= dimensionless activation energy

8 =1ifi=40ifi]

€ =c-c

7 = effectiveness factor, defined in Equation (A7)
¢ = Thiele modulus

l]o = Norm defined by Equation (8)

|l = Norm defined by Equation (9)

R W R

Superscript and Subscripts

~ = approximate solution
i = jth species
0 - = value of quantity outside diffusion film
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APPENDIX A

Proof of Theorem 1.
Write Equations (3) to (5) for the approximate solution,

where R; ({ i}, x) represents the residual, and R; is a known
function of x once the approximate solution is derived.

1 d d;; ~ o~ -~ ~
—_— —1_ — f. , A
w1 da (xa dx )—f:(01,02;---y0n) 'I’RJ({CI}:x)

(A1)
de;
— =0 at x=0
dx
2 d;;-|-~ c t 1
— Cj = j a X =
Sh; dx ! o

Subtract Equation (3) from Equation (Al) to get

1 d d(c; — ¢ ~
4 [ xa—l_(_cf_dxi)] =fi({ei}) — fil{e) + By

xe—1l dx
(A2)

and subtraction of the boundary conditions gives

d(cj— ¢)

dx

=0 at x=0

2 d(o— o)

- (Z—C‘).:O at x=1
Sh; & tlaTe
The Green’s function for the Laplacian operator together with

the appropriate boundary conditions gives, in place of Equa-
tion (A2),

[oi(x) — cs(x)12
1 ~ 2
= [ j; G(x, t; Shy) [R; + fi( ¢ ) —fi(e)J 21 dt ]
Apply Schwartz’s inequality to give

—~ 1 ‘ 1
() — ety = [ @2t Shy) e
[R; + f3() — fi(c)12 =1 dt
such that
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H‘:'HzE(f 0:—01)2t“‘1dt)%

Yo
[ f G2(x, t; Shj) ta—1dtxa—1dx ]

[j;l (Bi + (f;(c ) — fi(c)))2 o1 dt ]’/2

If we then apply Minkowski’s inequality to the last integral of
the above inequality,

1 ~ Y
el 2 = (|G as Sy { [ S} re5romsa]

[ J a —penremra ]

Since f; satisfies a Lipschitz condition, Equation (6), the last -

integral of the above inequality can be bounded in terms of
the errors,

|lejll2 = [|Gil2 { IRl

n Ya n 1 Va
i=1 i=1
or

Yo n Yo
||€ji|2fHCiH2[ \H,[|2+[ 2 M;2 ] { g llfinz] J

(A3)
If there is only a single equation, the Mean Value Theorem

can be used to evaluate f;( :) — fi{¢), and Equation (7) used
to arrive at the result, Equation (A3) with n = 1'and My =M.

n
Abbreviate [ 2 Mﬁi} by Nj; then the result of squaring

both sides of Equation (A3), adding over the subscript j, and
taking the square root of both sides of the resulting expression is

n 12 n
{ > Hfszz] = [ > llGillz2 [HR:'HZ
i=1 i=1

Yo )2 Ya
llfinzJ } }

n Y2
é[ 2, 1112 Hajnzz]

" Y2 n o
+[ 2 Heinzz} [ 2 l|Gil 22 Nj]

+ Nj%

-

1

n Ye
By solving for[ 2 [1e;]22
j=1
(A3) to the final result, Equation (10).
Proof of Theorem 2. Let M; = max [Mj;]. From Equation
i

(A1) and (A2)

, one can reduce Equation

l:j(x) —cj(x)| = ‘ J: G(x, t; Sh;)
(fi(€) = fi(e) + By) 121 a
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= J: G(x, t; Shy) ([fi( c)— file)| + |Rs|) to—1 dt

i=1

= j:,l G(x, t; Shy) [Mi 2 [eit) — ei(t)] + IR,-]] ta=1dt
= Mjfol G(x, t; Shj) 2 ];(t) — ci(t)|te—1 dt
i=1

1
+ j; G(x, t; Shy) |Rj| t=1 dt

where we have used the fact that the Green’s function is non-
negative. Rearranging slightly, and using Schwartz’s inequality,

n 1
2 fo G(x, t; Shj)
=1

|6 — o] t3=1 db + Koj || Byl (A4)

n

=M; 2 0=i=1 |ei(t) — ei()] f

G(x, t; Shy) ta=1 dt + Koj ||Ry|a.

rc’,(x) - Cj(x)} = M;

Then
n
Iej1] = K1jM; 2 [leil]o + Kaos ||Rsl]2 (A5)

i=1

We sum this inequality over the subscript j and solve it for

Sl

2 2 |[Ri|a

2 — (46)
- "
B 1— Ki; M;

i=1

Combination of Equation (A5) and (A6) gives Equation
(14). If we use the Schwartz inequality after Equation (A4)
we end up with Equation (15).

Proof of Theorem 3. The effectiveness factor is defined as
the average rate of reaction with diffusion divided by the
average rate of reaction if the concentration were everywhere
equal to the bulk stream value. Thus the effectiveness factor
includes the effect of both internal and external diffusion. It is
(for the jth species and a spherical domain)

ny = f]({ — I (AT)
The approximate value is
= f e ds

fi ({eo)) {Co}

Subtracting these two formulas and taking absolute values gives

1 Pt
fo [fi({e}) — fi({c})] «2 dx

[y — ny| =

3
Ifi({co})|

Application of the Lipschitz constant, Equation (6), and use
of the pointwise bounds gives

~

3 1" ~
Ny — | = _____.f M;i || ¢i — cill, x2dx
==y o 3 Melael
The final result is then Equation (19).
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