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 CONVERGENCE OF THE GALERKIN METHOD FOR NONLINEAR

 PROBLEMS INVOLVING CHEMICAL REACTION*

 BRUCE A. FINLAYSONt

 Abstract. Convergence of the Galerkin method applied to a nonlinear parabolic partial differential

 equation has been proved by Ladyzhenskaja, Solonnikov and Ural'ceva. That proof is extended to

 a system of second order semilinear parabolic differential equations arising in nonisothermal,
 chemically reacting systems. The proof by Visik for nonlinear systems of parabolic equations is not

 valid in this case. Boundary conditions of the first, second, and third kinds are included for many

 different forms of the reaction expression.

 1. Introduction. We prove below the convergence of the Galerkin method

 for systems of semilinear parabolic partial differential equations of a special type.
 The parabolic equations are those used frequently in mathematical models of
 chemical reactors. The existence of classical and generalized solutions has been
 proved for nonlinear parabolic equations by Ladyzhenskaja and Ural'ceva [6],
 Browder [1] and Dubinskii [3] using the Leray-Schauder fixed-point theorem.
 Such proofs do not, however, give a method of finding the solution as a by-product.
 In contrast, the existence proofs for systems by Visik [8], [9] and for a single

 equation by Ladyzhenskaja, Solonnikov and Ural'ceva [5] use the Galerkin
 method to construct a generalized solution. These proofs thus imply that an

 approximate solution generated using Galerkin's method converges as the
 number of terms in the series is increased. Unfortunately, Visik's proof for systems
 of equations is not applicable to the equations of interest because of the form of
 the reaction rate expression. We use Galerkin's method to extend the proof of
 Ladyzhenskaja et al. [5] to include systems of equations. (Ladyzhenskaja et al. [5]

 treat systems of equations using the Leray-Schauder fixed-point theorem.) We
 first prove the extended theorem for boundary conditions of the first kind and then

 outline the corresponding results for more general boundary conditions of the
 second and third kinds. We conclude with a discussion of the practical cases for
 which the theorems are applicable.

 2. Convergence of the Galerkin method. The problem is

 iujcX( t) - V2u(xt)+ Rj(u(x, t), x, t) = 0, = 1, ,M, at J
 (1)

 ujls= 0, ujI=t = fjo(x), ijols = 0,

 where u(x, t) = (u1(x, t), , um(x, t)), x = (x1, ... , xn) is a point in an n-di-
 mensional Euclidean space En, Q is a bounded domain in En, S is the boundary of Q,

 Q=Q~US, QT = {xe 0<t < T}, ST = {XeS, 0< t ? T}, and V2 is the
 Laplacian operator in En. The c; > 0 are real-valued constants, and the Vjo(x) are
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 CONVERGENCE OF THE GALERKIN METHOD 317

 given, real-valued functions. The function R(u(x, t), x, t) is a given real-valued
 continuous function of its arguments.

 The function spaces follow those defined by Ladyzhenskaja et al. [5], although
 the notation is simplified. Lq(Q) is the Banach space consisting of all real-valued

 measurable functions on Q that are qth power summable on Q. The norm is

 llUllq,Q = (j lu(x)lq dx) 1/, lul = vraiQ max Iul.

 The space Lq(QT) is the Banach space consisting of all real-valued measurable
 functions on QT that are qth power summable on QT. The norm is

 IU llq,QT = l J Iu(x, t)lI dx dt)

 W(Q) is the Banach space consisting of all elements L2(Q) having generalized
 derivatives of all forms up to order one, inclusively, that are second power sum-
 mable on Q. W(Q) is the subspace of W(Q) with elements which vanish on S.

 W4q'(QT) iS the space of functions q for which tt e Lq (QT) and ox e L2(QT), i.e.,

 )1/2

 11 Ox 11 2 Vo - J Vo dx dt) < 00

 and Vq is the gradient in the Euclidean space E,. V(QT) is the space of all real-
 valued measurable functions +(x, t) that equal zero on ST and have the finite norm

 IOIQT = vrai max Ik k I1 2,Q + ll Ox l 2,QT*

 The inner product (q, v) is defined over Q:

 (4, v) = {4wdx.

 The space V'(QT) is obtained by completion in this norm of all smooth functions
 that are equal to zero on ST. V'(QT) is the completion of V(QT) whose functions
 are not required to vanish on ST. A function u(x, t) is in a space if each element

 uj(x, t) is in the space.
 Basically we extend the following theorem of Ladyzhenskaja, Solonnikov

 and Ural'ceva [5, p. 466] which is stated here in a simplified form applicable to this
 problem. (Here u = u1.)

 THEOREM 1. The problem

 Ut- ai(x, t, u, ux) + a(x, t,~ u, UX) = O,

 UIST = 0, uIt=0 = O 0(X)

 for any t0 cE L2(Q) has at least one generalized solution u in V'(QT) such that

 f0h-2 1u(x,t + h) -u(x, t)l2 QT h dh < oo
 o~~~~~~~2Q-

This content downloaded from 128.95.104.109 on Tue, 24 Mar 2020 23:41:27 UTC
All use subject to https://about.jstor.org/terms



 318 BRUCE A. FINLAYSON

 if the following conditions are satisfied:

 (i) For (x, t, u, p) { x [0, T] x El x En} the functions ai(x, t, u, p) and
 a(x, t, u, p) are measurable in (x, t, u, p) and continuous in (u, p) for almost

 all (x, t) in QT; the functions ai and a satisfy the inequalities

 (2) lai(x, t, u,P)I 01(X, t) + CIUIj*I2 + CdpI, 01 L2(QT),

 (3) la(x, t, u, p)l 02(x, t) + ClUlq*lq + Clpiq e Lq(QT)

 where

 q* < q 2(n + 2)/n, q' =q/(q-1), m* < 2.

 (ii) For any function u(x) from W(Q),

 (4) J'[ai(x,tt,uux)ux. + a(x,t,u,ux)u]dx > VIUxII2 -c(t) (1 + U2) dx,

 rT

 v > o f0c(t) dt ? c.

 (iii) A monotonicity condition is valid:

 (5) [ai(x, t, v, vx) - ai(x, t, v, ux)] (vxi - ux) dx ? v(lvxl, luxl)lvx - uxI dx,

 where v(z1, T2) is a continuous positivefunctionfor 1 _ 0 and ?2 _ 0, while u and v
 are arbitrary elements of W(Q).

 For (1) it is clear that conditions analogous to (2) and (5) are automatically

 satisfied, whereas (3) and (4) place restrictions on R(u(x, t), x, t). We prove here the

 following extension of Theorem 1.

 THEOREM 2. The problem (1) for any VjO e L2(Q) has at least one generalized
 solution u(x, t) in V'(QT) if the following conditions are valid:

 (i) For (x, t, u) e {Q x [0, T] x EM} the function R(u, x, t) is measurable in
 (x, t, u) and continuous in u for almost all (x, t) from QT; the function R satisfies

 the inequality

 IRj(u, x, t)l < Oj(x, t) + Clulq*lq, kj e Lq'(QT),

 where

 M 1/2

 q' = q/(q-1), q = 2(n + 2)/n, q* < q, Jui (Zu2
 j =

 (ii) For any functions u(x) from W(Q),

 M M

 (6) UR ujR _ -c(t) I + , Uj
 j=1 j=l

 T

 J c(t) dt < c.
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 CONVERGENCE OF THE GALERKIN METHOD 319

 By a generalized solution we mean one satisfying

 T [- ujt + ocjVuj * V + Rjq] dx dt + Uj(x, t)q(x, t) dx
 QT

 - fjo(x)4(x, 0) dx = 0

 for j = 1, , M and any smooth q in Wq'(QT) which vanishes on ST. Since the
 proof basically follows that of Ladyzhenskaja, Solonnikov and Ural'ceva, we

 present only the essential details which differ.

 We take a fundamental system {Vk(X)} in the space WF(Q) such that (Vk, V1)
 - Ik maxQ (IkI, 0IkxI) = Ck < cc. An approximate solution uj'(x, t) is sought in
 the usual form:

 N

 U. = E;cjk(t)*JX),
 k= 1

 where the CN are determined from the system of ordinary differential equations

 r~~~~~~ j= 1,2, ,M,
 (7) (UNt,rk) + ojif Vu>VVIkdx + (Rj, k) = 01

 and initial conditions

 j= 1,2, M,N
 C'jk(?) = (#jo I ) k = 1, 2, ,N.

 From the properties of the fundamental system and the hypotheses of the

 theorem all terms in (7) are summable functions of t on [0, T] and are continuous
 in the CjN. For the existence of at least one solution of problem (1) on [0, T] it is
 sufficient to know that all possible solutions CN are uniformly bounded on [0, T].
 Since

 N

 max E (cV(t))2 = max |jjU'j22 Q < IUfI2
 O0<t?Tk=l o t_T

 we must bound the last term independently of N,

 (8) IUIIQT?C j= 1,C, M.

 Consider (7) for some j. Multiply the kth equation by CjkV and sum over k from
 1 to N. Integrate the result with respect to t. Do this for each j, add and apply (6).

 M

 Z {2 I Uj (X, t) II 2 Q + (j II U~jI , 2 Qt}

 9) j=1
 (9) ~ ~t M M

 ( {c(t) + (c(t) + 1)( E 11uIl1,Q)} dt + 2 VE11/joll2

 We can rewrite (9) in the form

 dy(t) < d(t)y(t) + F(t),
 dt=
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 320 BRUCE A. FINLAYSON

 with

 M

 y(t) = Z { jIu 2(x,t)II2,Q + G xjI2UJII+,QT}
 j=1

 d(t)= 1 + 2c(t), F(t) = c(t).

 Since d(t) and F(t) are nonnegative and integrable on [0, T], it is easy to prove
 that

 y(t) ? exp {J d(l) dz} Lf F(z) dz + y(O)

 and this implies (8) for each j. The inequality is proved by multiplying the differ-
 ential inequality by the integrating factor exp {-f d(T) dz}, integrating with respect
 to t, and using the fact that d(t) and F(t) are nonnegative.

 The remainder of the proof follows the proof of Theorem 1 and is not repeated

 here: 1Nk,j(t) = (UN(x, t), Vk(X)), j = 1, , M, k = 1, , N, is shown to be
 continuous in t and equicontinuous for any fixed k < N. This guarantees the weak

 convergence in L2(Q) which is uniform in t E [0, T], of u0 to uj. The limit function
 is an element of V(QT). It may be necessary to select a convergent subsequence.

 Finally uj is shown to be a generalized solution.

 3. Boundary conditions of the third kind. As Ladyzhenskaja et al. point out
 [5, p. 475], Theorem 1 can be generalized to include boundary conditions of the
 second and third kind. We state here the corresponding generalization of
 Theorem 2.

 THEOREM 3. The problem

 atJ' t)-aV2U (x, t) + Rj(u(x,t),x, t) = O,

 (10) [n . Vuj + 6j(s, t)Uj]ST = js(s, t), s E S,

 uj1t=O = @jO(X), j 1 ... ' ,
 has at least one generalized solution u(x, t) in V'(QT) if the conditions of Theorem 2
 are valid with W$(Q) replaced by W(Q), the boundary S is piecewise smooth, and
 (for n = 1)

 161j(2S S_< -1j, IIVjJI4/3,ST -< l ] = 1, . , M.
 By a generalized solution we mean one satisfying

 TQ [-uA + ocjVuj .V + Rjo] dx dt + uj(x, t)?J(x, t) dx
 (1 1) Q

 - fjo(x)O(x, 0) dx + cx f (6 uj - V)k ds dt = 0
 Q S~~~~~T

 for any smooth 0 in W '(QT). The functions t/k(X) must form a fundamental system
 in W(Q) but not W(Q). Clearly Theorems 2 and 3 can be combined if boundary
 conditions (1) are valid on S1 and (10) on S2, S = S1 U S2. The fundamental

 system k must vanish on Sl.

This content downloaded from 128.95.104.109 on Tue, 24 Mar 2020 23:41:27 UTC
All use subject to https://about.jstor.org/terms



 CONVERGENCE OF THE GALERKIN METHOD 321

 4. Application. We present here two problems arising in chemical engineering

 for which the above theorems are useful. Consider unsteady-state diffusion and

 chemical reaction inside a catalyst pellet, which is governed by the set of equations

 for c = c(r, t) and T = T(r, t):

 1c a I2ac'
 = 1 r r2 ar) + #,R(c, T),

 1T a I2aT
 A T 2 k r a) + /2R(c, T), O? r ,

 (12) ac aT
 -arl = Sh(c( ,t) - c1(t)), - a = Nu(T( ,t)- T-(t))

 ac AT
 c = co(r), T= TO(r) at t = O - = a = 0 at r = 0.

 The functions c1(t) and T1(t) represent the concentration and temperature outside

 the catalyst pellet, and the various terms in the equation can be identified as the

 accumulation, diffusion, and generation of species or energy. The terms ocj, Sh, Nu
 are positive constants with Sh being called the Sherwood number and Nu the

 Nusselt number. For continuity we require c1(0) = co(1), T1(0) = T0(1). Often-
 times the conditions are c0 = 0, c1 = 1, which do not satisfy the compatibility
 conditions. This discontinuity is not handled by the mathematics but it is not
 realistic physically either. A continuous change of c1(t) from 0 at t = 0 to 1 at
 t = E is handled mathematically and is more realistic physically. For this problem
 n = 1, q = 6, q' = 1.2, so that Theorem 2 requires q*/q' < 5.

 The second problem of interest is that governing diffusion and reaction in a

 tubular, packed bed reactor in plug flow.

 ac = Ia0 Iac
 az = cl r arJ + /,3R(c, T),

 OT 1 a(aT\
 AT oc a0 ra + /32R(c, T),

 (13) ac AT

 ar| ?'., 0 ar = Nu(T-T1(z)) at r =1,

 c = T= 1 at z = 0 c a-= 0 at r = O.
 O r Or

 Here the problem is steady state and the variable time is replaced by the variable
 z representing the distance down the reactor bed.

 In both problems the reaction rate term takes many forms. One example

 corresponds to an irreversible, first order reaction A -+ B.

 R(c, T) = c exp {y(l - 1/ITI)} _ cK(y, T), y > 0.
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 322 BRUCE A. FINLAYSON

 Since 0 ? K(y, U2) _ e7,

 lRjl < e7jljBi11ujj,

 /3u2K + /2u1u2K ? -c(u_2 + U2),

 c = e7(1IJ11 + /#~ + /22)/2,

 as required by Theorem 2. Another example is provided by a reaction governed
 by a Langmuir-Hinshelwood form of the reaction rate

 R = K(y, U2)ul/[l + K(y, U2)1U11],

 iRjl -<lfil I

 #JU2 K + fl2U2U,K > U2 + 2), /31u~ + /3u2u1> _c(u~ + u~)

 with the same choice of c as before. For the reversible reaction A # B the rate of
 reaction of species A can be represented by

 R = e71[(l - c)eY 1/ITI - Kce-7211TIl

 which satisfies the conditions of Theorem 2 since K > 0 is a constant and

 IRI < lj3jIevl[l + (1 + K)IU11].

 Equation (6) is satisfied if

 c = e 1[I/1I + / ?4/J2][1 + K + (1 + K)2 + 1]/2.

 5. Construction of solution. We next use Theorem 3 to construct a solution

 to (12) or (13) when R takes one of the forms in ? 4.
 THEOREM 4. A generalized solution to (12) or (13) can be constructed in the

 following manner, provided co = '10 and To = 020 are real-valued functions of x
 which are in L2(Q), Q = {x1O < x < 1}, the functions c1 = t1 and T1 = 02 are
 square integrable, the reaction rate R(c, T) satisfies the conditions of Theorem 2,

 and ocl, C2, Sh = 81, Nu = 82 > 0. The solution is expanded in theform
 N-1

 uj (x, t) = E cj(t)Pk(x)X
 k=O

 where Pk(x) are orthonormal polynomials of degree k, and cJN(t) and cjN(0) are deter-
 minedfrom thefollowing equations:

 T (utPk + aojVu * VPk + /jRPk)Xa -1 dx + ocj[(6juj - oj)Pk]x = 0,

 (14) N (0) =
 Cjk(? = j k).
 We first note that Theorem 3 is applicable for x E En and it is thus also appli-

 cable for x E E1 with

 Vxu = ' +(xa1Ou)

 with a = 1, 2, 3 corresponding to planar, cylindrical, and spherical geometry,
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 CONVERGENCE OF THE GALERKIN METHOD 323

 respectively. The conditions of Theorem 3 on bj and Oj and the conditions of
 Theorem 2 on R, c(x, 0), and T(x, 0) are satisfied by hypothesis. We thus need

 only find a fundamental system Pk(x) satisfying

 k Pk(X)Pj(X)Xa-1 dx = 3kj ("dPk d 'dx < po.
 Jo J0 ~~~~dx dx

 One possibility is the Jacobi polynomials (see Courant and Hilbert [2, p. 90]),
 which are a complete set of functions on the interval (0, 1), are orthogonal and

 can be normalized, and satisfy the differential equation

 d 2G.(X) dG.(x)
 x(l-x) d"( + [a-(a + l)x] dx + (a + n)nGn(x) = 0.

 Each Gn(x) is a polynomial in x of degree n, and the first derivatives are square
 integrable. Other orthogonal polynomials are equally suitable. The conditions

 of Theorem 4 are therefore satisfied. The integration of (14) is usually performed
 numerically.

 For computational purposes, the Galerkin method requires calculation of

 the integrals

 T R(u1, U2)Pk(X)Xa 1 dx.

 For the R(u1, u2) functions listed above this is clearly impossible to do analytically.
 One alternative is to use the quadrature formula corresponding to the orthogonal

 polynomials

 r'1m

 Jf(X)Xa l dx = E WIm)f(Xi)
 i=1

 where m ? n and the xi are the roots to Pm(x) = 0.

 This formula is exact when f(x) is a polynomial of degree 2m - 1 and the

 error decreases to zero as m -+ oo for continuous functions f(x). Another alter-
 native, and the one employed in computations, is to use the collocation method
 rather than the Galerkin method. The differential equation is satisfied at the roots

 to the Pn(x) polynomial. An example of the computations and comparison to
 finite difference methods is presented elsewhere [4].

 Acknowledgment. The author thanks Professor Frank Brownell for his

 helpful comments.
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