
Transient Chemical Reaction Analysis by Orthogonal Collocation 

NOBLE B. FERGUSON AND BRUCE A. FINLAYSON 

Department of Chemical Engineering, University of Washington, Seattle, Washington 98105 (USA) 

(Received : 5 July, 1970) 

ABSTRACT 

Models of packed-bed chemical reactors most ,fre- 

quently account for the d@ision of mass and energy 
within catalyst particles. The orthogonal collocation 

method is developed for transient, nonlinear problems 
of this type. A sequence of approximate solutions is 
proved to converge to the exact solution. A stability 

criterion is presentedfor estimating the maximum step 
size to use in the integration. 

The orthogonal collocation method is applied to 
linear transient dtrusion and gives accuracy to six 

signt$cant figures for dimensionless times greater than 

0.1 using six expansion functions. The method is then 
applied to nonlinear difjfiision and reaction problems 

which have multiple solutions. Eight to twelve expan- 
sion functions are required to give temperatures with 

accuracies from 0.03 % to 0.1 % and heat flux at the 
boundary of the catalyst pellet within 1%. Jacobi 

polynomials are preferred expansion functions for 
boundary conditions of the first kind and Legendre 

polynomials are recommendedfor boundary conditions 
of the third kind. Comparison to twojnite diflerence 
methods indicates that the collocation method is from 

four to forty times as fast for comparable accuracy. 

- 

The orthogonal collocation method is developed 
for nonlinear, parabolic partial differential equa- 
tions. To illustrate the method we study the unsteady 
diffusion of mass and energy within a catalyst par- 
ticle. Due to the nonlinear dependence of reaction 
rate on temperature, the coupling between mass and 
energy transport can yield unusual behavior: for 
example, the maximum temperature achieved during 
a transient can exceed the maximum steady-state 
temperature. This problem arises in some models of 
chemical reactors, McGuire and Lapidus,’ where 
the primary quantity of interest is the flux of mass and 

energy to and from the catalyst. We thus compare 
the accuracy of different calculation methods by 
comparing the flux. Furthermore, a reactor model 
consists of several such problems, such as the 75 
catalyst particles used by McGuire and Lapidus. 
Thus the time savings described below for a single 
particle are multiplied several fold for the reactor 
model. 

The collocation method is one of several Methods 
of Weighted Residuals. In these methods the 
unknown solution is expanded in a series of known 
functions with arbitrary coefficients. These coeffi- 
cients are chosen to give the best fit to the differential 
equation according to several possible criteria.‘,394 
For problems involving chemical reactions with an 
Arrhenius temperature dependence, only the colloca- 
tion method is feasible, since the other methods 
require evaluation of complicated integrals involving 
exponential functions. (Various quadrature schemes 
could be used, however.) In the collocation method 
the differential equation is satisfied only at discrete 
points, called collocation points. The choice of these 
collocation points remained somewhat arbitrary 
until the work of Villadsen and Stewart,5 who 
firmly established the choice of collocation points as 
roots of appropriate orthogonal polynomials. The 
polynomials are specifically designed for problems 
of the type treated below. They also solved for the 
solution at the collocation points rather than for the 
arbitrary coefficients in the expansion, and this 
simplified the solution. More recent applications 
include the work of Stewart and Villadsen6 to 
predict the occurrence of multiple steady-state 
solutions to the mass and energy balances in a catalyst 
particle, Livbjerg et al. 7 to study the catalytic oxida- 
tion of SO,, and McGowin and Perlmutter’ to 
delineate regions of asymptotic stability for problems 
with multiple solutions. The application of ortho- 
gonal collocation used here differs from the 
procedure presented by Villadsen and Stewart 
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in a minor way in that different polynomials are 

used for problems with boundary conditions of the 
third kind, 

We first outline the orthogonal collocation 
method for the transient problem and then develop 
a criterion for determining the stable step size in 
numerical calculations. The convergence of the 
method is proved, so that we know as we increase 
the number of expansion functions the exact solution 

is approached. Finally we apply the method to three 
problems to test its effectiveness and compare 
the numerical results with those obtained using the 
Crank-Nicholson finite-difference scheme and the 
recent approach of Liu.’ 

ORTHOGONAL COLLOCATION 
METHOD 

In the method of weighted residuals the unknown 
solution is expanded in terms of known expansion 
functions with arbitrary coefficients, e.g. 

T(x, t) = T(1, t) + (1 - x”) 2 a,(t)P,_ i(X2) (1) 
i=l 

A similar equation is used for concentration. The 
expansion functions, Pi, must be specified and the 
unknown coefficients ai are determined by 
satisfying the differential equation in some average 
or pointwise sense (2.3,4). Here we take the Pi to 

be orthogonal polynomials defined by the relation 

1 

p(x2)Pi(x2)Pj(x2)xa- ’ dx = Ci hij (2) 
0 

The choice of a = 1, 2, or 3 corresponds to planar, 
cylindrical or spherical geometry. The choice of 
p(x’) = (1 - x2), 1, or (1 - x2)-* will be referred 
to here as giving rise to Jacobi, Legendre or 
Chebycheff polynomials. The roots to these poly- 
nomials are well-tabulated to thirty significant 
figures. lo 

A typical differential equation treated below is 

N, ar i a 

4 at ~2 ax t 1 X2: 

- Wcexp (10 - l/T)) 

Using the form of expansion represented 
the various spatial and time derivatives 
can be written as 

aT(x,t) 
at xj izl 

a,(t) ; [(1 - X2)Pi_ 1(x2)] 

ai V’[(l - X2)Pi_ ,(X2)] 

where T,(t) = T(xj, t) is the approximate solution at 

the collocation point, xi. The matrices A and B can 

be found easily using the algorithm described by 

Villadsen and Stewart.’ One needs only the collo- 

cation points, which are available. 1 ’ The orthogonal 

collocation method applied to eqn. (3) gives the 

equations 

N, dTj _ “+J 
-- - 
4 dt z 

BjiTi + 6pCj exp (~(1 - l/Tj)) 5) 
i=l 

which are solved numerically to find the solution 

Tj(t). The solution for values of x between the 

collocation points can be found from eqn. (1) if 

needed. If the boundary conditions are of the first 

kind, the function T(1, t) in eqn. (1) is known. If the 

= 0 (3) 

in eqn. (1), 
in eqn. (3) 

(4) 

boundary condition is of the third kind, eqn. (4) can 

be used. 

Note that the n + 1 - st collocation point is x = 1. 
Computer codes are much simpler to write in terms 
of the pointwise values of the solution, leading to 
eqn. (5), than in terms of the coefficients q(t). 

The problem, eqn. (3), has been reduced to a set of 
ordinary differential equations, eqn. (5), which can be 
integrated numerically using any standard method of 
integration. A simple explicit marching scheme would 
use in place of (5) 

N, dTj N, Tj,e+ 1 - Tj,e _ ni’ 
4 dt ’ 4 At - c BjiTi,, + fj,e (7) 

i=l 
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Finite difference methods lead to an identical 
equation except that the matrix B has a tri-diagonal 
form (for central, second-order difference schemes). 
In the orthogonal collocation method each element 
of Bji is non-zero. One might expect then that for the 
same n, the collocation method would require 
the longest computation time. The advantage of the 
collocation method is that a much smaller n may be 
used since the solution at each point is influenced 
directly by the value at all the collocation points, as 
is the case for the exact solution, instead of depend- 
ing directly on only neighboring grid points, as is the 
case in second-order finite difference schemes. In 
this respect, then, the collocation method can be 
viewed as a very high order difference equation. The 
collocation method has the added advantage of 
permitting the boundary conditions to influence the 
expansion functions, as in eqn. (1). The preference 
for one method over the other must then be based on 
computational experience giving the values of n and 
At necessary for an accurate solution. These matters 
are discussed below. 

Several methods are available for integrating the 
system of first-order ordinary differential equations. 
Because of the exponential nonlinearity, it is desir- 
able to evaluate the right-hand side as few times as 
possible. For this reason Hamming’s method, which 
is an explicit, four-point method of fifth-order 
truncation error and requires two evaluations per 
time step, is preferable to the usual Runge-Kutta 
scheme, which requires four evaluations of the 
nonlinear right-hand-side per time step. Hamming’s 
method and the modified Euler method are used 
below. The modified Euler method requires two 
evaluations per time step* but permits a larger step 
size than Hamming’s method. Other methods may 
be equally suitable. Villadsen and Sorensen’ ’ 
report a collocation method for integrating in time 
as well as position and implicit methods are also 
possible. We do not present an exhaustive compari- 
son of methods to integrate the ordinary differential 
equations, but we find that Euler’s modified method 
is very suitable. 

NUMERICAL STABILITY 

We next consider the stability of methods to 
numerically integrate eqns. (5) and deduce a stable 
step size. For simplicity consider the system of 
equations 

s_ n 
dt - c Nj,Ti +f(Tj) + G(t) (8) 

i= 1 

* The modified Euler method is an iterative method. We use 
only two steps in the iteration so that it is essentially a predic- 
tor - corrector method. 

A n+ l,iBj,n+ I 
N’i = Bji - (Nu/2) + A,, I,“+ 1 

(9) 

The term G(t) arises because of the boundary con- 
ditions. Let yj be the numerically calculated value of 
Tj and define the error ej = Tj - Yj. We assume the 
error is small so that we can expand the nonlinear 
term in a Taylor series, keeping only first-order 
terms, to obtain the following equations governing 
the error: 

dZ - = & 
dt 

P = {ej}, O= = {Dji} (10) 

Dji = 
Nji j#i 

Nji + af/aYjIyj j=i 
i,j = 1, . . .,n 

The integration method used is Euler’s modified 
method which is a predictor-corrector method. ’ 2 
To study the growth of the error we define the 
natural norms 

ll~ll m = max lxil 

By applying Euler’s modified method to eqn. (10) 
and requiring that the error die out in time it can be 
shown that a sufficient condition for numerical 
stability is 

where h = At. For the linear diffusion problem 
Dji = Nji and to first order eqn. (12) becomes 

hll~ll, I 2 (13) 

Values of this norm are shown in Fig. 1 for several 
different polynomials. Smaller values of At must be 
used as we change from Jacobi to Legendre to 
Chebycheff polynomials. Note also the rapid 
decrease of stable step size as n increases. Equation (9) 
and Fig. 1 show that as the Nusselt number is 
decreased from infinity (boundary condition of the 
first kind), the stable step size increases. If Nij is 
positive definite the use of the Euclidean norm 
would replace [IN]] m in eqn. (13) by the maximum 
eigenvalue of [Nij]. Computation of the eigenvalues 
for Jacobi polynomials, n = 6, shows the maximum 
eigenvalue is 1200 for Nu = co and 600 for 
Nu = 55.3. 

When the reaction term is present, it is difficult 
to predict how the stability changes because [Dij] 
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Fig. 1. Matrix norm of eqn. (13) versus N. 

depends on the solution yj(t). It is possible to check 
such a criteria as (12) to guard against error growth 
and to use an efficient size of At. For the applications 
discussed here, which have a Lewis number near one, 
the stable step size was predicted from eqn. (13). 
With small Lewis numbers, the temperature domi- 
nates the stability through the exponential non- 

linearity. 

CONVERGENCE 

We prove convergence of the orthogonal colloca- 
tion method by relating it to the Galerkin method, 
whose convergence has been studied. For linear 
problems Villadsen and Stewart5 have shown that 
the orthogonal collocation and Galerkin methods 
yield identical results. 

For the nonlinear problem, eqns. (15, 16) below, 
Finlayson’ 3 has shown that the Galerkin method 
converges to a weak solution as n approaches 
infinity. The quadrature involved in the Galerkin 
method is exact if the integrand is a polynomial of 
degree no greater than n - 1 in x2. In this case the 
exponential function in the reaction rate term is not 
such a polynomial so that the quadrature is approxi- 
mate. The quadrature error approaches zero, how- 
ever, as the number of quadrature pointsm, increases 
(provided the integrand is continuous, as is the case 
here). The number of quadrature points increases as 
n is increased, since m 2 n. Thus in the limit n + 60 

the quadrature is exact and the collocation and 
Galerkin solutions coincide. Since the Galerkin 
method converges, so must the orthogonal colloca- 
tion method converge. 

APPLICATIONS 

Linear diflision 
We first apply orthogonal collocation to the 

unsteady-state diffusion in a slab. Liu’ has previously 

compared finite difference methods for this problem. 

au a2u -=- 
at a2 (14) 

g (0, t) = 0, u(l, t) = 1, U(X, 0) = 0 

The Jacobi polynomials and Hamming’s predictor- 
modifier-corrector method” were used. 

The value of concentration at the collocation point 
was compared to the exact value given by an infinite 
series and the errors are shown in Table 1. A three- 
term expansion is accurate within 0.02% and a six- 
term expansion gives six digit accuracy. For smaller 
times than those shown some error occurs due to the 
discontinuous initial conditions, as in finite difference 
methods. The computation times can be reduced by 
using another method of integrating ODE. It was 
also found that one can use a step size relatively close 
to that predicted by an equation similar to (13) 
applicable to Hamming’s method. 

It is clear from Table 1 that the orthogonal 
collocation method can give accurate results. 
Comparison with the calculations reported by Liu’ 
shows that the collocation solution is more accurate 
than finite difference solutions which use three to 
twelve times as many spatial grid points. 

TABLE 1 

POINTWISE ERROR FOR LINEAR DIFFUSION 
PROBLEM 

Computation 
n time (Set on At 

IBM 7094) 
t = 0.1 t = 0.5 

: 
0.237 OTlO5 .000133 
4.097 oTIOo5 NKIOOO :E 

Boundary condition of the first kind 

We consider next the diffusion of mass and energy 
in a spherical catalyst pellet with an exothermic first- 
order irreversible reaction. The equations are given 
by McGuire and Lapidus.14 

- 6pcexp (~(1 - l/T)} = 0 (15) 

+ 6cexp (~(1 - l/T)} = 0 (16) 
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(17) 

7-(x, 0) = 1.05, c(x, 0) = 1 .o (18) 

T(1, t) = c(1, t) = 1.0 (19) 

The collocation method is applied to eqn. (15) to 
obtain eqn. (5) and a similar equation results from 
eqn. (16). The boundary conditions (17) are satisfied 
automatically by the polynomials, (1). Values of the 
parameters are chosen to correspond to a case having 
multiple steady-state solutions and are listed in the 
nomenclature. The problem represents the response 
to a step change in temperature and the solution 
approaches the first steady-state solution. Calcula- 
tions are made using orthogonal collocation and 
finite difference methods. For the reactor model the 
flux at the boundary is the most important quantity 
and is expected to be less accurate than the tem- 
perature and concentration values themselves. For 
the collocation solution the flux is given by 

A n+ l,jTj (20) 

For the finite difference solutions the flux was 
initially evaluated by a two-point difference. This 
proved to be so inaccurate, however, that another 
means was devised. If eqn. (15) is integrated over x 
one obtains: 

- S/k exp [y(l - l/T)]x2 dx (21) 

Simpson’s rule was used to calculate the integral, 
and this gives a more accurate representation of the 
flux for coarse grid spacings. The collocation 
solution gave nearly identical results using either 
eqn. (20) or (21). Finite difference solutions are 
identified by the grid spacings (Ax, At) and colloca- 
tion solutions by the number of collocation points 
and step size (n, At). 

The collocation solution was calculated using 
Jacobi polynomials and the equations were inte- 
grated to t = 5 using Hamming’s method. The finite 
difference scheme used on this problem was Liu’s 
method, which is an accurate, stable explicit scheme. 9 
Calculations for this problem were made on an IBM 
7094 computer. 

Exploratory calculations, Fig. 2, indicated that the 
development of the solution in time was relatively 
smooth except for small times. The large oscillations 
in the approximate initial condition arise because one 

is trying to approximate a step function with a low 
order polynomial. These oscillations die out rapidly 
(t < 1) and have little effect on the solution for 
t 2 1. At the collocation points the temperature 
equals the initial condition value as would the tem- 
perature function in a finite difference solution. 
With a finite difference solution, one merely draws 

1.0’ 

. 

I.OL 

7 

1.0; !4 

1 
1.00 IOL- 

0 
I I I I 

.2 .4 .6 .8 

X 

Fig. 2. Temperature profiles for various times. (Using Jacob 
polynomials, N= 6; Hamming’s method, At = .05) 1 to 9 

correspond to t = 01, 5, 10, 25, 50, 75, 100, co. 

a curve through the solution; while with ortho- 
gonal collocation the ‘curve’ is already specified. 
To approximate temperature functions with steep 
gradients more terms are needed, as is shown below. 
Because of the smoothness of the solution for t > 5, 
and the fact that the steady state had a dimension- 
less time of the order of 100, it was decided to limit 
all further computations to t I 5. 

A comparison of the collocation solution (6, 0.05) 
to the best finite difference solution (0.01, 0.005) 
showed that they agree to within four or five digits, 
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As n increases to eight and ten, the agreement 
increases to five or six digits. The behavior of the 
surface flux under different conditions is shown in 
Tables 2 and 3. The collocation method (n = 6) gives 
the surface flux within one-half per cent whereas the 
finite difference solution (Ax = 0.05) is in error by 
3 %. At t = 1, the collocation solution with n = 10 

TABLE 2 
COLLOCATION SURFACE DERIVATIVES 

Surface Heat Flux Computation Time (Set 
on IBM 7094) 

n At t=1 t=5 
6 .05 0.3419 0.1570 

1: .Ol .Ol 0.3430 0.3431 0.1570 0.1570 2z 39.2 

gives better results than the finite difference solution 
with l/Ax = 100, demonstrating that the number of 
collocation points can be about ten times less than 
the number of finite difference grid points for equiva- 
lent accuracy. For the same At the collocation method 
with n = 8 uses about the same computation time 
as the finite difference method with l/Ax = 20. This 
provides a quantitative comparison of computation 
time when the matrix B in eqn. (7) is tri-diagonal or 
complete. In this case the collocation method would 
be preferred because it is more accurate. 

TABLE 3 
FINITE DIFFERENCE SURFACE DERIVATIVES 

Surface Heat Flux Computation Time (Set 
on IBM 7094) 

.04” 6 
t=1 t=5 

0.3537 0.1579 25.7 
.025 .005 0.3465 0.1575 101.3 
.Ol .005 0.3449 0.1574 251.2 

Figure 3 shows the error in the surface flux as a 
function of computation time. The values are com- 
pared to the average of the best finite difference and 
best collocation solutions (they differed by about 
3%). The triangle symbols represent the values 
listed in Tables 2 and 3. For the collocation method the 
optimum At was just below the value of At for which 
the problem became numerically unstable. Further 
decreases in At, or increases in computation time, 
caused little if any change. 

It is clear from Fig. 3 that the collocation solution 
is much faster than a finite difference solution of 
comparable accuracy. If the various solutions are 
compared to the best solution obtained using the 
same method, the collocation solution (6, 0.05) is 
about twenty times as fast as a finite difference 
solution (0.025, 0.005) of about the same accuracy. 

In this case the speed advantage is due to the ability 
to take larger time steps in the collocation method, 
and this is made possible due to the smaller number 
of terms necessary to obtain the solutions 

.D 

8 
a: .OO! 

E 

0 

L AX:.05 

A TABULAR VALUES OF 
TABLES 2 AND3 

0 ADDITIONAL VALUES 

c AX= 025 

1 I 
20 40 

COMPUTATION TIME (SECONDS) 

Fig. 3. Error in the temperature surface flux versus compu- 
tation time (t = I). 

Boundary condition of third kind 
For this case eqn. (19) is changed to 

-g = F (T - g(t)), 

ac -- = s_h (c - h(t)) 
ax 2 

at x = 1 (22) 

g(t) = 1.1, h(t) = 1.0 

The boundary conditions (22) are satisfied by eqn. (6) 
with a similar equation for concentration. The initial 
conditions are taken as the two-term approximation 
to the intermediate steady-state for the problem with 
infinite Nu and Sh. The 10% temperature perturba- 
tion on the boundary is sufficient to drive the 
solution to the third steady-state. 

Collocation solutions were derived using Jacobi, 
Legendre, or Chebycheff polynomials and either the 
modified Euler or Hamming’s method of integration. 
Calculations were made until t = 35. Finite differ- 
ence solutions were obtained using Liu’s method and 
the implicit method. In the implicit method the 
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boundary conditions were handled using a false 
boundary to retain the second-order truncation error 
and the reaction rate term was evaluated at the 
previous time, as was done by McGuire and Lapidus. 1 
Calculations were done on a CDC 6400 computer, 
which proved to be about twice as fast as the 
IBM 7094 for these problems. 

Exploratory calculations, Fig. 4, indicated the 
solution had large spatial and time derivatives. 
Consequently, we expect that more terms are needed 

1.8 

1.6 

i 1.4 

1.2 

I .o, I I I I I 
.2 .4 .6 .8 1.0 

X 

Fig. 4. Temperature profiles for various times (Using Jacobi 
polynomials, N = 6, Hamming’s method, At = 0.05) 1 to 6 

correspond to I = 1, 10, 15, 20, 25, 30. 

to approximate the solution. Experience showed, 
too, that even though the temperature was approxi- 
mated within two to three digits using 6 to 10 terms 
and the Jacobi polynomials, the convergence with n 
was rather slow (see Table 4). If Legendre polynomials 
are used instead the convergence is much faster. This 
is probably due to the fact that the Jacobi poly- 
nomials weight more heavily the region away from 
the boundary due to the factor (1 - x2), whereas the 
Legendre polynomials give equal weight to all 
regions (except for the skewness introduced by the 
spherical geometry). In boundary conditions of the 

TABLE 4 
HEAT FLUX FROM CATALYST 

Flux 
Polynomial n At 

t = 22 t = 35 

Jacobi* 0.05 2.348 4.241 
Jacobi* : 0025 2.857 4.594 
Jacobi* 10 0.025 2.489 5.078 
Legendret 

: 
0.10 2.477 5.159 

Legendret 0.05 2.539 4.956 
Legendret 

:; 
0.04 2.572 5.042 

Legendret 0.025 2.584 5.024 

* Jacobi results using Hamming’s method. 
t Legendre results using Euler’s modified method. 

third kind, the temperature at the boundary is not 
known, so that better results for the flux at the 
boundary are expected if the region near the boundary 
is emphasised, or at least not de-emphasised. 

It was found that Euler’s modified method of 
integration gave accuracy comparable to Hamming’s 
method, took about the same computation time for 
the same At, but allowed time steps about twice as 
large. Consequently, Euler’s modified method is 
preferred for these problems. 

If one looks at the difference between the surface 
derivative for a collocation solution and the best 
finite difference solution as a function of time, one 
finds the type of behavior exhibited in Fig. 5. The 
spike at t = 5 should be ignored since it is in this 
region that the surface derivative passes through 
zero. Three characteristic values can be associated 
with Fig. 5: 

(i) let E, = typical error for 0 < t < 15 

(ii) let E, = maximum error for 15 < t < 25 

(iii) let E, = typical error for 25 < t (23) 

Comparison of Figs. 4 and 5 shows that the error E, 

arises when the temperature increases rapidly in the 

Fig. 5. Error in the surface heat flux as a function of time. 
(Using Legendre polynon$ls, o<,= 6, Hamming’s method, 
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TABLE 5 

Entry n At Method of Integration Expansion 
Functions El E2 E3 

Computation Time 
(Seconds) 

1 6 
2 8 

: :: 

.05 Hamming 

.025 Hamming 

.025 Hamming 

.Ol Hamming 

.05 Hamming 

.05 Hamming 

.025 Hamming 

.lO Euler 

.05 Euler 

.04 Euler 
,025 Euler 

Jacobi 
Jacobi 
Jacobi 
Jacobi 
Chebycheff 
Legendre 
Legendre 
Legendre 
Legendre 
Legendre 
Legendre 

1.5% 19.6% 15.5% 1 I.9 
1.0 15.6 8.6 30.6 
<I 12.0 1.0 41.1 
<l 12.0 1.0 98.0 
<l 7.1 9.8 11.9 
<l I.2 2.7 11.9 
in 1 2.4 1.4 30.6 
tl 

;:y 
2.7 5.1 

<I 1.4 13.3 
<1 1.8 0.34 21.8 
<l 1.4 0.02 45.6 

TABLE 6 

Entry AX At Method of Integration El 
Computation Time 

(Seconds) 

: 0.05 0.05 0.05 0.05 Implicit Liu’s 6% 2 15% 20% 1.5 11 

: 0.025 0.01 0.0025 0.005 Liu’s Liu’s <1 ;;s” 0.1 1050 8:; 

particle. Using these values one can summarise the 
effects of the integration scheme, the expansion 
functions, and the step size as done in Tables 5 and 
6. 

Based on the results for the problem with boundary 
condition of the first kind, it was felt that the follow- 
ing choices of grid spacings should give representative 
results for the finite difference computations; (0.05, 
0*05), (0.025, 0.0025), and (0.01, 0.005). Additional 
values were not examined because of the excessive 
computation time necessary to use the finite difference 
methods. 

The comparative errors for the classical implicit 
method (Table 6) are indicative of the unacceptable 
pointwise errors. Based on Liu’s comparison of his 
own method to the implicit scheme,’ and the errors 
found in Table 6, it was decided not to use the 
implicit method further. 

Based on the data in Tables 4 and 5 the modified 
Euler method is recommended over Hamming’s 
method for integration of the ODE. For boundary 
conditions of the third kind Legendre polynomials 
are recommended over Jacobi polynomials. Compari- 
son of the collocation solution, entries 10 and 11 in 
Table 5, with a finite difference solution ofcomparable 
accuracy, entry 3 in Table 6 reveals that the colloca- 
tion solution is from twenty to forty times faster. 
This advantage is due to the larger time step and the 
smaller number of terms in the collocation method 
(IO-12 rather than 40-100). It is also clear from this 
problem and the previous one that large computation 
times are necessary to model nonisothermal diffusion 
with reactions of this type, and the time savings made 

possible by the collocation method is especially 
welcome when several of these problems must be 
solved as is the case in the reactor model. 

CONCLUSIONS 

The orthogonal collocation method is shown to 
give an accurate solution to the problem of non- 
isothermal reaction and diffusion in a catalyst pellet. 
The method is shown to converge and a stability 
criterion is suggested which gives the maximum step 
size to use in the numerical calculations. Com- 
parisons with finite difference calculations show that 
orthogonal collocation was from four to forty times 
faster for comparable accuracy. This speed advantage 
is due to a larger possible step size and many fewer 
number of terms. 

The following procedure is recommended for 
orthogonal collocation. Write computer codes in 
terms of the pointwise values of the functions 
instead of the expansion coefficients. The matrices 
giving expressions for the Laplacian operator and 
first derivatives can be calculated directly from the 
roots to the polynomials, which are well tabulated. 
The criterion for a stable step size is given by 
eon. (13), and this At gives good accuracy as well. 
Euler’s modified method is a possible choice for 
integration of the ODE. Legendre polynomials 
should be used as expansion functions for boundary 
conditions of the third kind and Jacobi polynomials 
should be used for boundary conditions of the first 
kind. From six to twelve collocation points are needed 
for accurate solutions to the problems treated here. 
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a frequency factor in Arrhenius expres- 

sion 

ai 

Aij, Bij 

co 

cs 

Dij 

AE 

s(t), h(t) 

h, At 

hf 

AH 

k, 

time dependent expansion coefficient 

Lagrange interpolation coefficients for 

L and V2, defined by eqn. (4) 

reference concentration 

heat capacity of catalyst particle 

elements of linearised stability analysis, 

defined by eqn. (10) 

diameter of catalyst particle 

diffusivity of particle fluid 

error (in numerical integration) of jth 
dependent variable 

activation energy 

functions, defined in eqn. (22) 

time step size 

k 

k, 

m 

?l 

Nl 

N2 

heat transfer coefficient in fluid 

heat of reaction 

a exp (- AE/R, TO), reaction rate co- 
efficient evaluated at TO 

thermal conductivity of porous solid 

mass transfer coefficient 

number of quadrature points 

number of expansion functions 

dpvp,c,lk, inverse of dimensionless 
thermal diffusivity, 705 

d,vlD,, inverse of dimensionless mass 
diffusivity, 1225 

Nij elements of matrix, defined by eqn. (9) 

NU h,d,/k, Nusselt number, 55.3 

II . II 5 norm, defined by eqn. (11) 

pi(x”> expansion function 

NOMENCLATURE 

r 

RI 

Sh 

t 

Tll 

aij = U(Xj, t) 

V 

X 

xi 

Ax 

radius of catalyst 

gas constant 

k,d,lD,, Sherwood number, 66.5 

dimensionless time 

reference temperature 

approximate solution atjth collocation 
point 

interstitial velocity of fluid 

dimensionless spatial variable 

jth collocation point 

spatial step size 

Greek symbols 

P 

6 

& 

Y 

PS 

- c, AHDJkT,, dimensionless heat of 
reaction, 0.6 

r2kJD,, Thiele modulus squared, 0.25 

void fraction of catalyst, 0.65 

AEIR,T,, dimensionless activation 

energy, 20 

density of catalyst 
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RESUME 

Les modeles de reacteurs chimiques d litjxe doivent 
frequemment tenir compte de la d@usion de matitre et 
d’energie d I’interieur des particules de catalyseur. La 
methode de lhrrangement orthogonal est developpee 
pour desproblemes transitoires non lineaires de ce type. 
On demontre qu’une suite de solutions approchees 
converge vers la solution exacte. On donne un critbre de 
stabilite’ permettant d’estimer le pas maximum a 
choisir dans l’integration. 

On applique la methode de lhrrangement orthogonal 
au cas de la dtjiision lineaire transitoire; en utilisant 
six developpements en se’rie, elle permet d’obtenir avec 
precision six chiflres significatifs pour des temps 
adimensionnels superieurs d Q,1. La methode est alors 
appliquee aux problemes de di#iision non lineaire et de 
reaction qui possedent des solutions multiples. Huit a 
douze de’veloppements en serie sont necessaires pour 
obtenir les temperatures avec une precision de 0,03 d 
0,1 pour cent ainsi que IeJEtrx de chaleur h la surface 
de la pastille de catalyseur avec une precision de 1%. 
Pour des conditions aux limites de premiere espkce, il 
est preferable d’utiliser les polynomes de JACOBI 
tandis qubn recommande les polynomes de 
LEGENDRE pour des conditions aux limites de 
troisidme esptce. En comparant la methode de 
I’arrangement a deux methodes des diflerences jinies 
on montre que pour une precision comparable, elle est 
de quartre a quarante,foisplus rapide que ces dernieres. 

ZUSAMMENFASSUNG 

H&fig werden Modelle fiir Katalysatorschichte fiir 
die Dtjiision von Masse und Energie in Katalysator- 
teilchen herangezogen. Die orthogonale Kollokations- 
methode wird fur voriiber gehende nichtlinearer 
Probleme dieses Typs herangezogen. Es wird bewiesen, 
dab’ eine Folge von Niiherungsliisungen in die exakte 
Losung konvergiert. Es wird ein Stabilitiitskriterium 
vorgestellt, das zur Abschiitzung der maximalen GroJe 
der Stufen, die bei der Integration verwendet werden 
konnen, benutzt werden kann. 

Die orthogonale Kollokationsmethode wird ange- 
wendet auf die lineare Transient-Dtjjiision und gibt 
eine Genauigkeit von sechs Stellen fur die dimensions- 
losen Zeiten, die grojer sind als Q,1, wenn 6 Erweiter- 
ungsfunktionen benutzt werden. Die Methode wird 
dann auf nichtlineare Dtjiisionsund Reaktionsprobleme 
angewandt, die Mehrfachliisungen aufweisen. Acht bis 
zwiilf Erweiterungsfunktionen werden beniitigt, urn die 
Temperaturen mit einer Genauigkeit von 043 % bis 
0,1x und den WarmeJ%@ an der Oberflache des 
Katalysator-Pellets innerhalb 1% zu erhalten. Jacobi 
Polynome sind die bevorzugten Erweiterungsfunktionen 

fiir die Randbedingungen erster Art und Legendre 
Polynome werden vorgeschlagen fiir Randbedingungen 
der dritten Art. Der Vergleich mit zwei Methoden 
endlicher Dtxerenzen zeigt, dab’ die Kollokations- 
methode vier bis 4 omal schneller ist bei vergleichbarer 
Genauigkeit. 


