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Abstract-The approximation scheme entitled method of weighted residuals is extended to systems of 
differential equations and vector differential equations. The variational principles proposed by ROSEN, 
CHAMBERS and BIOT for unsteady-state heat transport are all shown to he applications of the method of 
weighted residuals. The von-K&m&n-Pohlhausen method and the method of moments are also shown 
to be special cases. The method is illustrated by application to the problem of unsteady heat transfer to 
a fluid in ideal stagnation flow. 

APPROXIMATE analytical solutions to partial differ- 
ential equations are useful when exact analytical 
solutions are too difficult or impossible to obtain or 
when the work to find a numerical solution cannot 
be justified. For the heat transport equation, tech- 
niques have been developed by ROSEN [l], CHAM- 
BERS [2] and BIOT [3,4] to approximate the solution 
using some modification of the calculus of varia- 
tions. It is shown below that these approximating 
techniques are all applications of the method of 
weighted residuals using the Gale&in criterion. An 
example shows how the method may be used to 
generate approximate solutions to transport prob- 
lems arising in chemical engineering. 

METHOD OF WEIGHTED RESIDUALS 

The application of the method of weighted resi- 
duals to solve a single scalar differential equation is 
discussed by CRANDALL [5] and KANTOROV~CH and 
KRYLOV [6]. For analysis of transport phenomena, 
it is necessary to apply the method of weighted 
residuals (abbreviated MWR) to systems of differ- 
ential equations and to vector differential equations, 
including realistic boundary conditions ; this genera- 
lization is outlined below. BIEZENO and GRAMMEL 
[7] briefly mention a special case of the application 
of MWR to systems of equations. 

General discussion 

Given the system of differential equations, boun- 
dary and initial conditions governing transport, the 

general approach is to assume a trial solution whose 
functional dependence on position is chosen, but 
which includes undetermined functions of time. 
These functions are found by requiring that the trial 
solution satisfy the differential equation approxi- 
mately. 

Consider, for example, the system of equations 
describing simple heat conduction or other scalar 
transport : 

8T peat +v*q=o (1) 

q+kVT=O 

in the domain G, for t > 0 

(2) 

o-q - h(x, t)[T - x(x)J = 0 

on I, the boundary of G, and 

(3) 

T(x, 0) = +(x) (4) 

for x in G, where x and $ are the given boundary 
and initial data. It is physically reasonable to dis- 
tinguish between the equation of change (I), which 
rests ultimately on general definitions of content and 
flux, and the constitutive relation (2), which must be 
supported by experimental determinations of actual 
behaviour of particular materials. The method of 
weighted residuals (MWR) will be used to approxi- 
mate the solution to this problem. 

Take trial solutions 

T(x, 0 = To(x) + $laXr)T,((x) (5) 
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iiCx, t, = 9dx) + ifl b*(thi(x) (6) 

where the choices of T,,, Ti, qo, and qi are arbitrary. 
Suppose, for illustrative purposes only, that the 
initial conditions (4) can be satisfied exactly by an 
appropriate choice of ai( and also that the b,(O) 
can be so chosen that 

-kVti = 40(x) + $3 bi(O)qi(x) (7) 

The unknowns, Ui and bi in equations (5) and (6), are 
determined by making the trial solution approxi- 
mately satisfy the differential equations, (1) and 
(2), and the boundary conditions, (3). In this ex- 
ample, the choice Qi = - kVTi, N = M, Ui = bi 
satisfies equation (2) exactly, but in general such a 
simplification is not possible. 

Define the residuals 

rzpc 
aT 
+r’lj (8) 

R={+kVT (9) 

r,zn*q-h(T-X) (10) 

These characterize the extent to which the pair of 
functions T and ij satisfy the differential equations 
and boundary conditions. As the number (N and 
M) of functions (ri and qJ is increased in successive 
approximations, one expects the residuals to become 
smaller; the exact solution is obtained when the 
residuals are identically zero. As an approximation 
to this ideal, the weighted integrals of the residual 
are made zero : 

s 
SirdV = 0, 

s 
p,.RdV = 0 and S,r,dS = S 

G G s r 

(11) 

where Si, pi, and S, are the weighting functions. If 
T and ij are the exact solutions, then equations (11) 
are satisfied regardless of the choice of the weighting 
functions. These can be chosen in some five 
different ways, and each choice corresponds to a 
different criterion in the MWR. Once this choice is 
made, equations (11) become a set of N 4 M first- 
order ordinary differential equations in the N + M 
unknowns a, and bi. The solution to these equations 
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is substituted into equations (5) and (6) to give the 
approximate solution to the problem. 

Method of CoIIocation 

If one chooses SI = S(x, - x), the Dirac delta 
function, then the residual r is zero at the points xi, 
and hence the differential equation (1) is satisfied 
exactly at these points. When treating vector equa- 
tions and systems of equations, full generality can be 
achieved only by using a hypervector representation 
[8]. In order to simplify the presentation, two 
special cases will be noted here. Case (i) corres- 
ponds to making zero the component of the residual 
R in an arbitrary direction, e, at the point xj: 

(i) pj = eS(x. -X) J (12) 

Case (ii) corresponds to making the residual R zero 
at the point xi: 

(ii) pj=R6(x.-x) J (13) 

Note that R-R = 0 is equivalent to R = 0, which 
specifies three times as many conditions as does 
e*R = 0. The boundary residual can be handled in 
a similar way, but the total number of conditions in 
equations (11) cannot exceed the total number of 
unknowns, M -I- N. 

Subdomain method 

The differential equations are satisfied on the 
average in each of several subdomains if the weight- 
ing functions are chosen as follows: 

Sj = 
1 x in Gj 
0 x not in Gj 

where the Gj are non-overlapping parts of G. For 
vector equations there is again a wide variety of 
choices of the weighting function pj. Special case 
(i) corresponds to annihilating the e-component of 
the vector residual on the average in the sub- 
domains Hi : 

(9 

For case (ii): 

pj = 
e xinHi 
0 x not in Hj (15) 

(ii) et,), et2) and ec3), x in Hj 
0 x not in Hi (16) 

the vector residual is zero on the average in the 
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subdomains Hi, as long as the three vectors eCl,, eC2) 
and eC3) are linearly independent. It is not necessary 
that Hj = Gj, although such a choice of the two 
types of subdomains is possible. The boundary 
residual is handled in a similar way. 

Method of least squares 

The generalization of the method of least squares 
presents some difficulty. In the simple case of a 
single scalar equation with residual r[ai(t)], the 
weighting function is chosen to be Si = &@a,. Jf 
the a, were undetermined constants rather than 
functions of time, this choice of Si would corre- 
spond to minimizing the mean square residual, 
J = + sG r2dV, with respect to the ai. When the ai 
are functions of time, this interpretation is no 
longer valid, because the Jis minimized with respect 
to ai while keeping the derivatives cii fixed. If J is 
to be a minimum for all time among all possible 
functions a,(t), then the a,(t) must satisfy 

g=O and aJ=() i 1 
aai adi ’ = ’ **’ 

9 N (17) 

These two sets of N conditions will be incompatible 
in general, as the example in the Appendix shows. 
On the basis of these remarks, it can be concluded 
that the direct extension of the least squares criterion 
is of doubtful significance when the aj are functions 
of time rather than constants. 

However, the original version of the least squares 
criterion can advantageously be applied to systems 
of equations. For example, in seeking the steady- 
state solution to equations (1) and (2) the ai and b, 
are indeed constants. If the component residuals 
are r(ai, bi) and R(ai, bi) the total mean-square 
residual must be written 

51 2 
s 

G(rC,r2 + rc,R-R)dV (18) 

with IC, and rc2 suitably chosen positive constants. 
The constants, a, and b,, are chosen to minimize J. 

Method of moments 

In this method the weighting functions are mem- 
bers of any complete set of functions. COURANT 
and HILBEXT [9] give examples of complete sets of 
scalar-valued functions; examples of complete sets 
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of vector-valued functions are provided by MORSE 
and FESHBACH [lo]. For the one-dimensional case, a 
complete system is (1, X, x2, a.+). The terms 

/rdx, jrxdx, srx’dx, . . . (19) 

are then called the zero-th, first and second mo- 
ments of the residual, r. 

Galerkin method 

In the Gale&in method the weighting functions 
S, and pj are chosen to be the approximating 
functions Tj and qj, respectively. Alternatively, the 
trial solution may take the general form 

iii(x, t) = T(al, a2, . . . , aN, x, t) (20) 

in which case the weighting functions would be 
aT/aai. Another version results if one takes as 
weighting functions the exact or approximate 
solution to the adjoint equation (e.g. Ref. [I I]). The 
Gale&in method is closely related to a variational 
principle if one exists for the problem, as has been 
shown in a few specific cases [12-141. Further work 
is being done to elucidate this connexion. 

If(i) the problem can be solved using separation 
of variables, (ii) the approximating functions are 
taken to be the eigenfunctions, and (iii) the Gale&in 
criterion of MWR is used, then the solution genera- 
ted by MWR (as N approaches infinity) is the exact 
solution as found using separation of variables. Of 
course, MWR is not restricted to time-dependent 
problems; it can be used to reduce the number of 
independent variables in any system of partial 
differential equations. The resulting system of 
equations is simpler (it may be sets of ordinary 
differential equations or algebraic equations), but 
its solution remains only an approximate solution 
to the original problem. The MWR can also be 
applied to non-linear problems, one of its most 
attractive features. 

In applications of MWR it is important to know 
how accurate a given approximation is, and whether 
or not successive approximations converge to the 
exact solution. The fist question is seldom treated 
in the literature; one hopes that the approximation 
is a good one when the successive approximations 
cease to differ appreciably as the number of 
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approximating functions increases. Convergence 
of the approximate solution to the exact solution 
has been proved in one case by GREEN [15], who 
treated the problem 

a2+ a4 
-- ,t-&J=, ax2 

by using MWR with the Galerkin criterion. GREEN 
proves that the approximations for 4, 8$/8x and 
@/at converge uniformly [9] to their exact values. 
Furthermore, under special cases, GREEN gives an 
estimate of the error at any point. KANT~R~VICH 

and RRYLOV [6] prove convergence of the Galerkin 
method for special cases in which a variational 
principle exists for the problem. In addition, they 
point out that the weighting functions must be 
members of a complete set of functions if conver: 
gence is to be assured. 

UNIFICATION OF PREVIOUS THEORIES 

When using the calculus of variations [16] to 
generate approximate solutions to eigenvalue or 
boundary value problems, one tries to find the 
function 4 which makes the integral 

%#9=~,yG...jF(4,x, ,..., t,$ x 

i ,.. dt 

stationary, a minimum, or a maximum. The func- 
tional Q[, is a real number: the integrations must 
extend over defSte ranges of all the independent 
variables on which the function 4 depends. In 
addition, F depends on the partial derivatives with 
respect to the independent variables.? Conse- 
quently, whenever a “variational principle” is stated 
such that (i) the functional, 0, is a function of one of 
the independent variables, as t, and (ii) the func- 

(23) where the T,(x) are an orthonormal set of known 
functions which satisfy the boundary conditions, 
and the a, are determined by the “variational 
principle”. ROSEN gives no details on how aT/at is 
kept tied when T is varied; this is equivalent to 
keeping d, fixed while varying a,. When I is 
stationary, the equations which the ai must satisfy 
are derived by putting equation (26) into equation 
(24) and applying the “variational principle” : 

i$l JJPCd,T, - V*(kaiVTi)]TjdV = 0, j = 1, . . . , N 

(27) 
t If F did not depehd on any time derivatives, e.g. %$/at, 

then the integration with respect to t would not be performed; 
Q(t) could be considered as a real number which depends on 
the-parameter t; and the calculus of variations could be used 
to formulate and solve a variational urinciole for Q, at each 

tional, F, depends on derivatives with respect to 
that independent variable, then calling the principle 
a variational principle is not fully justified. Indeed, 
the so-called variational principles of ROSEN [l], 
CHAMBERS [2] and BIOT [3,4] can now be interpreted 
as applications of the method of weighted residuals. 

Analysis of ROSEN’S “Variational Principle” 

In order to approximate the solution to the 
unsteady-state heat conduction equation, ROSEN [ 1 ] 
defines the integral 
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I(t) = - S[ $k(VT)’ 
G 

+ pCT ‘$]dV + 

+ Tkn*VTdS 
s 

(24) 
r 

His “restricted variational principle” states that I is 
to be made stationary (61= 0) with respect to 
arbitrary variations in temperature when the heat 
flux is given on l? and aT/at is given in G. ROSEN 
shows that under these conditions the temperature 
satisfies the Euler equation 

PC 
aT 
X-V.(kVT)=O (25) 

For calculational purposes, ROSEN suggests expand- 
ing the temperature in the series 

- _ 

It should be noted that if equation (26) is to satisfy 
the boundary conditions for all values of ai, one 
must have al = 1; T1 must satisfy the condition 
- kn * VT, = the given heat flux on r ; and n* VT, 
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= 0 on r for i > 1. These considerations were not 
pointed out by ROSEN but are clearly revealed when 
the “variational principle” is viewed within the 
framework of MWR. 

Equation (27) can also be derived using MWR. 
Take the same trial solution (26), with the restric- 
tions noted above, and substitute it into equation 
(25) to form the residual. Apply the Gale&in 
criterion to get 

s II Tj pC 2 cii!& - V* (k f alVIJ dV = 0 (28) 
G i=l i=l 1 

which is equation (27). Thus the set of ordinary 
differential equations for the a, can be derived by 
either the “variational principle” or MWR with the 
Galerkin criterion. Since the integral lis a function 
of time, it is more appropriate to view the technique 
as an application of MWR using the Gale&in 
criterion than as a variational principle. 

Analysis of CHAMBERS’ “ Variational Principle” 

CHAEWERS [2] has stated a “variational principle” 
which is similar to that of ROSEN, except that aT/at is 
varied during the variation and T is held tied 
instead of vice versa. C!KU~~ERS gives no details to 
show how this principle can be used, but if the 
temperature is expressed as in equation (26), then 
CHAMuJZRs’ “variational principle” becomes an 
application of MWR. The proof is similar to that 
given above, and the details are omitted. 

Analysis of BIOT’S Theory 

In order to solve the heat transport equation (25) 
with the radiation boundary condition 

-kn*VT=h(T-;C) (2% 

where x and h are known functions of boundary 
position and time, BIOT [3,4] introduces a heat flow 
vector, H, defined such that 

pCT+V*H=O (30) 

With this definition the differential equation (25) 
becomes, for constant p, C and k 

v.[;g+vT] =o 

The analysis of transport processes 

Equation (31) will hold if 

;$+vT=O (32) 

and then the boundary condition (29) is satisfied if 

1 aH 
j;o*x+~-T=O (33) 

The problem can be summarized as solving equa- 
tion (32) with the restriction (30) and the boundary 
condition (33). BIOT’S “variational principle” is 

G(;/GpCT”dV) +IG; $SHdV + 

+I& +; n*F)n*8HdS = 0 (34) 

He shows that if equation (34) is satisfied for arbi- 
trary variations in H, (arbitrary except that H must 
satisfy equation 30), then H and T satisfy equations 
(32) and (33). Next, BIOT expands H in a series 

H(x, 0 = i& &)H,(x) (35) 

where the Ht are a chosen set of functions, and the 
“variational principle” determines the functions 
&), which BIOT calls generalized co-ordinates. If 
the “variational principle” is used, it is found that 
the N qi)s must satisfy the equations 

S,H,+T + ;$]dV + . 

+ +x- T dS= 0 (36) I 
i=l , **a, N 

This set of equations can be rearranged to indicate 
the explicit dependence on qi and its time derivative 

81: 
N 

= [S qj Hi-VqdV 
j=l G 

- /$*HiqdS] + 

(31) 
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rh 
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Equations (37) are solved for the 4i(t), and then 
equations (35) and (30) give the approximate solu- 
tion. 

When MWR is applied to the system of scalar and 
vector equations (30, 32, 33), the same set of equa- 
tions (37) to determine qi results. To see this, sub- 
stitute the trial solution (35) for H and equation (26) 
for T into the equations (30, 32, 33) to form the 
residuals 

r=pC 2 aj7’j+ t qjV*Hj (38) 
j=l j=l 

R = k .i 4jHj + 2 ajVq (39) 
J 1 j=l 

rr=k.i 4jn*Hj+X-j$lajTI (40) 
J 1 

If one chooses aj = qj, PCTj = -V-H,, then 
r = 0. Make this choice and apply the Galerkin 
criterion to the residuals R and rr with the weighting 
functions H, and n-H,, respectively. The sum of the 
volume and surface weighted averages is just 
equation (37). Hence, the same results are achieved 
when one uses the Gale&in criterion of MWR as 
when one uses the “variational principle” of BIOT. 
Since the “functional” of BIOT depends on time (in 
fact equation (34) shows that no “functional” 
exists), it is more appropriate to regard the tech- 
nique as a disguised application of MWR using 
Gale&in’s criterion. 

BIOT [3, 41 extends his treatment to include 
temperature-dependent properties and anisotropic 
solids. He also uses trial functions of the more 
general form 

II = H(q&), . . . , qd0, x, 0 (41) 

All these modifications can be handled using MWR; 
in the latter case the weighting functions are 

aH/a9,. 
NIGAM and AGRAWAL [17], and later BIOT [18], 

include in the above formalism the convection of 
heat with a known velocity field; i.e. the important 
convective term pCu*VTis included in equation (1). 
In the same way, GUPTA [19] develops a “variational 
principle” for heat transfer to a fluid in fully 
developed laminar flow in uniform channels. All 
these “variational principles” are equivalent to 
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applications of MWR with the Galerkin criterion, 
just as in the examples described here. 

DISCUSSION 

Several points are clarified by viewing the “varia- 
tional principles” of ROSEN, BIOT and others as 
applications of MWR. First, MWR is more general 
than any of these principles that use the Gale&in 
criterion, which is only one of some five possible 
criteria in MWR. Furthermore, MWR can be 
applied to any system of differential equations 
whether or not a “variational principle” has been 
derived. 

In ROSEN’S analysis, the question of which 
approximating functions satisfy which boundary 
conditions was noted and answered above. BIOT 
states [3] that the energy equation is satisfied 
exactly in his method. The energy equation is split 
into two equations, (30) and (3 I), and this approach 
is analogous to distinguishing between the equation 
of change (1) and the heat-flux constitutive relation 
(2). If equation (32) is regarded as equivalent to the 
constitutive relation, then equation (30) must be 
called the energy equation. Then the solution 
satisfies the energy equation exactly and the con- 
stitutive relation approximately. It is a matter for 
numerical computation to determine whether a 
better approximation results from satisfying both 
equations only approximately, or whether an even 
better approximation results from solving the single 
scalar equation (25) approximately. 

CITRON [20] claims that BIOT’S “variational prin- 
ciple” is related to a least squares criterion and that 
this gives a means for judging the relative accuracy 
of several approximate solutions. The “variational 
principle” as stated by CITRON is not that of 
BIOT, but rather is an application of MWR using 
the least squares criterion, the interpretation of 
which is in doubt when qi = qi(t), as in BIOT’S 
scheme. 

In the past, various special cases of MWR have 
been used in the chemical engineering literature 
under a number of aliases. The von-K&man- 
Pohlhausen method of boundary layer theory [21] is 
an application of the method of moments using a 
single approximating function. For the simplest 
case of flow past a flat plate, a velocity profile is 
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assumed which contains an unknown boundary 
layer thickness 6(x). This velocity is substituted 
into the momentum equation, which is integrated 
over the domain 0 < y < co. The result is an 
ordinary differential equation in 6(x) which is 
solved to give the velocity as a function of x and y. 
In order that the approximation be a good one, con- 
ditions may be placed on the class of admissible 
velocity profiles [21] ; this can also be done in any of 
the five alternatives of MWR. Successive approxi- 
mations can be calculated by introducing more 
undetermined functions, in addition to 6(x), and by 
applying the method of moments. In such a case, 
higher moments of the momentum equation are 
made zero; the weighting functions are 1, y, y*, e.. . 
This extension of the Von K&mBn-Pohlhausen 
method was outlined in a particular case by FUJITA 
[22], and a similar procedure can be used for other 
boundary-layer type problems. Because the method 
of moments includes a procedure for improving 
the approximation, the Von K&mi!m-Pohlhausen 
method should be viewed as the first step in a 
procedure of successive approximations. The 
other four criteria of MWR can‘also be applied to 
the same problems ; the Von KgrmBn-Pohlhausen 
method is just a particularly simple application of 
the method of weighted residuals. 

An advantangeous coupling of MWR and 
numerical finite difference methods has recently 
been used by KAPLAN and BEWICK [II] and 
KAPLAN and MARLOWE [23] to reduce the computer 
time necessary to solve nuclear reactor problems; 
the number of independent variables was reduced 
from four to two by the use of MWR. 

EXAMPLE 

A convective transport problem is solved using 
MWR, and the results are compared to the exact 
solution in order to illustrate the application of 
MWR. The problem is to calculate the transient 
heat or mass transfer to a fluid in ideal stagnation 
flow towards a flat interface; this problem earlier 
resisted both exact and approximate solution [24]. 
The situation is depicted in Fig. 1. The energy 
equation, in dimensionless form, becomes 

dT 
at f &o-VT = V*T (42) 

The analysis of transport processes 

A 

Stream liner Ak 
fi fi Heat flow fl fi 

FIG. 1. Flow field. 

with the initial and boundary conditions 

T(x,O) = 0 

T(z = 0, t) = 1 (43) 

lim T(x, t) = 0, 
z-cc 

In the planar case the velocity is given by 

u’ = a(x’i - z’k) 

or in dimensionless form 

II = 2(xi - zk) 

Assume a trial solution of the form 

(9 

T(z,r)=[‘+i&i(;)l zcs,(t) (45) 

I 0 z ’ ~A0 
where s,(t) is a thermal boundary layer thickness, 
and the ai are constants. If 

1+2 ai = 0 (46) 
i=l 

then equation (45) satisfies the boundary conditions, 
and if 6,(O) = 0 it also satisfies the initial condi- 
tions. The residual is formed by substituting equa- 
tion (45) into equation (42); thereupon approximate 
solutions can be found by using four different 
criteria of MWR, as follows: 

(i) Collocation : For the first approximation 
(N = 2), the residual is set equal to zero at the pair 
of points z/6, = 4, 3. Owing to condition (46), 
when N = 2 only BT and one ai are free to be deter- 
mined by the residual. The case N = 1 leads to the 
physically unrealistic solution s,(t) = 0. This 
choice (N = 1) can also be eliminated as a possible 
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I.6 

l Collocation 
0 Subdomain 
o Method of moments 

m Galerkin 
t 

f 
Exact solution / 

I I I 
2 3 4 

Number of opproximating functions 

Frc. 2. Convergence of successive approximations. 

trial function by noting that one term of the 
residual is then identically zero; this situation is to 
be avoided in the choice of trial functions. Two 
other first approximations correspond to setting the 
residual equal to zero at the pairs of points: 
zJS, = t, 3 or 3, $ (9 and d, respectively, in 
Fig. 2). For the second approximation, the points 
are taken as z/6, = &, 3 and 3. 

(ii) Subdomain: The domain 0 < z/S, f 1 is 
divided into N equal parts. For N = 3, the sub- 
domains become 

1 1 o+-, -a&-, 2 16-k< 1 (47) 
r 3 3 a* 3 3 6T 

(iii) Method of Least Squares : This method is not 
used because 6, is a function of time, a situation for 
which there is no direct extension of the method of 
least squares. 

(iv) Method of Moments: The weighting func- 
tions are taken as 1, z/S,, (z/S,)~, ... . 

(v) Gale&in: The weighting functions are taken 
as c?T’&+ If the residuals are formed according to 
the above prescription, one gets the set of differen- 
tial equations 

dS2, 
dt + 4N*,6~ = C(j j = 1, . . . , N (48) 

where the aj depend on the a1. If this set of equa- 
tions is consistent, one must have 

(4% 
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Equations (49) and (46) determined the value of the 
constants, Ui, and this gives a. Equation (48) is then 
solved for S,: 

s; = -& [l - exp( - 4hd)l (50) 
Pe 

and this, combined with (45), constitutes the 
approximate solution to this problem. The dimen- 
sionless heat flux at the interface is then 

N 
-2a, 

NU = x NiL2[1 - exp(-4Np,t)]-1/2 (51) 

The value of -2a,/,/a is shown in Fig. 2 for the 
various methods and levels of approximation. Note 
that on the first approximation the spread of 
-2u,/,/a is 33 per cent of the largest value, but on 
the next approximation the spread decreases to 
13 per cent of the largest value. The calculations 
become more difficult as N increases, so not all the 
methods were carried through to the third approxi- 
mation. All the methods seem to converge with 
increasing number of approximating functions, and 
there is no reason to doubt that they are converging 
to a common value (although it is not clear that they 
are converging to the exact solution recorded 
below). Such an observation justifies the engineer’s 
confidence in the approximate solution when the 
mathematician is not yet able to provide rigorous 
assurances. 

The exact solution to this problem has recently 
been found [25]:$ 

T = erfc(zN$‘[l - exp(-4Np,t)]-“2} (52) 

The heat flux at the interface is then 

NNu J7L 
= ?- NiL2[1 - exp(-4Np,t)]-1/2 (53) 

The approximate and exact formulas for heat flux 
differ only in the value of the multiplicative con- 
stant, and the exact value of the constant is indica- 
ted on Fig. 2 for comparison. The approximate 
solution predicts exactly the functional dependence 
of NNU on Np, ; this exact dependence cannot be 
assured in general. 

$ It should be emphasized that this exact solution was 
obtained after the approximate solutions described here were 
generated, and thus provided no insight into choice of trial 
functions. 

402 



The analysis of transport processes 

SUMMARY 

It was shown that several “variational principles” 
for the unsteady-state heat conduction equation are 
in reality applications of the method of weighted 
residuals (MWR), and that greater clarity and more 
generality is achieved by viewing these principles 
within the framework of MWR. An example was 
worked to indicate the usefulness of several versions 
of the approximating method. Its utility will be 
improved as information about its convergence 
properties, systematic restriction of trial functions, 
and optimal weighting of component residuals 
becomes available. The method of weighted 
residuals holds promise as a general method for 
tiding approximate solutions to transport prob- 
lems in chemical engineering, particularly those with 
awkward constitutive relations, linear and non- 
linear convective action, and complicated boundary 
conditions. 
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NOTATION 

Stagnation flow parameter (equation 44) 
Undetermined coefficients of Tc 
Undetermined coefficients of qg 
Heat capacity 
Thermal diffusivity, k&C) 
Arbitrary vectors 
Arbitrary function 
Arbitrary functional 
Arbitrary function 
Domain of integration 
i-th subdomsin of G 
Heat transfer coefficient 
j-th subdomain of G 
Heat flow vector 

Unit vector in n-direction 
Variational integral 
Mean square residual 
Thermal conductivity 
Unit vector in z-direction 
Characteristic length 
(The) method of weighted residuals 
Peclet number, LO&/D - &&a/D 
Nusselt number = -aT/LJz(,o (dimensionless) 
Unit vector, normal to I’ (positive outward) 
Weighting function 
Heat flux 
Generalized co-ordinates 
Residual 
Boundary residual 
Residual 
Surface 
Weighting function 
Weighting function 
Temperature 
Time 
Velocity 
Characteristic velocity 
Volume 
Position vector (x, y, 2) 
Parameter used in equation (48) 
Boundary of G 
Variational symbol 
Thermal boundary layer thickness 
Dirac delta function 
Boundarv layer thickness 
Scale factors in J 
Density 
Arbitrary function 
Functional of I$ 
Boundary values for temperature 
Initial distribution of temperature 

Superscripts 

- Trial solution 
. Time differentiation 
’ Dimensional quantity 

Subscripts 

0 First term in trial solution 
i Approximating function 
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APPENDIX 
J = [l?(x,y; a,)dx 

Consider the problem 

a24 a”4 o 

O<x<l 

jQ+ayZ= O<Y<co 

4@, Y) = 90, Y> = 0 Y > 0 

JO 

8J 2 1.. 
aii,= --aa,+Eat 

O<x<l 
Hence 

aI = expC--JWyl 
It is desired to show that the approximate solution and 
generated by the method of least squares does not 
necessarily minimize the average square residual. 
Approximate (b by 

&a,) = $ expC-- 2JW)yl 

6 = x(1 - Grl(Y) Let b, = exp( - 3Y) ; then 

a,(O) = 1 Ul(co) = 0 J(h) = & ew( - 6~) 

The residual is 
IV 

P = -2a, + x(1 - x)ii, 
For y < O-14, J(b,) < J(al), so the method of least 
squares does not minimize J among all functions 

Apply the method of least squares to “minimize” J: which satisfy the boundary conditions. 

R&nn&La methode d’approximation des residus peses est appliqued aux systemes d’equations 
differentielleset auxequationsdifferentiellesvectorielles. Lesprincipesvariationnelspropostkpar Rosen, 
Chambers et Biot pour le transfert de chaleur non-stationnaire s’averent etre des applications de 
cette methode. La methode de von Karman-Pohlhausen ainsi que la methode des moments repre- 
sentent egalement des cas speciaux. La methode est illustree en l’appliquant au probleme du transfert 
non stationnaire de chaleur entre uir fluide et une surface plame. 
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