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ON THE PROPER BOUNDARY CONDITIONS FOR THE THERMAL
ENTRY PROBLEM

M. W. CHANG AND B. A. FINLAYSON
Department of Chemical Engineering, University of Washington, Seattle, Washington, U.S.A.

When solving the transport equations for temperature, including convection and diffusion in two
dimensions, Heinrich ef al® and Heinrich and Zienkiewicz® obtained solutions which oscillated
in space. Since these oscillations do not arise in the physical solution, two strategies were
suggested for elimination®®. A refined mesh, using smaller elements, can eliminate the
oscillations but this solution may be very expensive for large convective terms. Instead an
asymmetric weighting function was introduced to cause ‘upstream’ weighting. Later Gartling*
showed that the oscillations could also be eliminated by changing the exit boundary condition
from one with temperature specified (an essential boundary condition in the terminology of the
calculus of variations) to one with no conductive flux (or the natural boundary condition). He
gave as the reason for the oscillation the fact that the cell Peclet number was too large to properly
resolve steep gradients of temperature. We show in this note that there is a fourth alternative: to
increase the length of the calculation domain. The entire problem has arisen because the
original, physical problem is for an infinite domain, whereas the mathematical problem is solved
on a finite domain. If that domain is too small, steep gradients in temperature occur when the
exit temperature is specified. If the domain is large enough, steep gradients do not occur at the
exit and either boundary condition suffices: no oscillations appear in the solution.

The thermal entry problem is illustrated in Figure 1. The fluid enters with a dimensionless
temperature T =0 and is heated by contact with the solid wall which is maintained at
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Figure 1. Thermal entry problem in a cylindrical tube

temperature T = 1. The goal is to predict the temperature distribution throughout the domain,
and in particular to calculate the heat flux to the wall. For convenience here we take the case of
fully developed laminar flow when

u=21-4(/D)?, v=0 (1)
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where ' is the dimensional radius, D the tube diameter, and u and v are the z and r components
of velocity. This problem is called the Graetz problem in the engineering literature. The
temperature field is governed by the dimensionlesss transport equation:

oT 1 9 37) T
e A, Vg 2
Peuaz r ar(r ar) " %872 )
T(r,0)=0, T(0-5,2)=1, aT/ar(0,z)=0 (3)
The Peclet number is defined as
aveD
Pe = 22E )
44

where u;,, is the dimensional average velocity, D is the tube diameter, and « is the thermal
diffusivity. Both radius, 7', and axial distance, z’, are made dimensionless by dividing by D.
Taking a, = 0 neglects axial conduction and leaving a, = 1 includes it. With a, = 1, equation (2)
is elliptic and we need an additional boundary condition at z =L:

Casel: T(r,L)=1; (5a)
CaseIl: 8T/0z=0 (5b)

There is a discontinuity at the point z =0, r = 0-5. This gives rise to very large temperature
gradients in the vicinity, and requires a very fine mesh (Az, Ar > 0) to resolve. Any errors or
oscillations introduced here do not adversely affect the solution downstream. For the purposes
of this note we accept these oscillations in the corner and concentrate on the oscillations near the
exit plane, z = L. Furthermore we plot only the centreline temperatures. The radial average
temperature and temperatures at other radii oscillate less but behave in a similar fashion.

It is commonly accepted in the engineering field that axial conduction can be neglected,
compared to axial convection, when the Peclet number exceeds 100.° In such a case equation (2)
reduces to

Peu—=——|\r
or

dz r or

oT 1 4/ oT
(<) (6)
The appropriate boundary conditions are (3); equations (5) are not needed, or applicable, when
a, =0. Equation (6) clearly demonstrates that the solution is a function of z/Pe, not z or Pe
alone; the equation is parabolic. The exact solution to equation (6) is given by Brown®:

[so)

T(r,z)= ni C.Y.(r)exp (—A ,z,z/Pe) (7N

ne=

The local Nusselt number is often of interest and is defined as

oT]
N /Tavg (8)
r=0-5

ar
The Nusselt number is infinite at z = 0, where the temperature is discontinuous at r = 0-5, and
approaches an asymptote as z -0, reaching the value Nu,=3:66 far downstream. The
asymptotic formula for large z is shown in Kays:’

Nu=

A2 A G ,
NF?(“(“X%) al)exp (—(Af—Ag)Z/Pe)) 9)



SHORT COMMUNICATIONS 937

We have defined the entry length, L., as the distance until the Nusselt number reaches to
within 5 per cent of its fully developed value. However, in this work what we are concerned with
is the entry length of the fully developed temperature profile, T'(r, L) =1, rather than the
asymptotic Nusselt number. In the same fashion, the entry length L. 1 is defined as the distance
for the temperature to reach within 1 per cent of its fully developed profile (e.g. case I). From the
paper by Brown® these lengths are calculated and compared with L, at several percent values:

Criterion L, L.t
10% 0-025 Pe 0-15Pe (10)
5% 0-035 Pe 0-20 Pe (11)
1% 0-05 Pe 0-30 Pe (12)

In general, the distance it takes the temperature to become fully developed is about six times
longer than that for the asymptotic Nusselt number.

To illustrate our point we solve equation (2) with a finite element program. The program
solves for the flow field as well and uses 9-node Lagrangian elements for the temperature and
two velocities and a 4-node element for pressure. The Galerkin formulation of the equations is
described in more detail by Ben-Sabar and Caswell.® The meshes used in the calculation are
shown in Figure 2. We solve the problem with axial conduction using boundary conditions (5a)
or (5b). The case II is a natural boundary condition and is obtained if neither temperature nor
external flux is specified on the exit boundary. The same boundary conditions can be used
without axial conduction, although they are not then appropriate.
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Figure 2. Meshes for study: (a) mesh 1,3 x5, L =6; (b) mesh 2,3 X 10, L =6; (c) mesh 3,3x8, L = 18; (d) mesh 4, 3 x5,
L=18
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Figure 3. Centreline temperature for short domain, boundary condition (5a). Mesh 1, a, = 1,Pe =2 O, 20A, 30+, 60 X.
Linear interpolation is used to emphasize the numerical oscillation

Figure 3 illustrate the oscillations which occur when the length is taken as 6 diameters long
and boundary condition (5a) is used. Note from equation (12) that this distance is less than the
thermal entry length, L., 1, for Peclet numbers 30, 60 and is greater than the thermal entry length
for Pe =2, 20. Oscillations occur when the calculation domain is less than the entry length.
Oscillations do not occur when the calculation domain is greater than the entry length, even
when the cell Peclet number is large. The cell Peclet numbers for the last element in the axial
direction are given in Table I. Non-oscillatory solutions occur for Pe = 2, 20 even though the cell
Peclet number is large.

Table I. Calculation of the cell Peclet

number
Figure Pet Pe oyt
3 2 4:32
20 43-2
30 64-8
60 129-6
4 60 0-36

(w)yd .
1 Pe = ——, conventional Peclet number.
44

- A
tPe.y=Pe.Az= L z, axial cell Peclet

o
number for the last element.
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CENTERLINE TEMPERATURE

Figure 4. Centreline temperature for short domain, boundary condition (5a) and mesh refinement. Mesh 2, a, =1,
Pe =60

Now as the Peclet number is increased, the solution to equation (2) for boundary conditions
(5a) gives a solution with a steep gradient near z =L. The oscillations are apparent for
Pe =30, 60 in Figure 3. A more accurate solution for this case is shown in Figure 4. A fine mesh
is used near z = L and the boundary layer nature of the solution is revealed. With such a steep
profile the cell Peclet number is important. Roache” has shown for the finite difference method
that we need

Peceu=Pe Az <2 (13)

to prevent oscillations, and Christie et al ? have shown for Galerkin quadratic functions (used
here) that we need

Pe..i=Pe Az <4 (14)

to prevent oscillations.t At the exit Az =0-006 in Figure 4, for a cell Peclet number of 0-36,
whereas in Figure 3 we had Az =216, Pe.o; = 129-6, and oscillations occurred.

Next change to boundary condition (5b). Solutions for several Peclet numbers are shown in
Figure 5. Clearly the oscillations have disappeared. Calculations by Ben-Sabar and Caswell® for
Pe = 10* with these boundary conditions do not have oscillations either. Clearly Gartling was
right in showing that the oscillations can be eliminated by changing from boundary condition
(5a) to (5b). The cell Peclet number for the calculation with Pe = 10* is 2 x 10*; oscillations do
not appear because there are no steep profiles.

We next repeat the calculations for Pe = 60 on a longer calculation domain, one that is longer
than the entry length. Solutions shown in Figure 6 do not oscillate regardless of the boundary

+ Jensen and Finlaysonlo have shown that this criterion applies to the solution at the nodes, not necessarily to the
interpolated solution in the element.



940

SHORT COMMUNICATIONS

.50

«40

.30

201

CENTERLINE TEMPERATURE

.10

Figure 5. Ce

T = O B O O D

0 1.00 2.00 3.00 4.00 5.00 6.00

Z

ntreline temperature for short domain, boundary condition (5b). Mesh 1, a, = 1, Pe =2 O, 20A, 30+ , 60 %
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Figure 6. Centreline temperature for long domain. Mesh 3, «, = 1, Pe =60. Boundary condition (5a) A, boundary

condi

tion (5b) . The small fluctuations for boundary condition (5a) are due to the 1 per cent criterion
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condition. Again the cell Peclet number is irrelevant because the profiles are not steep. Figure 7
shows the same problem with a coarse mesh at the exit; again no oscillations occur. This means
we have a fourth method for eliminating oscillations in this problem: use a calculation grid
longer than the entry length.
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Figure 7. Centreline temperature for long domain. Mesh 4, a, =1, Pe =60. Boundary condition (5a) A, boundary
condition (5b) O. The small fluctuations for boundary condition (5a) are due to the 1 per cent criterion

In summary, oscillations are introduced into this problem in the following way. If the
calculation grid is long enough, T =1 at the exit and using either boundary condition (5) gives
the same results. If the calculation grid is shorter than the entry length and boundary condition
(5b) is used, a solution is obtained which does not oscillate. It also does not have steep gradients.
Furthermore the temperature is not one at the exit. Suppose it is 0-8. If we change to boundary
condition (5a) and require T =1 at the exit, the problem responds by forcing a rapid change
from the value 0-8 just inside the exit boundary to 1-0 at the exit boundary (see Figure 4). A
temperature boundary layer is thus developed. A steep profile now exists and the cell Peclet
number must be kept small to avoid oscillations, or else an asymmetric weighting function must
be introduced. All these problems, however, are because the boundary condition is incorrect.
We cannot specify the temperature of an outflow region because physically we have no way to
maintain it. If the calculation domain is long enough, the specification of T =1 as an exit
condition is acceptable since the solution has T = 1 there anyway. If the calculation domain is
too short, the specification of any temperature (except the exact value) causes oscillations, as
shown in Figure 8.

We conclude that the more reliable solution to this problem is for a calculation domain longer
than the entry length and a flux boundary condition (5b). The temperature can be specified on an
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Figure 8. Centreline temperature for short domain and improper boundary value. Mesh 1, @, = 1, Pe = 60. (1) Boundary
condition (5a) O, (2) boundary condition (5b} A, (3) boundary condition T(r, L)=2T(r, L)y—1, +. Linear inter-
polation is used to emphasize the numerical oscillations

outflow boundary (5a) only if careful analysis ensures the temperature is the correct one, usually
because the domain is long enough that the proper temperature profile is reached.
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