MATHEMATICAL TECHNIQUE

The method of weighted residuals provides approximate solutions to the
differential equations of change governing transfer of heat, mass and
momentum. The problems of linear and nonlinear heat transfer, entry-length
problems, and mass transfer with concentration-dependent diffusivity,
illustrate the application of the method. The results provide analytical -
though approximate - solutions for these problems, some of which cannot be
solved by classical techniques. The discussion includes the choice of trial

functions, the need for successive approximations, and comparison of

different methods. The author concludes this part of the article by introducing

variational methods.

by B. A. FINLAYSON

THE method of weighted residuals and variational methods are
used to solve differential equations governing the transfer of heat,
mass, and momentum. The general approach is to expand the
unknown solution in a series whose functional dependence on posi-
tion is chosen, but which includes several adjustable parameters.
These are chosen by requiring the differential equation and bound-
ary conditions to be satisfied in some specified approximate sense.
The methods are applicable to problems for which classical tech-
niques, such as separation of variables or Laplace transform, are
inapplicable. The analytical form of the result is often more con-
venient than solutions generated by numerical integration, and
successive approximations usually require less computation time to
generate. While variational methods are restricted to a small class
of problems —usually linear ones—the method of weighted
residuals is applicable to non-linear problems— one of its most
attractive features.

We will illustrate the methods by finding approximate solutions
to the equations of change governing the transfer of heat, mass, and
momentum. The steady-state Navier-Stokes equation with constant
physical properties and a conservative body force absorbed into the
pressure gradient is (1, 2)
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with similar equations for » and w.
The unsteady-state transport equation governing diffusion in a
solid with concentration-dependent diffusivity is (2)
de 9 ac 7 ac a ac
== [D(c) 5)-6] + 5 [D(c) 5] . E[D(c) 6—2] 0
while steady-state diffusion in a dilute binary liquid with constant
density and diffusivity is (2)
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Equations 2 and 3 also apply to heat conduction, which. for steady-

state is governed by
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and when the thermal conductivity is constant
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where 72 is the Laplacian operator. Of course, the method of
weighted residuals is applicable to other differential equations as
well. In fact, these methods have found widespread use in calcula-
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tions governing nuclear reactors, and variational principles are
closely related to optimisation theory applied to lumped-parameter
chemical reactors. These subjects are covered elsewhere (3-7).

The examples are organised into boundary-value problems
governing the steady-state distribution of temperature, concentra-
tion or velocity (Equations 1, 3, 4, and 5), initial-value problems
predicting the evolution of the system from prescribed initial con-
ditions (Equation 2), and eigenvalue problems which predict the
value of a physical parameter for which multiple solutions exist
(arising in stability theory or in the technique of separation of
variables applied to initial value problems). In each case we will
simply state the differential equation as a special case of Equations
1 to 5 and emphasise the techniques of solution.

Method of weighted residuals (M.W.R.)

Consider the boundary-value problem posed by Equation 5 with
prescribed boundary values:

V=
T = T, on boundary

To solve this problem using the method of weighted residuals,
henceforth abbreviated M.W.R., we first choose a trial solution of

the form
N
T=T,,+Z. ci i . (©)
1=1

where the functions u; are chosen to satisfy the boundary condition
#; = 0 and any symmetry exhibited by the problem. The trial
solution then satisfies the boundary conditions for all values of the
unknown constants, ¢;. We substitute this trial solution into the
differential equation to define the residual

N
R (cixp,2) = 72 To + Z ¢ V2 us . (D)
=1

which is a known function of position for any given set of constants
c;. If the trial solution 7 were the exact solution, this residual would
be zero for all positions. In M.W.R. we choose the constants ¢; in
such a way that the residual is forced to be approximately zero in
some weighted-average sense. The weighted integrals of the residual
are set equal to zero

(w5, R) =0 J=1,2 00,1 . (®

where

+

represents an inner product or spatial average over the domain V.
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Combining Equations 7 and 8 gives
E' e (wy, V2 us) = — (wy, VTo)
=1

or simply

E . Byi ¢; = djwhere By = (wy, V2wi), dy = — (wy, v ¥To).
=1

The solution is
¢ = E Bij d;
i1

where B~ is the inverse of the matrix B. These constants, substituted
“into (6), give the approximate solution.
The weighting functions can be chosen in several ways and each
-way corresponds to a different criterion in M.W.R. We could
divide up the domain ¥ into N smaller domains ¥ and choose

_ {lxian
Y= 10 x not in ¥;

The differential equation would then be satisfied on the average in
each of these subdomains, hence the name subdomain method. As
we take more and more terms (increasing N) the residual would be
zero on the average in smaller and sinaller subdomains — which
more closely approximates the conditions fulfilled by the exact
solution —and we hope that the approximate solution becomes
better, too. The subdomains can be chosen at will and can even
overlap if we want to emphasise some part of the domain. If we
have only one subdomain, the method is usually called the integral
method, or the von Karman-Pohlhousen method arising in bound-
ary layer theory, and the differential equation is satisfied on the
average in the domain.

In the collocation method we set the residual equal to zero at the
collocation points (xj, y;, z;)

R(Ci, x,y,z) Ifﬂ:Zj’ Y=Up 2223 = 0 ] = 1r2, ey N
and solve for the ¢;. As N increases in successive approximations,
the differential equation is satisfied at more and more points, thus
approaching the condition fulfilled by the exact solution. The
choice of the collocation points is made with some freedom, using
a simple pattern or symmetry of the problem, for example. This
method is encompassed by Equation 8 provided we take the
weighting function to be the Dirac delta function,
wy = 8(x—xy, y-¥1, z-21).

In the method of moments the weighting functions are members
of a complete set of functions, which has the property, for example,
that any continuous function can be expanded in terms of the
complete set. Examples of complete sets are

1, x x% x5 ...
sin mx, sin 2»x, . . .

or orthogonal polynomials in x, such as Legendre polynomials (8).

A mathematical property of complete sets of functions is that any
continuous function which is orthogonal to each member of the set
is necessarily zero. A function fis orthogonal to wy if

f  fwndsdydz = (; wi) = 0

and if {wx} represents a complete set of functions and Equation 10
holds for all k = 1, 2, . . . then f = 0. Since we make the residual
orthogonal to each member of a complete set in the method of
moments, we expect that as N approaches infinity the residual
approaches zero. We might choose weighting functions to emphasise
some region of space or the convergence of our expansion may be
speeded up by judicious choice of weighting function (9).

A special case of the method of moments is the Galerkin method
in which the weighting functions w; are the same functions used to
expand the solution, #; in Equation 6. This method is especially
important because of its equivalence to variational methods as
described below.

The least squares method minimises the mean square residual

.. (10

0 2R
fal 2 = — =
3 fv R? dxdydz = 0 or fv b R dxdydz = 0
in which case the weighting function is 8R/dcy.
The key steps are the choice of the trial solution (6) and the
selection of the criterion in M.W.R. Variations are possible in

which the trial solution is expanded in terms of known functions
of all variables but one

T (oy2) = ZN 4@ T (63

54 [26]

T — st

e

leaving functions A4i(z) to be determined as solutions of ordinary
differential equations generated using M.W.R. (see examples 2 and
3). Another possibility is to expand the solution as a series of
functions which satisfy the differential equations but not the
boundary condition and apply M.W.R. on the boundary. Many
other variations are possible as discussed by CrANDALL (10),
CorLATZ (11), AMmEs (12), and FINLAYSON and SCRIVEN (13), as well
as the references listed by these authors. The examples below
illustrate a few of the many possibilities.

Example 1. Steady-state heat conduction with temperature-dependent
thermal conductivity

We consider first a very simple example to illustrate the method.
Steady-state heat conduction across a slab is governed by Equation 4

for one dimension:
d dar
& (k) =0
with boundary conditions T(0) = To, T(d) = T).
Consider a temperature dependent thermal conductivity
k=ko+ T — To)
where ko, and « are constant. The dimensionless equation is

(%C [(1 +ao)j—ﬂ —0
00y =0 81 =1
where
ATy, — To) T—1To
=% '“&m-m
We first choose a trial solution in the form of a polynomial in x
because of its simplicity.

N
8= E cixt
-1

satisfies 8(0) = 0, and we require

N
. Ci = 1
Zz=1

in order to satisfy the boundary condition 8(1) = 1.

The residual is
d*e do\?
R=kza+ “(a)
and the weighted residual becomes

1
f we Rdy =0 k=1,2,.. N
[
Consider the first approximation, N = 2
0 =x—cyx( — x) ... (1D
de dzé
;;C=l—cz(1—2x) d—xz=2c2

k=14 alx — ¢y x(1 — x)]

We first apply the collocation method. We must choose a colloca-
tion point where the residual will be zero. Take x .= § because it
is the midpoint of the interval zero to one. For x = }

do 426 a ac,
&*=1 @ k=l4z-7
We set the residual equal to zero at x = §.
.R la:;__* = 0

[1+ 2 (1—%)] @c) +a=0

which determines c¢,. We choose to calculate numerical results only
for the case @ = 1. In that case

—3c?+ 3¢, +1=00rc, = —0317
The other solution to the quadratic in ¢, is rejected as being
physically unrealistic since it gives the heat flux in the wrong
direction at x = 1. The approximate solution is then
6 =x -+ 0317 x(1 — x) oL (12)
We next consider the subdomain method. For the first approxima-
tion the domain is taken from zero to one. (For the M-th approxima-
tion the interval 0 — 1 could be split into segments of length 1/M.)
The weighted residual is thus

1
[ Rax—o
[}
and the differential equation is satisfied on the average. Fora = 1
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Jd [+ x—cox@ — x)]2¢c,dx + fl [1—c@ —2x)]Pdx =0
0 0

which, after some manipulation, gives ¢, = —$%. The approximate
solution is then

0 =x + 0333 x(1 — x) st ie(l3)

Note that this solution differs only slightly from that derived by

the collocation method. The method of moments can be applied

using the weighting functions (1,x,x2, . . .). For the first approxima-

tion the weighting function is 1 and the solution is the same as that
derived by the subdomain method.

We apply the Galerkin method by using the weighting function

x(1 — x), which is the first approximating function in (11). The
weighted residual

1
J‘ 0L — 59) IGe @) e = O
0

gives the approximate solution
0 = x + 0:326 x(1 — x) 5 o o o ({14D)
How good are the results ? For the first approximation we should
not expect very accurate results, but comparisons to the exact
solution § = —1 + 4/1 + 3x in Table I indicate the temperature
is accurate to 89;. When no exact solution is available for com-
parison, there is no way to estimate the accuracy of the first
approximation. Higher approximations must be computed and
successive approximations must converge before we can say with
any assurance that we have an accurate solution.

TABLE I-Temperature for nonlinear steady-state heat
conduction

2 Collocation  Gelerkin

Method of moments Exact
Equation 12 Equation 14

solution

Equation 13 Equation 16

0-129 0-129 0-130 0-143 0-140
0:25 0-309 0-311 0-313 0-332 0-323
0-50 0-579 0-582 0-583 0-594 0-581
0-75 0-809 0-811 0-813 0-809 0-803
0:90 0:929 0-929 0:930 0:925 0-924

We compute the second approximation using the method of
moments. The conditions on the constants are
1 1
fRdxzo fodx=o iy
0 0
The algebra now becomes more lengthy and for more difficult
problems the solution for ¢;, ¢,, . . . could be found using a com-
puter. The approximate solution satisfying (15) is
3 3 1
0=§x—‘—1x2+4—1x3 5 o oo (UG)
This solution differs only slightly from the first approximation (see
Table I) so that we stop with the second approximation. It is
within 3 %, of the exact solution. Notice that use of the weighting
function, x, for N = 2 emphasises large x, and the solution is
improved near x = 1 but not for x near 1/2. Thus the choice of
weighting function can be used to emphasise certain regions where
we would like to have the residual approximated well. When the
residual is small, the error in the solution may be small, too,
although there is no theoretical reason why this should be true.
This point illustrates the fact that applications of M.W.R. can be
moulded to our particular problem or interest. In this example we
used a simple polynomial for a trial solution, applied several
different criteria of M.W.R. to calculate the approximate solution,
and stopped with the second approximation because it differed very
little from the first approximation.

Example 2. Steady-state heat conduction in a solid
Consider another example — heat conduction in a slab which extends
from zero to infinity in the y-direction and from zero to one in the
x-direction. The method of weighted residuals will be applied to
reduce the partial differential equation (5) involving x and y
derivatives to a set of ordinary differential equations involving only
» derivatives.

The heat conduction equation for this problem is

@I GETF
ae G 0
and consider boundary conditions
T(x,0) = x(1 — x) T(x,0) = 0

TO,y) = T(1,y) = 0
We wish to estimate the average heat flux along the boundary
—0s
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The first approximation is a trial solution of the form
T =x1 — x)e: ()
where ¢, () satisfies ¢; (0) = 1, ¢; (c0) = 0. Note that this function
satisfies the symmetry of the problem —it is symmetric about

x = %. The y-dependence of the solution is left unspecified. The
res1dua.l is

G G2TE

diey
RT) = 7 + = —2¢; + x(1 — %) Th

e
Apply the Galerkin method first
1
f x("— x) R@)\ds —0
0
to obtain
aPey 1l

+ = =0

= a2 30

1
6
which has a solution
e (y) =eViy
The first approximation is thus
T=x(1—x)evViu

The collocation method requires a choice of collocation points.

The point x = } gives
R(T) sy = 0 o0rc; = e V8 Y
while the point x = £ (and hence x = %, too, by symmetry) gives
R(T) |s_g or ¢; = e~v/¥Fy

The subdomain method uses

1 —
f R(T)dx = 0 to obtain ¢; = evV12¥
0
while the least squares method requires
a (0'e) 1 e
— f f R>dxdy =0or ¢, = e V1047 ¥
N 0

provided the trial solution is taken as 7' = x(1 — x) e~¥. Notice
that all methods give similar results with slight differences in the
numerical values.
Next apply the Galerkin method to obtain a second approxima-
tion
T =x(1 — x) ci(y) + x* (1 — x)2 ¢, ()
The weighted residuals are

fl S ) D) =@ fl S P T — O
0 0

which results in the solution (10)
¢y = 0-8035¢~%1416y | (:1965¢-10-1059y
¢y = 0:9105(¢—31416y — o=10-1050)
The average heat flux at y = 0 is calculated from these results.
With T'= x(1 — x)e=Y for the first approximation
oT

Tyl e
! A
= f *( = )hdx = 2
0

The results for the various methods are shown in Table II. The first
and second approximation for the Galerkin method differ by only
2-4 %, so we stop with the second approximation. It differs from the

exact value.
16 o 1
N Zu @n + D

derived by separation of variables by only 1/2%.

TABLE II—Average heat flux in example 2

Method N

Exact 0:543
Galerkin. N = 1 0-527
N=2 0-540
Collocation, x = % 0:471
X =17,% 0-544

Subdomain 0:577
Least squares 0-540

This problem illustrates the general technique of using M.W.R.
to reduce a partial differential equation to a set of ordinary
differential equations which are easier to solve. The same approach
can, in principle, be applied to any partial differential equation.
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Example 3. Unsteady-state diffusion with concentration-dependent
diffusivity

As an application to initial value problems, consider one-
dimensional, unsteady-state diffusion which is governed by

doc 0 D@c
)

D — ekc
e=1lags =0
ac
E:Oatle
¢ =0Datr=0

with dimensionless variables ¢ = ¢[co, D = D'[D,, x = x'/d,
t = Dot’[d?. We expect a solution for small time which is close to
the error function arising in penetration theory. However, the
presence of the boundary at x = 1 and the non-linear diffusion
coefficient make the error function solution inapplicable here. We
will find an approximate solution, valid for small time, using the
collocation method, and compare the results to numerical integra-
tions performed by CRANK (14).

We first outline a method applicable when the diffusivity is
constant (10, 15, 16). Expand the trial solution in a series

c(x0) =1 ZN Ai(1) Xi(x)

where the X; are any functions satisfying the boundary conditions
Xi(o) =0 X%(1) =0

e (17)

such as
Xi(x) = xitt — (i + Dx
Then the trial solution satisfies the boundary conditions. The
residual is defined, with D = constant = 1,
de ¢
S
We apply the collocation method for the first approximation.
c =1+ A,@#)(x® — 2x)

it Gol
B mee ) e

The residual is then
dd s
R-—E(x—Zx)—ZAl

We choose the collocation point x = 1 because we are going to
compare values of ¢(1, #).

4 Rlzy =0

gives

dA,

dr
We cannot satisfy the initial conditions exactly so that we define
an initial residual

Ro =0 — [1 + Ay(0) (x2 — 2x)]
and apply collocation to it at x = 1.
Ai(o) = 1
The first approximation is then
cp =1+ e (x* — 2x)
The second approximation has also been calculated (15)
cy(1,6) = 1 — 12612458 | (-26]1e19-54¢

and these are compared in Table III to the exact solution derived
by separation of variables.

= 24,0t 4, — e*

TABLE lll-Concentration for unsteady-state diffusion

& ey (1, 8) ¢y (1, 2) Exact ¢ (1, t)
0-1 0-181 0:050 —
0-2 0-330 0-234 0-228
0-4 0-551 0-528 0:526
0:6 0:699 0-711 0710
1-0 0-865 0:892 0-892
2:0 0:982 0-991 0-991

8
Lo
S
S
3

1-:000 1-000

Next we treat the non-linear problem. For small times, the
concentration changes in a region near the boundary x = 0 in the
manner suggested by Fig. 1. As time increases this region grows
until the boundary at x = 1 is reached. Consider a penetration
depth, ¢(¢) which characterises this region. For x < ¢ the con-
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Fig. 1 Expected Con- | MR S
centration Profile for

Diffusion with Con-

centration - dependent

Diffusivity.

centration has a smooth profile going frome¢ =l atx =0toc =0
at x = g. For x > q the concentration is very close to zero and we
set it equal to zero in the approximation. We represent the con-
centration, c(x,t), by a ‘similar’ profile
c=d(m) 7= x/q()

and use the collocation method to determine ¢ and g. The boundary
conditions are

$(0) =1 é(1) =0
q(0) =0
and the solution is valid until g(f) = 1. First we calculate the
residual

dAy=0 ....1A8)

__9c  dD (oc\? ¢
_87—%(5) T BR
ac q dc &c
Col e @8 4 @e = s
7 G S =]

PR = —¢'nqq — e*® [¢"" + k()]

We apply the collocation method and choose 7 = % as the
collocation point. This point is the midpoint of the variable interval
0 < x < ¢g(¢) and is chosen mostly by convention. The collocation
method gives

Ry =0
29 = — 4 {e¥% [¢” + k(¢)?)$}n_y =4 - (19
The differential equation for ¢ can be solved to give
qt) =/ A t*
where the value of 4 depends on the trial function chosen for ¢.
It is convenient to choose ¢ as a power series in 7
N
¢:Z< aim’ O (20)
1—0
with the restrictions a, = 1
N N
Z. =0 Z e 0l SRl
1—0 t=1

to satisfy the boundary conditions (18). The first approximation
(N = 2) yields

a; + a; = —1 ay + 2a, =0
or a; = —2, a, = 1. The function ¢ is then
s=A = 7)?

We recognise immediately that this function will be a rough
approximation at best because it does not allow an inflection point,
as is required by the exact solution (14). We calculate the derivatives
needed to evaluate A

¢ = =201 — ) p@) = —1

A =4dek/t [2 + k]

For the case & = 2:303 we obtain 4 = 30-6, A* = 5-53. The

approximate solution is then

Vl___ )2 _._'_x__

provided 5:537% < 1. A quantity of interest is the total amount of
species absorbed in time ¢, which is just

g = 5:53¢%

18
W f ety — 1-84¢%
0

We next calculate a second approximation. For N = 3 we need
another condition to completely specify the terms a, through a; in
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" tne power series (20). Collocation can again be applied, and we
choose the point 5 = 0 as the added collocation point. This choice
simplifies the computations and also tends to weight most heavily
the boundary in which we are most interested.

q*R |_, = O requires ¢"'(0) + k[¢'(0)]? = O
Since ¢”(0) = 2a,, $'(0) = a, we have the condition

2a, + ka? =0
in addition to (21). The solution is
2 /4 + 6k
a = ———
k
which, for k = 2:303, gives
a; = — 0:964 a, = — 1:071 a, = 1:036

The constant A is now 35-1 and the approximate solution becomes
¢ =1 — 0964y — 1-0719% + 1-0367>
7 = x[q() g = 593t < 1

We expect this solution to be a better approximation, since it
contains an inflection point and indeed the value

M = 2-49¢*
is very close to the value obtained by CRaNK (14) using an iterative
numerical technique

M = 2-45t*
Th(j, first and second approximations yield concentration profiles
which are compared to CRANK’s solution in Fig. 2. It is apparent
that global properties of the solution, such as M, are approximated
more acgurately than are detailed values of the concentration. This
feature is often true of approximate solutions but is acceptable

10

OF FIRST APPROXIMATION
© SECOND APPROXIMATION

EXACT SOLUTION
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Fig. 2 Concentration Profile at t = 0:0285 for Sorption with
D — o2303c

since the global properties are the ones usually desired anyway. The
poor first approximation suggests that we must be cautious about
accepting a one-term approximation in difficult non-linear problems.
This same problem has been treated by Futa using the method
of moments (14). In the present notation, FuiiTa assumes trial
functions of the form
c(x,t) = Bt)(xo — X)* + E@)(x0o — x)? S (22)
where B(z), E(z), xo(t) are functions to be determined subject to the
boundary condition
1 = B(t) xo® + E() xo® S 28)
The function x, is again a penetration depth. Funta applies the
method of moments and sets

1 1
fRdx=0 fodx=0
0 0
The approximation derived by him gives, for D = e?:3%3¢,
M = 2-461*
which is close to the exact solution. We can rearrange the trial
function (22) to give

JANUARY, 1969, Vol. 14, No. 1
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c(x,7) = B(r) x0* (1 — xio)z + E(®)xo® (1 e ;o)a

or, using (23)
o) {1 — xf)z — B (1 - f)z :

Sl
which is similar to the trial function we used with the collocation
method except that E(z) x.® is a function of time rather than con-
stant. This comparison illustrates the point that M.W.R. can be
applied in many ways to suit the preference or convenience of the
engineer or scientist.

The approximations discussed so far are limited to small time.
After the penetration depth becomes equal to one, another form
similar to Equation 17, must be assumed for the trial solution. This
procedure is identical, except in complexity, with that used in
Example 2. Funta has derived a solution in this manner (14).

General comments

These applications illustrate the key points in M.W.R. The first
step is to choose a trial function. The boundary conditions and
symmetry of the problem are usually employed to restrict the list of
possible functions. If several candidates remain, each set is probably
equally suitable and the choice can be made on a basis of con-
venience in performing the remaining computations. The second
step is to choose a criterion in M.W.R. The different criteria give
slightly different results but the difference usually decreases with
successive approximations. The collocation method is easiest to
apply because the residual is easily evaluated at the collocation
points whereas the other methods require the calculation of certain
integrals. However, for the first approximation the results depend
greatly on the choice of collocation points. The least squares method
is usually unwieldy and for that reason has been applied here in
only one example. The Galerkin method appears to give con-
sistently better results, although the theoretical grounds for pre-
ferring it apply only to linear, self-adjoint problems which have a
variational principle (see below). The last step in the analysis
requires calculation of successive approximations. The first approxi-
mation is easy to calculate but seldom closer than 109;. Higher
approximations must be calculated until two successive approxima-
tions differ by an amount less than the desired accuracy. Even in
that case no theoretical grounds exist for saying the approximate
solution is a good one, but we usually accept it as a good approxima-
tion in the absence of information on error bounds.

In the examples we solved non-linear boundary and initial-value
problems by reducing the partial differential equation (involving
derivatives in two or more variables) to sets of ordinary differential
equations, which were solved exactly, or to sets of algebraic
equations, which were even easier to solve. The same technique can
be used to simplify any problem, provided an approximate solution
is acceptable. For initial-value problems we used two approaches —
penetration length concept and separation of variables — to achieve
similar results. The method of weighted residuals thus provides a
convenient tool for solving the equations of change governing the
transfer of heat, mass, and momentum as well as equations atising
in other fields. Whereas M.W.R. can be applied to all problems,
more powerful results are sometimes provided by variational
principles, which are not as generally applicable and which are
discussed in Part II.

References for this paper appear at the end of Part II.
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- MATHEMATICAL TECHNIQUE

Variational methods, which are applicable to fewer problems, are
illustrated for problems of rectilinear flow in ducts and eigen-value
problems arising in the penetration theory of mass transfer. Both methods
yield convenient analytic solutions, easily derived, and successive
approximations can oftentimes be calculated on a computer in less time
than is necessary to find a numerical solution.

by B. A. FINLAYSON

Applications of the method of
weighted residuals and
variational methods

IN Part I* we applied the Method of Weighted Residuals (M.W.R.)
to heat and mass transfer problems which were complicated by a
temperature or concentration dependence of the thermal con-
ductivity or diffusivity. Next we consider the complication caused
by convection and apply M.W.R. to a mass transfer problem with
known finid motion. Variational methods are also applied to the
same problem as well as to the rectilinear flow of the fluid through
a rectangular duct.

Example 4. Mass transfer to moving fluid
Consider the problems illustrated in Fig. 3. A liquid film is flowing
down an inclined plane with a parabolic velocity profile as shown.
At z = 0 the fluid surface is exposed to a stagnant gas containing
a component which diffuses into the fluid. The governing equation is
(3) with axial diffusion neglected.
dc &%¢
— x?) — == e
A-%) 7 =a
The dimensionless variables are: x = x'/d, ¢ = c¢’/co, z = 2’ D|w.d?®
w" = wo[l — (x/d)?]. The initial and boundary conditions are
c=1 at x=0
dc
P
c=0 at z =0
We will apply the method of weighted residuals in two dxfferent
ways. The first method uses the concept of a penetration depth
while the second method employs separation of variables and then
uses M.W.R. to solve the resulting eigenvalue problem.
Consider the concentration profile as z increases from zero. Near
z == 0 the concentration differs from zero only near the interface.
The distance from the interface to the point where the concentration
is essentially zero defines a penetration depth, which increases with

. (249)

=0 at x=1

z (see the dotted line in Fig. 3). Approximate the concentration ‘

within the pénetration depth by

c=¢n = x/z)

Fig. 3 Diffusion
into a falling liquid
film.
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where
) =1 ¢1)=0 ¢1)=
and the approximation is valid until 8(z) = 1. A profile
$=0—-7*A + by
satisfies these conditions with b undetermmed The resndual is

&%
=1 - x”) e
with the derivatives given by
éc ) o%¢
= _ ‘e e — 477182
2z #7135 e
The residual is then
$R = — (1 — 725%)mg'38 — ¢

Apply the collocation method at 7 = 3, 1
R(@) |n=y =0 impliesd(1) =0 or b= —1
R($) |n=y = 0 requires
8% dd
(1-3) 8% —-wow® =8 ... .5
The solution to this diﬂ'erentlal equation gives
322 — 84/16 = 8z
or
=4 —-1/1—-8z
This equation, together with ¢ = (1 — 7)° constitutes the approxi-

mate solution to this problem, valid until 8 = 1 or z = 7/128.
The mixing-cup concentration is

. =f a— x») c(.xz)dx_ 388 [1 —ii;] |

o

A common assumptlon in this kind of problem is to assume a flat
velocity profile, which leads to a similar approximate solution.
Replacing (1 — x?) by 2/3 in Equation 24 (to maintain equivalent
average velocities) we get

283——8 or & = 490z*

in place of Equation 25. The mlxmg-cup concentration is now

*BCE 1969, 1, 14, 53
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Both solutions are listed in Table IV to illustrate the effect of the
parabolic velocity profile.

TABLE IV—Mixing-cup concentration along flat plate

z <c> <c>
Uniform velocity Parabolic velocity
0 0 0
001 0122 0-150
0-02 0173 0212
0-03 0-212 0-259
0-04 0-245 0299
0-05 —_ 0-335

The second approach, separation of variables, requires homo-
geneous boundary conditions at x = 0, 1. Consider the variable
y = ¢ — 1, which satisfies the same differential equation as ¢ but
homogeneous boundary conditions:

y=0 at x =20

oy -
§'=0 at x =1
y=-—1 at z=0

Substitute
Mx,z) = X(x) Z(2)
into the Equation 24, and divide by (1 — x*XZ to obtain
1 dZ 1 a*X
Z & 0=xXde
Since a function of z alone is equal to a function of x alone, they
both must be constant. Then
Z = Z(0)e **

— A

while X satisfies

X+x1 —xyx=0

X(@)=0 X1 =0 ... (26
This is an eigenvalue problem, which has solutions only for certain
A, and is complicated by the factor (1 — x?). The exact solution
was derived by Pi1GFORD (17), but we will obtain an approximate
solution to illustrate the application of M.W.R. to eigenvalue
problems.

A trial solution is chosen to satisfy the boundary conditions. The
set of functions
{sin (nmx/2)} n=1,3,5,...
fulfils this criterion. In fact these are the exact eigenfunctions if the
complicating factor (I — x?) is replaced by 1. Although not used
here, the trial functions {y* — iy} would be equally suitable. For
the first approximation
Y = ¢, sin (7x/2)

The residual is then

2
RY) = — (g) ey sin (mx/2) + Al — x) ¢, sin (7x/2)
Apply the Galerkin method to obtain
1
f sin (7x/2) R(y) = 0
0
which gives a value of A
g 2 1
(2) f sin *(mx/2)dx
)\ __ 0

f (1 = x®) sin? (rx/2)dx

e @20

If the integrals are evaluated we find A = 5-317. The other criteria
could be used as well, although we will see below that the Galerkin
method has certain advantages for this problem. The collocation
method provides

(7/2)?
a—x?
We can see that this method gives an approximation anywhere

from (n/2)? to oo depending on the collocation point. The value
x; = 1/2 gives A = 3-29. The subdomain method requires

R())[2=e1 =0 or A=

f: R()dx = 0

(’2’)2 f : sin (mx/2)dx
f " (1 = x%)sin (mx/2)dx
[\]

A= = 459
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*
To assess the accuracy we find a second approximation using the
Galerkin method. Take

y = ¢ sin (mx/2) + ¢, sin (37x/2)
The Galerkin method requires

1 1
j sin (7x/2) R(y)dx = 0 f sin (37x/2) R(»dx = 0
. [/ 0
and these equations will be of the form
2
> By - =0 i=12
=1

This set of algebraic equations has a nontrivial solution if and only

ce .. (28

if the determinant of coefficients vanishes, i.e.

|Bij — ACi;] =0

which has, in this case, two roots for A, These values are approxi-
mations to the first and second eigenvalues: X; = 5-126, A, = 45-54.
Since the approximation for A changed only 1% we conclude
without theoretical justification that it is a good approximation.
The exact values are A; = 5-121, A, = 39-31. To obtain a better
result for A, we would have to calculate a third approximation, of
course. Higher approximations are easily calculated by a computer.
The eigenfunctions corresponding to each eigenvalue are found by
solving Equation 28 for ¢, and ¢, for each A, but we will not make
those computations. The remaining calculations follow the usual
separation of variables approach with the approximate eigen-
functions replacing the exact eigenfunctions. As is usually the case
in a solution derived by separation of variables, the series converges
slowly for small z. However, we also derived a solution which is
especially suited for small z. Combination of both solutions gives
meaningful results for all z.

Variational principles

Variational principles exist for special cases of the equations of
change and provide a basis for the variational method to-derive
approximate solutions. Again, a trial solution is assumed whose
functional dependence on position is chosen but which includes
several undetermined parameters. The prescription for finding
these parameters employs the variational principle, but applica-~
tions are otherwise similar to applications of M.W.R. In fact,
variational methods give the same approximate solution as applica-
tions of the Galerkin method. Even so, the variational principles
give powerful results which are not suggested by M.W.R., in the
few problems for which variational principles exist. The variational
methods are illustrated by application to two problems. More
complete engineering treatments of the calculus of variations are
contained in books by HiLDEBRAND (18), and CrRANDALL (10) and
the mathematical aspects are.discussed by COURANT and HILBERT
(19), KanTorovicH and KryLov (20), and MIKHLIN (21).

+b
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Fig. 4 Laminar
flow in
rectangular b v
duct.

Example 5. Laminar flow in rectangular duct
We consider rectilinear flow in a duct with rectangu ar cross section,
as shown in Fig. 4. Equation 1 reduces to
o*w 0w
W
with boundary conditions w = 0 at x = 4a, y = 4 b, where )\. =
(po — pr)/ L is the applied pressure gradient divided by viscosity.
In the variational method we expand the unknown solution in
a series

=—2 B Y.))

N
W) = > ey

where the functions w; satisfy the boundary conditions and are
twice differentiable and the constants ¢; are arbitrary. This expan-
sion is substituted into a variational integral

R € (0)]
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d(w) = T A f widxdy — -Z E cicj
L ey 4 =1 L1
ow; Ow;  Owy Ow;
f 4 [3_x x oy ]d dy
- It can be shown (22, 23) that the exact solution to Equation 29
maximises the integral (31) and this provides the basis for the

variational method. We maximise the integral with respect to
variations in the ¢;.

X o2 d EN
ocx wa;cdxy— t=1Ci
ow; Owg ow; owy
f A[—ax w5 ]dxdy ... (32

k=12..,N
This set of equations is of the form

N
Z_ Axic; = by NN X))

=1

which can be solved for the constants ¢;. The expansion (30) then
is an approximate solution to the problem. Since the variational
integral is a maximum for the exact solution, the approximate
solution must give a lower value of ¢ than does the exact solution.
The approximation thus provides a lower bound on the exact
solution. Furthermore because of Equation 32 the integral is
stationary with respect to changes in ¢; —i.e., insensitive to changes
in ¢; —so that we expect a good answer. It can be shown that the
variational integral is A/2 times the flow rate, Q, for the exact
solution (22, 23). Hence the approximate solution provides a lower
bound on the exact flow rate.

A
$(#) S 5 O

This feature of the variational principle allows us to calculate a
lower bound on the flow rate even if we cannot integrate the
differential equation for some unusual shape of duct.

As a simple example of the variational method, we calculate a
lower bound for the flow rate through the rectangular duct shown
in Fig. 4. The velocity must vanish at x = -+a, y = 45 and is
symmetric about x = 0 and y = 0. Admissible functions which
satisfy these conditions are

wi = [l — (x/a)*]t [1 — (y/b)*Y
2i — Dax 2i — Dmy
2a % 2%

Either set of functions could be used, but we will use the polynomials
in the trial solution (30). Equations 32 and 33 must be solved for
the ¢;. In this case, for example,
owy
( ) ]dxdy

o= [+

awl_ Zx( ¥\ owr 2y 1 x?
(T
12

8(a®* 4 b?)[45ab. The other integrals are

Wi = COS

and

which gives 4;; =
similar, and for N = 2:
Aoy — 128/45 (32)*/(15 x 35)) /a® + b
u= [(32)2/(15 x 35) (256/105)2/3] ( ab )
with b; = 16ab}/9 and b, = 256ab1/225.
The first approximation is then 4;;¢, = b, or

. (34

128 a* + * A 16ab
B ab T 9
5 a?h?
a=3raip

The approximate velocity profile is

= 11525 - (] - )]

and the lower bound on flow rate is
a*h?

+b +a 10
o) = f_b f_u w(x,y) dxdy = 7 A IR

The flow rate and velocity at the centre are compared to the exact
solution in Table V for the special case @ = b. The flow rate is 1%
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low while the centreline velocity is 69 high. This illustrates a
general feature of variational methods: an integral, such as Q, is
approximated closely by the variational method but the solution
itself may not be approximated as well.
The second approximation can be calculated using Equations 33

and 34. The results are

¢, = 0711548 Aa?h?/(a® + b%)

¢, = —0126208 ra?h?/(a® + b?)
which gives

Q = 1-1214 2a®b3/(a® + b?).
This approximation is so close to the first one that we stop with the
second approximation. In Fig. 5 the flow rate is compared to the
exact solution, which is derived by separation of variables as an
infinite series of cosines and hyperbolic cosines (24, 25).

TABLE V—Flow rate and velocity for square duct

Method Qfrat u(o, o)/ \a*
Exact solution 0-5622 0-2945
Variational solution
N=1 0-5556 0-3125
N=2 0-5607 0-2927

There is a close relationship between the variational method and
the Galerkin method. The Galerkin method applied to the same
flow problem would yield for the weighted residual

¥ .
f4 Wi [)\ + Z ¢ V2Wi] dxdy =0
y i1

This equation can be rearranged using the divergence theorem to

give
N ow; ow; ow; Ow;
AL wedxdy — ZH e L[@; =t 5

which are the same as Equations 32 to find ¢; in the variational
method. The solutions are thus identical. The advantage of the
variational formulation is that we know the approximation pro-
vides a lower bound on flow rate, which is a quantity of interest.
The Galerkin method, on the other hand, provides the same
approximation to the flow rate, but we do not know a priori
whether it is above or below the true value.

Upper bounds on the flow rate can also be derived (22, 23) using
variational principles, although we will not do so here. Calculation
of both upper and lower bounds enables us to estimate the flow
rate, with known error limits, in situations for which we cannot find
an exact solution. Thus the variational method provides powerful
results. Unfortunately it is not applicable to very many equations,
particularly non-linear ones, that we want to solve. The basis of the
method relies on finding a variational integral (31) which corre-
sponds to the differential equation. Without going into the details
of how this correspondence is established or when it can be done,
suffice it to say that a variational integral cannot be found corre-
sponding to every problem. For example, the steady-state Navier-
Stokes equation (1) has no variational principle unless the inertial
terms on the left-hand side are identically zero, as in example 5. The
unsteddy-state transport equation (2) does not have a variational
principle and the linear transport equation (3) has a variational

] dxdy
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Symbols used

one-half the width of rectangular duct; dimen-
sionless value of dk/dT; :

one-half the height of rectangular duct;
concentration;

thickness of solid slab or fluid layer;
diffusivity;

thermal conductivity; parameter in D = ek¢;
total amount of species absorbed;

Method of Weighted Residuals;

average heat flux at boundary;

pressure;

flow rate;

residual ;

time;

temperature;

velocity components;

spatial domain;

X; ¥, z = position components.

-

it

= S
= N
RE N O ZF B abane o

T T

Greek letters
a = coefficient of change of thermal conductivity with
temperature;
penetration depth;
related to pressure drop = (po — p1)/uL;
density;
kinematic viscosity u/p;
viscosity;
dimensionless temperature;

DE v O > >
e

a2 o 9%
v* = Laplacian differential operator 7 + pe +

principle only for an inviscid fluid. The heat conduction equation (4)
has a variational principle in the special case of constant thermal
conductivity (5). For those problems without variational integrals
we can still apply M.W.R. since it does not rely on a variational
integral. See references (26-27) for examples of variational
principles for steady-state flow problems.

By using a broadened definition of variational principles, it is
possible to devise variational methods for some of the equations
(1-5) but the methods do not provide upper and lower bounds and
are no more useful than the Galerkin method or another criterion
in M.W.R. In fact, in some cases the methods are identical to the
Galerkin method. See references (28-30) for examples as well as
(31) for further discussion of the methods. Since we can apply
M.W.R. to any problem without hunting for a variational integral,
we usually employ variational methods only when they provide
upper and lower bounds, or other useful information, as in examples
5 and 6.

Example 6. Eigenvalue problems
Consider the mass transfer problem treated above by M.W.R. (26).

Y+ M —xt)y =0

¥o)=0 y1)=20
The variational functional is in this case (10)
) —(3¥") 0.9

A=

==y ~ @@=y
We choose for trial functions

Hx) = Zil cisin [(2i ~ 1) =x/2]

which satisfy the boundary conditions. The variational method,
sometimes .called the Rayleigh-Ritz method, requires that we
minimise this ratio among all ¢;. For N = 1
. "X
Yy = €; s —2—
and

2 —
4 3

= - {3 ¢y sin =
y \2} 1 3

2 1 X
(g) f sint 7% d
0

=1
f (1 — x?)sin? = dx
. 2

Then

A

and the approximation must be an upper bound since the exact
solution minimises the ratio. Notice that this equation is identical
to that derived using the Galerkin method (27). By using the
variational principle we obtain the additional information that the
answer is an upper bound on the exact value and the eigenvalue is
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-stationary to changes in the constants cx(9)/dcx = 0). However,

the Rayleigh-Ritz and Galerkin computations are identical. The
other criteria in M.W.R., such as collocation or moments, do not
make the eigenvalue stationary and for this reason are usually not .
applied to eigenvalue problems. For N = 2 the upper bound must-
decrease or remain the same as the value for N = 1, as is the case
in Table VI for the variational or Galerkin methods. The other
criteria in M.W.R. yield values which can be above or below the
true value, as shown.

TABLE VI—Approximate eigenvalues

Method A As
Galerkinor N =1 5-317
Variational N =2 5-126 45-54
Exact 5121 39-31
Collocation N = 1 329
Subdomain N =1 4-59

In summary, special cases of the transport equations have
variational principles. In the few cases where variational methods
are feasible they yield powerful results, such as error bounds, and
the variational methods should be employed. Even so, the Galerkin
method gives the same approximate solution. In more general cases
the Galerkin method or another criterion in M.W.R. must be used
because the variational methods are not applicable.

Conclusion

The method of weighted residuals can be used to solve the non-
linear, unsteady-state problems arising from the transport equations.
The method reduces the differential equation to a set of algebraic
or ordinary differential equations which are solved to provide the
approximate solution in analytic form. If we need only a rough
answer a one-term approximation is usually adequate. Otherwise
successive approximations are calculated to give confidence in the
results. The variational method is only applicable to a few situations,
but it sometimes yields upper and lower bounds on macroscopic
quantities of interest. In those cases it is more powerful than the
Galerkin method, which yields identical approximate solutions. The
method of weighted residuals provides an attractive method of
approximating solutions to the non-linear equations confronting
the chemical engineer.
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