o

Information Systems Vol. 14, No. 2, pp. 141-149, 1989
Printed in Great Britain. All rights reserved

0306-4379/89 $3.00 + 0.00
Copyright © 1989 Pergamon Press plc

FITTING REALITY INTO A DATABASE MOLD:
RULES FOR DATA COLLECTION

RAayA FIDEL and MICHAEL CRANDALL

Graduate School of Library and Information Science, University of Washington, Seattle,
WA 98195, US.A.

(Received 27 January 1987; in revised form 7 November 1988)

Abstract—Presents a typology of rules for database design through examination of one such set of rules,
the Anglo—American Cataloguing Rules, Second Edition (AACR2). Analysis of the AACR2 reveals three
clusters of rules: (1) content rules; (2) format rules; and (3) data collection rules. The last cluster is of
interest to database designers in general, and includes the following types of rules: (1) rules for authorized
sources of information; (2) rules for establishing entities, relationships and attributes; (3) rules for
domains; (4) rules for occurrence; and (5) rules for cardinality. Further examination of these rule types
shows particular instances which require specialized kinds of rules to resolve cases of absent, multiple,
fuzzy or ambiguous data. Though useful for database design work as it stands, the typology could be
enriched by addition of rule types from other databases and by further exploration of relationships

between rule types and data characteristics.

“An information system (e.g. data base) is a model of a small, finite subset of the real world.” [1]

1. INTRODUCTION

Developing a database involves four distinct func-
tions, each building on the previous one: analysis,
design, coding and testing. In the analysis stage, the
database designer defines what a database should do
to make it most useful to potential users by studying
user needs (data requirements analysis) and docu-
mentation. During design, the process that defines
how a database will perform its tasks, the designer
concentrates on software and hardware consid-
erations, coding represents the actual implemen-
tation of the design. Testing is carried out before the
full-scale installation of a database to examine how
well it will perform.

This article relates to the first function—analysis.
In this stage, database designers are building a formal
model of that part of the real world which will be
represented in the database (the enterprise). This
model includes a formal presentation of the com-
ponents that should be included in the database and
their relationships, as well as a data dictionary that
includes information about each individual com-
ponent, such as its definition and relations to other
components. Both the formal model and the data
dictionary are part of the conceptual schema of a
database.

For a database to be useful to its potential users,
this model must be derived from data requirements of
potential users. For example, consider a database
that provides information about restaurants. Sup-
pose also that the database is designed to support a
variety of functions such as inspecting and licensing
restaurants, as well as going to restaurants or re-
viewing them. Each such function defines a purpose
for which the database is going to be used, and a

141

group of potential users who are interested in that
purpose. Each such purpose and the relevant user
group create an environment for the database.

The restaurant database in our example has two
environments. The first is composed of the city
personnel who will consult the database for the
purpose of inspecting and licensing restaurants—the
administration environment. The second is created by
all users who will turn to the database when they plan
to use the services offered by restaurants—the clien-
tele environment. To build a database, then a de-
signer must analyze the data requirements of users in
each environment.

The administration and clientele environments are
different in nature. The first represents a structured
environment because the process of inspecting and
licensing a restaurant is already established and has
a well-defined structure. The clientele environment,
on the other hand, is an unstructured environment
because the process of deciding which restaurant to
go to, or which one to review, has no apparent
inherent structure.

Data requirements analysis of structured environ-
ments is conducted using methods of structured
system analysis; these are well-documented in the
database literature [2]. The analysis of data require-
ments of unstructured environments is less devel-
oped; Cerri and his colleagues [3] proposed a
method that is applicable to such environments—a
method that was further developed by Fidel [4].
This method uses the entity-relationship diagram [5]
to represent the components to be included in a
database and their relationships.

The data dictionary is constantly updated as the
formal model is created. When the model is com-
pleted, designers should add instructions to the data

142 RAYA FIDEL and MICHAEL CRANDALL

dictionary for the personnel who will collect the
actual data, explaining how to interpret real objects
and facts in terms of the database. These types of
guidelines are not addressed explicitly by the data-
base literature. In this paper we propose a typology
of rules that can guide database designers in devel-
oping guidelines for data collection. This typology
was developed by the authors as part of a systematic
approach they proposed for the construction of the
conceptual schema [4].

2. THE PROBLEM

As we have pointed out above, to guarantee a
reliable and consistent representation of reality in a
database, data collectors need guidelines or rules,
that tell them how to control the diversity they face
in the real world. Moreover, even when the com-
ponents of a database are clearly and rigorously
defined, data collection encounters many instances
when an individual object or a fact is an exception to
the rule. Consider a restaurant database. A problem
in selecting a name for a restaurant arises if the sign
in the window says “Julia’s” but the telephone direc-
tory calls it “Julia’s on the Ave.”

If the restaurant database is being developed only
for a city’s licensing department, it is likely to include
a rule that would tell data collectors how to deter-
mine a restaurant’s name. City personnel had prob-
ably encountered similar situations in the past and
have provided pertinent instructions. When data
requirements are analyzed, these instructions would
be “discovered” by the designers and would be added
to the definition of the component name of restaurant.

In other words, if a database is designed to replace
an existing information system, rules to control diy-
ersity that is presented by reality already exist and
they are incorporated into the database schema.
When a database is created as a new information
system, however, such rules are not available to
designers. If the restaurant database is designed to
answer questions about dining places for instance, it
is the responsibility of the designers to anticipate
irregularities or exceptions and to devise rules to
manage them.

The literature about database design rarely dis-
cusses these rules explicitly. This is no surprise
because most tools for data requirements analysis
are designed to analyze existing systems, rather than
to create a database for a disorganized or chaotic
reality. One is left to speculate that the literature
assumes that the rules would emerge from data
requirements analysis.

Moreover, one may claim that it is pointless to deal
-with a set of rules to manage diversity on a general
level because each database would require its own
rules, depending on the reality it is designed to
represent. This assertion, however, is not the whole
truth. Although each database requires its own set of
rules, types of rules are common to many databases.

The assumption that the types of such rules can be
discovered, is the motive force behind the project
reported here.

The purpose of our project was to build a typology
of rules to manage diversity during data collection.
Such a typology can serve as a checklist for database
designers, pointing to possible exceptional situations
that may emerge in data collection.

3. THE METHOD

Our approach to uncovering the types of rules was
to analyze an existing set of rules and to define the
kinds of problems they anticipate. For that purpose
we selected the Anglo—American Cataloguing Rules,
Second Edition (AACR?2) [6] which guide the descrip-
tion of library materials. These rules instruct cata-
logers how to represent library items on catalog
cards.

We choose to examine the AACR? for two rea-
sons. First, although not always recognized, libraries
have a long experience in database design. Library
catalogs are databases that provide a central store of
data—bibliographic data—for multiple uses. Prin-
ciples of representing library materials in rigorously
structured records were first developed a century and
a half ago, and they have been expanding during the
years as more experience in collecting bibliographic
data was gained. Thus, the AACR?2 represent a
documentation of a long experience in the collection
of data and the design of rules for recording that
data.

Second, the AACR2 have to deal with a world of
large diversity. Library materials range from books
through machine-readable data files to 3-D artifacts.
Publishers of these materials are free to ignore any
information they wish: a book may lack a title, the
name of the creator of a data file may be unknown,
or a book may be published by any number of
publishers. As a result, €xceptions are more common
than the rule. The AACR2 deal with this diversity to
ensure the consistency and reliability of bibliographic
records.

In sum, the AACR?2 are useful for analysis because
they are the result of a long experience in data
collection in a world with large diversity.

The AACR?2 consist of two parts. The first deals
with the descriptions of bibliographic items, i.e. the
creation of bibliographic records, and the second
with the creation of access points, i.e. search keys.
The first chapter includes general rules for the cre-
ation of records, and the remaining chapters in this
part address specific types of materials, such as
books, maps or data files. For our project we ana-
lyzed the general rules in the first chapter only.

With the entity-relationship model [5] as a theor-
etical framework, we examined each rule in the first
chapter to determine the type of question it addresses.
The rule that instructs, for instance, how to determine
the place of publication when a number of cities

Fitting reality into a database mold

143

1 RULES FOR AUTHORIZED SOURCES

1.1 General rules

1.2 Llack of authorized source
1.3 Multiple authorized source

2 ESTABLISHING ENTITIES, RELATIONSHIPS, AND ATTRIBUTES

2.1
2.2

Elaboration rules
Fuzzy entities, relationships and attributes

2.2.1 Fuzzy entities

2.2.2 Fuzzy relationships
Procedure to establish relationships
Upper 1imits on relationships
Relationships that cannot be established
Doubtful cases
Erroneous information
Multiple correspondence

2.2.3 Fuzzy attributes
Same as fuzzy relationships

3 RULES FOR DOMAINS
3.1 General rules

Basic rules

Content rules

Missing-value rules

Sequence rules
Shortcut rules
Quality rules
Authority lists

3.2 Fuzzy domains

Lack of correspondence
Incomplete information

Invalid values
Too many values

Indistinguishable values

Unreliable data

Vaiues from other domains

4 OCCURRENCE
5 CARDINALITY

Fig. 1. The typology of rules.

appear on an item answers the question of what city
qualifies as “place of publication.” The type of
question this rule defines is: how to determine
whether or not a certain real-life object or fact
qualifies as an entity.

Next, question types were grouped into more gen-
eral types of rule. The type of rule that emerges from
the example is: rules for establishing entities. In fact,
this example represents a specific case of the rule type:
rules for establishing entities when more than one
object or fact in the real world qualifies as an entity.

Figure 1 summarizes the typology of rules for data
collection developed from our analysis of the
AACR2. In the following text we have used examples
from a restaurant database rather than the AACR2,
since this will be more familiar to most readers; it also
shows the applicability of the rule types in another
situation.

4. A TYPOLOGY OF RULES

The rule types in AACR2 create three clusters.
The first, which we call “content rules,” defines the
elements in a bibliographic record. In the entity-

relationship terminology this cluster defines the
components in the entity-relationship diagram for a
bibliographic description. While important for initial
design work, these rules are not critical for data
collectors except to define the boundaries of their
data “world.” In a restaurant database these rules
would determine, for instance, what information
about owners of restaurants, or about buses going to
restaurant, to include in the database.

The second cluster, which we call “format rules,”
instructs catalogers how to record bibliographic data.
Although important for library work, these rules are
on the internal level of design and, again, are of no
interest to our project. In a restaurant database such
rules would be used to determine what delimiters
separate data entries for buses going to the same
restaurant, or whether the price should be recorded
in a fixed or variable field.

The third cluster includes several types of rules that
are pertinent to data collection in general (see Fig. 1).
These are: (1) rules for authorized sources of informa-
tion; (2) rules for establishing entities, relationships
and attributes; (3) rules for domains; (4) rules for
occurrence; and (5) rules for cardinality,

144

4.1. Rules for authorized sources

A special set of rules must be created to determine
which sources of information to consult about enti-
ties (i.e. entity types), relationships or attributes. For
example, what sources of information should be
consulted to determine the name of a restaurant?
Should the name be taken from the restaurant’s sign,
from the telephone directory, or from the license of
the restaurant? Obviously, only one source should be
used, and a rule is needed to state clearly what the
authorized source of information is.

Rules for authorized sources are of three types: (a)
a general rule that states the source of information;
(b) a rule for individual entities, relationships or
attributes that lack the authorized source; and (c) a
rule for those that have more than one authorized
source.

4.1.1. General Rules

A general rule clearly states the authorized source
of information, and can take one of two forms. Either
a database designer selects one, and only one, source
or he decides that any source will do. Thus, a designer
may instruct data collectors to record the license
number from the license itself, but to use any source
of information—the chef, employees or diners—to
determine the type of food that is served.

Attributes may require a special form of a general
rule: a rule for dependent authorized sources. Such a
rule states that the authorized sources for informa-
tion for an attribute is the same one that is used to
establish the entity or relationship which it describes.
This kind of a rule implicitly covers instances where
the source is not available, or those where there are
more than one source.

4.1.2. Lack of Authorized Source

If the general rule designates a single authorized
source of information, a rule must be devised for
individual entities, relationships or attributes that
lack such a source. Such a rule can take one of two
forms: it may allow data collection from any other
source or it may provide a list of other sources that
can be used, and these sources may be organized in
order of preference.

4.1.3. Multiple Authorized Sources

In contrast, an individual entity, relationship or
attribute may have more than one authorized source
of information. To solve such a problem a database
designer can designate additional criteria by which
the authorized source of information should be se-
lected. Suppose the menu is the source used to
determine the type of food served in a restaurant. In
anticipating a situation when a restaurant has more
than one menu, one may instruct data collectors to
consult the menu printed most recently, and if all
menus were printed at the same time, to consult the
one that includes the largest number of dishes.

Raya FIDEL and MICHAEL CRANDALL

4.2. Establishing entities, relationships and attributes

Rules to establish entities, relationships or attri-
butes guide data collection when it is not clear
whether or not a particular object or a fact in real-life
“qualifies” as a specific entity, if a relationship exists
among real-life objects, or whether or not a particular
real-life fact should be recorded as an attribute of a
particular entity.

There are three conditions that require such rules:
(a) when subtle issues need to be emphasized or the
description of an entity, relationship or attribute
requires elaboration; (b) when several objects could
qualify as one entity, a few associations as one
relationship or a number of facts as one attribute, all
to varying degrees—the case of fuzzy entities, re-
lationships or attributes; and (c) when an object can
be defined either as one entity or another, an associ-
ation as one relationship or another or a fact as one
attribute or another—the borderline case.

4.2.1. Elaboration Rules

Elaboration rules add checking points that can be
used at the time of data collection to check whether
Or not a particular entity, relationship or attribute is
established “correctly.” Such rules can either state
facts that are already known to provide clarifications,
consistency checks and to emphasize subtleties; or
they may provide a checklist.

Most elaboration rules do not add information,
but rather anticipate possible mistakes or miscon-
ceptions. An example of a rule for clarification for the
entity license is: “a license to operate a restaurant
must be given by the City’s Licensing Department.
Licenses issued by licensing departments of other
cities should be ignored.” Similarly, to avoid incon-
sistency or mistakes in recording the grade a res-
taurant has been given by a reviewer, a rule may state
that a restaurant can be graded only if it has been
reviewed.

Checklists are more informative than general elab-
oration rules. Consider the entity reviewer of restau-
rants. To provide a clear distinction between persons
who simply write restaurant reviews and those who
are “truly” reviewers, one could construct a set of
rules—for fuzzy entities (see below)—that would set
the record straight for each person. Such a task is
likely to require much time as it involves speculations
about a large variety of instances where persons who
write reviews are not restaurant reviewers in the strict
sense. If the number of reviewers is relatively small,
however, designers may consider a checklist. They
can simply list the qualified reviewers in the city—
establish the Reviewer List—and formulate the elab-
oration rule: “a person is a reviewer only if his or her
name is on the Reviewer List.”

Checklists may take various forms. If the location
of a restaurant (i.e. the district or neighborhood) has
to be determined, designers can use the Official
District Map of a city as a checklist for data col-

Fitting reality into a database mold 145

lectors to consult when they assign locations to
restaurants.

4.2.2. Fuzzy Entities, Relationships and Attributes

4.2.2.1. Fuzzy entities. Rules for fuzzy entities are
useful to handle situations when a number of real-life
objects could qualify as an entity, and some more so
than others. Here a rule must be devised that either
expands the definition of the entity or provides
additional criteria—general or specific—for establish-
ing the entity.

Consider again the entity reviewer as an example.
Suppose that a Reviewer List cannot be established,
and that the definition of the entity is: “a person who
makes his/her reviews of restaurants known to the
public.” Here we encounter a typical fuzzy case: a
great number of people may qualify as reviewers, and
some more so than others.

One approach to resolve this problem is to expand
the entity’s definition and to devise explicit criteria to
determine when a review was actually made known
to the public. Designers may decide to use a general
statement, such as: “‘a person is a reviewer if his/her
reviews appear in a publication that has a circulation
of at least 5000.” Or, a designer may explicitly state
the publications that are “qualified” as sources that
make information known to the public: major daily
and weekly newspapers and magazines, or books
about restaurants.

Another method to resolve a fuzzy case is to
provide additional criteria for the selection of a
reviewer. A general criterion of that nature may be:
“a person qualifies as a reviewer if she or he has
published at least 10 restaurant reviews in the last
year and if the reviews have been published on a
regular basis.”

More specific criteria might be given to accommo-
date special situations. Consider Mr Cook—a retired
art critic who is well-known and admired for the
occasional restaurant reviews he publishes in a local
newspaper. To ensure that his reviews are included in
the database, designers may provide yet another
instruction: “if a person is well-known as a reviewer,
he or she qualifies as a reviewer even if the reviews are
published irregularly or in publications with low
circulation.”

In contrast, one may want to specify that other
criteria are of no consequence to the determination of
an entity. An example of such a rule is: “a person
qualifies as a reviewer regardless of how popular his
or her reviews are, whether or not writing restaurant
reviews is the main source of income, or of the degree
to which this person is knowledgeable about food.”

4.2.2.2. Fuzzy relationships. Rules for fuzzy re-
lationships are consulted when it is not clear whether
or not an association qualifies as a relationship, or
when some associations qualify as a relationship
more than others. These rules are likely to constitute
one of the largest sets of rules in a database, because

they actually define the conditions under which each
relationship holds.

Various kinds of problems would require the use of
rules for fuzzy relationships.

To exemplify these problems let us consider the
relationship ‘“‘serves” that associates the entities
restaurant and type of food. For this purpose let us
also assume that it is a mandatory, many-to-many
relationship.

Procedures to establish relationships—Each re-
lationship requires at least one rule that specifies the
criteria to use, or the procedure to follow, in order to
establish the relationship. For instance, to ascertain
whether or not License No. 5428 authorizes the
operation of the Minaret restaurant, it is sufficient to
check whether or not the name of the restaurant is
printed on the license. To determine whether or not
this restaurant serves Italian food, however, more
complex rules are needed. This relationship requires
a rule explaining the procedure by which the type of
food is determined, such as: “the type of food that a
restaurant serves is determined by the following
procedure: each dish on the menu is assigned a type
of food; the types of food are then ranked by number
of dishes, eliminating types for which less than four
dishes are available. The first three on the list are
selected as the types of food.”

Upper limits on relationships—One-to-many, or
many-to-many relationships may require that the
number of real-life objects in an entity type corre-
sponding to one real-life object in another be limited.
For the “serves” relationship, designers may decide
that while a type of food can be served in any number
of restaurants, a restaurant can serve up to, say, three
distinct types of food.

Relationships that cannot be established—It may.
happen that a relationship that is mandatory cannot
be established for a particular entity. A rule about
how to “establish” a relationship in such cases should
be devised. A restaurant, for example, may not have
a distinct type of food to offer because the number of
dishes it serves of each food type is smaller than four.
Database designers should anticipate such a case and
create a rule similar to: “if there is no evidence that
a restaurant serves a specific type of food, assign
‘general’ as its type of food.”

Similarly, one may end up with types of food that
are not assigned to any restaurant. The relationship
‘“serves,” however, is mandatory, and one must,
therefore, create a rule to accommodate such discrep-
ancies. An example of such a rule is: “if a type of food
has not been associated with a restaurant, using the
procedure of menu examination, assign it to the
restaurant which serves the largest number of dishes
of that type.”

Doubtful cases—A rule should be formulated to
guide decisions in case of doubt. Such rules may
suggest additional examinations, or they may specify
whether or not to give a relationship the benefit of
doubt. For example: “in case of doubt whether or not

146

a restaurant serves a particular type of food, assign
this food type to the restaurant.”

Erroneous information—It may happen that the
source of information or the procedure followed to
establish a relationship leads to erroneous results.
Anticipating such an instance with the relationship
“serves,” for example, designers may create a rule
such as: “even if it is known that some dishes of a
certain type of food are not actually served, include
this type of food if the score is high enough.”

Multiple correspondence—One-to-one, or one-to-
many, relationships may present problematic in-
stances where an individual entity which is supposed
to relate to only one entity from another entity type
actually relates to more than one entity. Therefore, a
rule must be created for relationships with these
cardinalities that determines whether to split the
original entity, or how to select a single entity from
among the entities that can possibly relate to it.

The relationship between the entities restaurant
and license—*operates by”—is a relevant example
here. Designers must anticipate instances where a
restaurant actually has more than one license even
though each restaurant is supposed to have only one
license. Design specifications and requirements would
determine which rule to select. Designers may create
a rule that suggests that the restaurant be split into
a number of restaurants, each corresponding to a
different license. Alternatively, one may advise that if
a restaurant has more than one license, the earliest
one be recorded.

4.2.2.3. Fuzzy attributes. As illustrated with exam-
ples for entities and relationships, rules for fuzzy
attributes are important when a number of real-life
facts could qualify as one attribute, and some more
so than others. Similarly, the types of rules for fuzzy
entities and relationships apply to attributes as well.
Examples of a few instances of fuzzy attributes are
discussed here.

The first example is the use of additional criteria to
select the “right” attribute when more than one fact
qualifies as an attribute (the multiple occurrence case).
If, for example, the name of a reviewer is a one-to-one
attribute, designers may want to anticipate the un-
likely case where a reviewer has more than one name.
Here, a rule that specifies additional criteria for
determining reviewer name is of help, such as: “if a
reviewer has more than one name use the one by
which he or she is most commonly known.”

Second, a rule for fuzzy attributes may actually
dictate a procedure to determine a value for the
attribute. Consider the question of how to determine
the price range of a restaurant. A database designer
may prescribe the following procedure: “examine the
prices on the menu for dishes that are not appetizers
nor desserts. The price range starts with the second
lowest price on the list (unless there are at least three
dishes available in the lowest price) and concludes
with the highest price on the list for which at least two
dishes are available.”

RaYva FIDEL and MICHAEL CRANDALL

This procedure reminds us of the third example: a
rule that determines how to “establish™ an attribute
that is mandatory but cannot be established. The
attribute price is mandatory, yet, following the above
procedure one may not be able to establish a price
range for a restaurant that serves desserts only, or for
a restaurant in which the prices change every night
according to the daily special. To facilitate data
collection in such problematic instances, one may
formulate the rule: “if the price of food at a restau-
rant cannot be determined using the designated pro-
cedure, ask the manager to quote the range of price.”
Note that this rule would probably require the use of
a source of information other than the authorized
one.

Rules for fuzzy attributes can also guide data
collection when the information found in the autho-
rized source is known to be incorrect (the erroneous
information case). To ensure that a name is entered
for each reviewer, for example, a rule can be formu-
lated that states: “if the name found in the authorized
source for a reviewer is incorrect, enter it if the
correct name is unknown; otherwise, enter the correct
name.”

Lastly, a one-to-many or many-to-many attribute
may require an upper limit on the number of values
that can be assigned to each entity. One may state, for
example, that a restaurant can have no more than
three price ranges.

4.2.3. Borderline Cases

Rules for borderline cases are formulated to ac-
commodate instances where a real-life object or fact
can be defined either as one entity, or attribute, or
another. The rules determine whether objects or facts
should be recorded as two distinct entities, or attri-
butes, or whether one entity type, or attribute, is
preferred to the other and under what conditions.

An example for a rule that recommends an object
to be recorded as two distinct entities or attributes is
a possible rule for the name of a reviewer: *“if the real
name and the pen name of a reviewer are one and the
same, record the name for both attributes.”

Alternately, the distinction between address and
location, which is the district or neighborhood of a
restaurant, may require a rule that specifies condi-
tions for borderline cases. Data collectors may puzzie
over whether a certain shopping center should be
recorded as a location or as an address. An example
of a rule to help them is: “a shopping center that
houses more than 20 establishments is considered a
location: otherwise it is recorded as an address.”

4.3. Rules for domains

Domains define the valid values that each attribute
may have. They do not explain, however, how to
select the values pertinent to an attribute of a partic-
ular entity from among the possible valid values.
Rules for a domain are created for that purpose. For
instance, while the domain of a restaurant code may

Fitting reality into a database mold

be a string of six letters, only a rule can explain how
to construct the code for the Minaret restaurant. The
most common type of rule here is the general rule and
it would be required for the domains of most attri-
butes. In addition, the domains of some attributes
would call upon rules for fuzzy domains.

4.3.1. General Rules

These rules give instructions about the construc-
tion and selection of values for attributes of individ-
ual entities.

Basic rules—The most common type of a general
rule is the basic rule which provides the most general
instructions about how to select values. Consider the
attribute address of a restaurant, and suppose the
authorized source of information for this attribute is
the restaurant’s license. An example of a basic rule
for the domain of this attribute is: “record the
address of a restaurant exactly as it appears on its
license.”

Content rules—Suppose, however, that designers
think that addresses are recorded on licenses inconsis-
tently. While retaining the restaurant license as the
authorized source of information, designers may
prefer to explicitly state what parts of the address to
record, say: number, street, city and zip code. Such
a rule is a content rule: it states what information to
include in the values for each attribute. Still another
form of this rule is to require that at the minimum,
these four elements be recorded and further informa-
tion can be added, if relevant.

General rules are formulated in anticipation of a
variety of exceptions and irregularities. Some exam-
pies of such irregularities and the rules they require
are given below.

Missing -value rules—The purpose of these rules is
to instruct about the selection of a value when one
knows that a value exists but is unable to find it. For
instance, one may not be able to find the real name
of a reviewer—an attribute that is mandatory. For
some attributes it might be necessary to find the
correct value, and designers may explicitly require
that the real name be identified. If the database
specifications allow for more flexibility, however,
designers may formulate a rule that states: “if the real
name of a reviewer cannot be ascertained, enter
‘unknown’.”” Here the term ‘“‘unknown” is a valid
value for the attribute. A similar rule may suggest
entering a pen name instead, assuming those names
are always available.

Sequence rules—Domains for attributes that ac-
cept more than one value for a single entity may
require a sequence rule: a rule that explains in what
order these values be recorded. Consider the attribute
price of food in a restaurant. If the domain includes
all the price ranges charged by a restaurant—for
lunches, dinners or a late-night snack—a sequence
rule might help to keep data recording consistent.

Shortcut rules—1If values for an attribute are rela-
tively long strings of symbols, designers may suggest

147

that some of the values be abbreviated, hopefully
with no loss of information.

Quality rules—1It may happen that the information
taken from the authorized source of information
“does not look right,” or it does not have an expected
quality. For example, the name of a restaurant may
not seem like any other name, or the price charged
may seem imaginary. To guide a perplexed person
who collects the data, designers must formulate a
quality rule that explains whether to accept such
values, or how to look for the “correct” values.

Authority lists—All the domain rules described
here are in the form of a general rule that elaborates
on the definition of the domain. Some attributes,
however, may require that their domains be explicitly
listed. Such lists are called authority lists: they include
all the valid values of an attribute. The name of the
type of food, is an example of such an attribute. An
authority list is needed here so data collectors—and
users—know that Middle Eastern, Arabic and Israeli
food are very similar to one another and should
possibly be recorded under one name.

4.3.2. Fuzzy Domains

Rules for fuzzy domains are required when the
data taken from the source of information do not
correspond accurately to the domain and its charac-
teristics, or when a domain includes values from
other domains. The discrepancy between data found
in the real world and the domain as defined by
database designers or its values, manifests itself in a
variety of instances. Below are several examples.

Lack of correspondence—The data found in the
source of information may not correspond to the
definition of the domain. Restaurant licenses, for
example, may include in their “address™ area infor-
mation that would not usually be considered address
information, e.g. the number of the lot on which the
restaurant is located, or the number of the original
building permit. To resolve instances where the data
in a restaurant license do not correspond to the

- definition of the domain a designer might formulate

a rule such as: “omit any information in the ‘address’
area of the license that is not part of the address.”

Incomplete information—Similarly, a rule must be
created for instances where the data from the source
of information is incomplete. One may instruct, for
example: “when the street number is not available,
enter ‘0000°, when the street name is not available
enter ‘STREET"; enter 99999 for unavailable zp
codes.”

Invalid values—The values found in the source of
information may not be valid values for the attribute.
Consider the attribute price that is charged by a
restaurant, where the price is expressed by two num-
bers separated by a hyphen, for the range of prices
that are charged. Anticipating a situation where a
restaurant charges only one price for all its meals, like
“eat all you can” places, designers should decide
whether the price such restaurants charge should be

148 Rava FIDEL and MICHAEL CRANDALL

recorded as one number, or as a sequence of two
identical numbers separated by a hyphen.

Too many values—The number of values found in
the source of information may exceed the permitted
limit. For example, even if designers limit the number
of telephones a restaurant can have to one, some
restaurants may have more than one telephone num-
ber. A rule that solves such a discrepancy is: “when
a restaurant has more than one telephone number,
record the first on their list and add a ‘+° sign to
designate that there are additional telephone num-
bers.”

Indistinguishable values —Two—or more—identical
values may need to be distinguished. For instance, it
may happen that using a formula to create a restau-
rant code, two restaurants would be assigned the
same code. Anticipating such a mishap, one would
devise a rule, in addition to the general rule, that
provides instructions about how to construct a code
for a restaurant whose code has already been as-
signed to another restaurant.

Another example of this type of fuzzy domain,
even though quite different, is the domain of tele-
phone number. If designers decide to record both the
reservations and manager numbers for each restau-
rant, it is necessary to designate the destiny of each
number. Note that a rule to solve such discrepancies
would be necessary whenever a divided attribute has
only one set of values.

Unreliable data—The data taken from the autho-
rized source of information might be questionable. In
such cases a rule should instruct data collection
personnel whether or not to adhere to the source and
under what circumstances. “Record a restaurant
address from the license even if you think it is
incorrect (e.g. if it includes typos),” is an example of
such a rule.

Values from other domains—Special problems may
arise when a domain includes values from other
domains. An example of a rule to resolve that type
of fuzzy domain is: “if the name of a restaurant is a
name of a type of food, record it as the name of the
restaurant only if it coincides with the type of food
that is served in the restaurant.”

4.4. Occurrence

An occurrence rule states whether a relationship or
an attribute is mandatory or whether it is optional.
These rules are regularly mentioned in the database
literature and there is no need to elaborate. One may
want to remember, however, that mandatory re-
lationships and attributes require rules for instances
where a relationship, an attribute or a domain cannot
be established.

4.5. Cardinality

The cardinality of a relationship or an attribute
determines whether it is one-to-one, one-to-many or
many-to-many. As with occurrence, this concept is
well-known and one should only be reminded of the

types of rules mentioned earlier that are required for
particular cardinalities.

5. DISCUSSION

The typology presented here is based on a set of
rules designed to guide data coliection for one type
of database. While it reflects a variety of types of
individual diversity or possible exceptions, this ty-
pology is by no means exhaustive: databases of other
kinds may necessitate additional types. It is a begin-
ning though, and one that proposes a structure for a
more general typology.

The typology identifies discrete irregularities that
can be readily recognized in the real world. Yet, some
rules would necessarily belong to more than one
category. The rule “if the name of a restaurant is a
name of a type of food, record it as the name of the
restaurant only if it coincides with the food type that
is served in the restaurant,” for example, resolves
more than one type of problem. While it instructs
data collection in the case where the domain of the
attribute name of a restaurant includes a value from
the domain name of a type of food, it also answers
a situation where the name of a particular restaurant
is questionable.

Further, the typology would be more useful if
general characteristics of entities, relationships and
attributes could predict the types of rules necessary
for each component. For instance, a rule for indistin-
guishable values is called upon whenever a divided
attribute has only one set of values. Similarly, a rule
that puts an upper limit on a relationship is typical
of one-to-many and many-to-many relationships and
should always be considered for such relationships.
Most other rules that are presented here, however,
could apply to any component of a database schema.
It would help designers if they could determine by the
characteristics of a component which rules to con-
sider. It remains the task of future research to
discover the relationships between component char-
acteristics and types of rules.

Similarly, further experience and analysis can also
point to relationships among the types of rules. A rule
for erroneous information (fuzzy relationships and
attributes), for example, would require a recon-
sideration of the rules for authorized sources, and so
would a rule for missing-value.

The typology is useful to database designers, how-
ever, even in its present form. When constructing the
conceptual schema, designers may check each entity,
relationship and attribute against each type of rule to
determine whether or not a rule is necessary.

For example, when creating the entity former em-
ployer in a database for an employment agency, one
is led to first decide what is the chief source of
information about former employers, and which
source to use when the chief source is unavailable or
when there is more than one source. Next, a designer
would consider possible general statements for

Fitting reality into a database mold 149

clarifications or consistency checks. Lastly, the de-
signer would ask which agencies or people may seem
to be employers but should not be recognized as such
for the purpose of the database. Anticipating these
irregularities, he would formulate rules to establish
fuzzy entities.

The typology of rules is particularly helpful for
developing decision support systems, because such
systems provide information in a particular subject
area rather than representing processes and pro-
cedures. Here, database designers have to anticipate
all possible diversity with very little help from the
data themselves. The typology can aid, however, the
design of databases for other systems as well. Even
when a system is designed to replace existing pro-
cesses and procedures, not all rules to counteract
individual diversity are already explicitly stated. City
personnel, for instance, may have developed a
“sense’”” for determining the names of a restaurant
through experience and they may not recognize that
an explicit rule is required. With the typology, de-
signers can uncover systematically existing rules and
point out situations that require additional rules.

The typology can be expanded, and its structure
can be further developed when types of rules used for

other databases are integrated. More input would
eventually lead to a more general typology that
would guide database designers in formulating rules
for individual diversity and exceptions. Additional
experience may also pave the way to the discovery of
the relationships between rule types and between
characteristics of schema components and the types
of rules they require.

REFERENCES

(1] W. Kent. Data and Reality: Basic Assumptions in Data
Processing Reconsidered. North-Holland, New York
(1978).

[2] J. Martin and C. Mcclure. Structured Techniques for
Computing. Prentice-Hall, Englewood Cliffs, New Jer-
sey (1985).

[3] S. Cerri (Ed.). Methodology and Tools Sfor Data Base
Design. North-Holland, New York (1983).

[4] R. Fidel. Database Design for Information Retrieval:
A Conceptual Approach. Wiley, New York (1987).

[5] P. P. S. Chen. The entity-relationship model—toward
a unified view of data. ACM Trans Database Systems
1, 9-36 (1976).

[6] Anglo-American Cataloguing Rules, Second Edition
(Edited by M. Gorman and P. W. Winkler). American
Library Association, Chicago (1978).

