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Abstract

This paper surveys some common state space models used in macroeconomics and fi-
nance and shows how to specify and estimate these models using the SsfPack algorithms
implemented in the S-PLUS module S+FinMetrics. Examples include recursive regres-
sion models, time varying parameter models, exact autoregressive moving average models
and calculation of the Beveridge-Nelson decomposition, unobserved components models,
stochastic volatility models, and term structure models.

1 Introduction

The first version of SsfPack1 appeared in 1998 and was developed further during the years that
the last author was working with Jim Durbin on their 2001 textbook on state space methods.
The fact that SsfPack functions are now a part of the S-PLUS software is partly due to Jim
Durbin. He convinced Doug Martin that SsfPack would be very beneficial to S-PLUS. Indeed
the persuasive arguments of Jim Durbin has initiated the development of SsfPack functions
for S-PLUS as part of the S+FinMetrics module. It is therefore an honor for us, the developers
of SsfPack for S+FinMetrics, to contribute to this volume with the presentation of various
applications in economics and finance that require the use of SsfPack for S+FinMetrics in
empirical research.

State space modeling in macroeconomics and finance has become widespread over the
last decade. Textbook treatments of state space models are given in Harvey (1989), Har-
vey (1993), Hamilton (1994), West & Harrison (1997), Kim & Nelson (1999), Shumway &

∗Financial support from the Royal Netherlands Academy of Arts and Sciences, and from the Gary Waterman
Distinguished Scholar Fund at the University of Washington is gratefully acknowledged.
Emails: ezivot@u.washington.edu, jwang@svolatility.com, koopman@ssfpack.com.
Updates to the paper, including data and programs used in this paper, are available at Eric Zivot’s website
http://faculty.washington.edu/ezivot/ezresearch.htm.

1Information about SsfPack can be found at http://www.ssfpack.com.
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Stoffer (2000),Durbin & Koopman (2001), and Chan (2002). However, until recently there has
not been much flexible software for the statistical analysis of general models in state space
form. A modern set of state space modeling tools are available in SsfPack which is a suite
of C routines for carrying out computations involving the statistical analysis of univariate and
multivariate models in state space form. The routines allow for a variety of state space forms
from simple time invariant models to complicated time varying models. Functions are available
to put standard models like autoregressive moving average and spline models in state space
form. General routines are available for filtering, smoothing, simulation smoothing, likelihood
evaluation, forecasting and signal extraction. Full details of the statistical analysis is provided
in Durbin & Koopman (2001), and the reader is referred to the papers by Koopman, Shep-
hard & Doornik (1999) and Koopman, Shephard & Doornik (2001) for technical details on the
algorithms used in the SsfPack functions.

The SsfPack 2.3 routines are implemented in Ox and the SsfPack 3.0 routines are in
Insightful’s new S-PLUS module S+FinMetrics2. The implementation of the SsfPack functions
in Ox is described in Koopman et al. (1999). Its implementation in S+FinMetrics is described
in Zivot & Wang (2003, Chapter 14). This paper gives a selected overview of state space
modeling with some economic and financial applications utilizing the S+FinMetrics/SsfPack

functions.
This paper is organized as follows. Section 2 deals with (i) the general state space model and

its specific SsfPack state space representation, (ii) descriptions of some functions for putting
common time series models into state space form and (iii) the process of simulating observations
from a given state space model. Section 3 summarizes the main algorithms used for the analysis
of state space models. These include the Kalman filter, smoothing and forecasting. Further the
estimation of the unknown parameters in a state space model is described. The remaining part
of the paper presents several applications of state space modeling in economics and finance.
These include recursive estimation of the capital asset pricing model with fixed and time varying
parameters (section 4), maximum likelihood estimation of autoregressive moving average models
and unobserved component models together with trend-cycle decompositions based on these
models including the Beveridge-Nelson decomposition (section 5), estimation of a stochastic
volatility model using Monte Carlo simulation techniques (section 6) and the estimation and
analysis of a simple affine term structure model (section 7).

2 Linear State Space Representation

Many dynamic time series models in economics and finance may be represented in state space
form. Some common examples are autoregressive moving average (ARMA) models, time vary-
ing regression models, dynamic linear models with unobserved components, discrete versions
of continuous time diffusion processes, stochastic volatility (SV) models, non-parametric and
spline regressions. The linear Gaussian state space model is represented as the system of equa-

2Ox is an object-oriented matrix programming language developed by Doornik (1999); more information is
available at http://www.nuff.ox.ac.uk/users/doornik. S+FinMetrics is an S-PLUS module for the analysis
of economic and financial time series. It was conceived by the first two authors and Doug Martin, and developed
at Insightful Corporation. Its use and functionality is described in detail in Zivot & Wang (2003); more
information is available at http://www.insightful.com/products/default.asp.
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where t = 1, . . . , n and

α1 ∼ N(a,P), ηt ∼ iid N(0, Ir), εt ∼ iid N(0, IN), (4)

and it is assumed that E[εtη
′
t] = 0. The initial mean vector a and initial variance matrix P are

fixed and known but that can be generalized. The state vectorαt contains unobserved stochastic
processes and unknown fixed effects and the transition equation (1) describes the evolution of
the state vector over time using a first order Markov structure. The measurement equation (3)
describes the vector of observations yt in terms of the state vector αt through the signal θt

and a vector of disturbances εt. It is assumed that the innovations in the transition equation
and the innovations in the measurement equation are independent, but this assumption can
be relaxed. The time varying deterministic matrices Tt,Zt,Ht,Gt are called system matrices
and are usually sparse selection matrices. The vectors dt and ct contain fixed components and
may be used to incorporate known effects or known patterns into the model; otherwise they
are equal to zero.

The state space model (1) - (3) may be compactly expressed as
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The initial value parameters are summarized in the (m+ 1)×m matrix

Σ =

(

P

a′

)

(7)

For multivariate models, i.e. N > 1, it is assumed that the N × N matrix GtG
′
t is diagonal.

This restriction can be circumvented by including the disturbance vector εt in the state vector
αt.

2.1 Initial Conditions

The variance matrix P of the initial state vector α1 is assumed to be of the form

P = P∗ + κP∞ (8)
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where P∞ and P∗ are symmetric m ×m matrices with ranks k∞ and k∗, respectively, and κ
represents the diffuse prior that is typically taken as a large scalar value, say, 107. The matrix
P∗ captures the covariance structure of the stationary components in the initial state vector,
and the matrix P∞ is used to specify the initial variance matrix for nonstationary components
and fixed unknown effects. When the ith diagonal element of P∞ is negative, the corresponding
ith column and row of P∗ are assumed to be zero, and the corresponding row and column of P∞

will be taken into consideration. Further, the algorithms implement an “exact diffuse prior”
approach as described in Durbin & Koopman (2001, Chapter 5) and, with more algorithmic
detail, in Koopman et al. (2001).

2.2 State Space Representation in S+FinMetrics/SsfPack

State space models in S+FinMetrics/SsfPack utilize the compact representation (5) with initial
value information (7). The following two examples describe its functionality.

Example 1 State space representation of the local level model

Consider the simple local level model for the stochastic evolution of the logarithm of an
asset price yt

αt+1 = αt + η∗t , η∗t ∼ iid N(0, σ2η) (9)

yt = αt + ε∗t , ε∗t ∼ iid N(0, σ2ε) (10)

α1 ∼ N(a, P ), E[ε∗tη
∗
t ] = 0. (11)

In this model, the observed value yt is the sum of the unobservables αt and ε∗t . The level αt is
the state variable and represents the underlying signal. The transition equation (9) shows that
the state evolves according to a random walk . The component ε∗t represents random deviations
(noise) from the signal that are assumed to be independent from the innovations to αt. The
strength of the signal relative to the noise is measured by q = σ2η/σ

2
ε .

The state space form (5) of the local level model has time invariant parameters

δ =

(

0
0

)

, Φ =

(

1
1

)

, Ω =

(

σ2η 0
0 σ2ε

)

(12)

with errors σηηt = η∗t and σεεt = ε∗t . Since the state variable αt is I(1)3, the unconditional
distribution of the initial state α1 does not have a finite variance. In this case, it is customary
to set a = E[α1] = 0 and P = var(α1) = κ in (11) with κ → ∞ to reflect that no prior
information is available. Using (8), the initial variance is specified with a = 0, P∗ = 0 and
P∞ = 1. Therefore, the initial state matrix (7) for the local level model has the form

Σ =

(

−1
0

)

(13)

where −1 implies that P∞ = 1.
In S+FinMetrics/SsfPack , a state space model is specified by creating either a list variable

with components giving the minimum components necessary for describing a particular state

3The short-hand notation I(1) is for a nonstationary variable that needs to be differenced once to become
stationary, see Hamilton (1994) for further details.
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> sigma.e = 1
> sigma.n = 0.5
> a1 = 0
> P1 = -1
> ssf.ll.list = list(mPhi=as.matrix(c(1,1)),
+ mOmega=diag(c(sigma.n^2,sigma.e^2)),
+ mSigma=as.matrix(c(P1,a1)))
> ssf.ll.list
$mPhi: $mOmega: $mSigma:

[,1] [,1] [,2] [,1]
[1,] 1 [1,] 0.25 0 [1,] -1
[2,] 1 [2,] 0.00 1 [2,] 0

> ssf.ll = CheckSsf(ssf.ll.list)
> class(ssf.ll)
[1] "ssf"
> names(ssf.ll)
[1] "mDelta" "mPhi" "mOmega" "mSigma" "mJPhi"
[6] "mJOmega" "mJDelta" "mX" "cT" "cX"
[11] "cY" "cSt"
> ssf.ll
$mPhi: $mOmega: $mSigma: $mDelta:

[,1] [,1] [,2] [,1] [,1]
[1,] 1 [1,] 0.25 0 [1,] -1 [1,] 0
[2,] 1 [2,] 0.00 1 [2,] 0 [2,] 0
$mJPhi: $mJOmega: $mJDelta:
[1] 0 [1] 0 [1] 0
$mX: $cT: $cX: $cY: $cSt:
[1] 0 [1] 0 [1] 0 [1] 1 [1] 1
attr(, "class"):
[1] "ssf"

Listing 1: Local level model in S+FinMetrics/SsfPack

space form or by creating an “ssf” object. To illustrate, consider listing 1 where a list variable is
created that contains the state space parameters in (12)-(13), with ση = 0.5 and σε = 1. In the
list variable ssf.ll.list, the component names match the state space form parameters in (5)
and (7). This naming convention, summarized in Table 1, must be used for the specification of
any valid state space model. An “ssf” object may be created from the list variable ssf.ll.list
using the function CheckSsf as done in listing 1. The function CheckSsf takes a list variable
with a minimum state space form, coerces the components to matrix objects and returns the
full parameterization of a state space model used in many of the S+FinMetrics/SsfPack state
space modeling functions.

Example 2 State space representation of a time varying parameter regression model

Consider a Capital Asset Pricing Model (CAPM) with time varying intercept and slope

yt = αt + βM,txM,t + νt, νt ∼ iid N(0, σ2ν),

αt+1 = αt + ξt, ξt ∼ iid N(0, σ2ξ ), (14)

βM,t+1 = βM,t + ςt, ςt ∼ iid N(0, σ2ς ),
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State Space Parameter List Component Name

δ mDelta

Φ mPhi

Ω mOmega

Σ mSigma

Table 1: S+FinMetrics/SsfPack state space form list components

where yt denotes the return on an asset in excess of the risk free rate, and xM,t denotes the excess
return on a market index. In this model, both the abnormal excess return αt and asset risk
βM,t are allowed to vary over time following a random walk specification. Let αt = (αt, βM,t)

′,
xt = (1, xM,t)

′, Ht = diag(σξ, σς)
′ and Gt = σν . Then the state space form (5) of (14) is

(

αt+1

yt

)

=

(

I2
x′t

)

αt +

(

Htηt

Gtεt

)

and has parameters

Φt =

(

I2
x′t

)

, Ω =





σ2ξ 0 0
0 σ2ς 0
0 0 σ2ν



 (15)

Since αt is I(1) the initial state vector α1 requires an infinite variance so it is customary to set
a = 0 and P = κI2 with κ → ∞. Using (8), the initial variance is specified with P∗ = 0 and
P∞ = I2. Therefore, the initial state matrix (7) for the time varying CAPM has the form

Σ =





−1 0
0 −1
0 0



 .

The state space parameter matrix Φt in (15) has a time varying system element Zt= x
′
t. In

S+FinMetrics/SsfPack, the specification of this time varying element in Φt requires an index
matrix JΦ and a data matrixX to which the indices in JΦ refer. The index matrix JΦ must have
the same dimension as Φt. The elements of JΦ are all set to −1 except the elements for which
the corresponding elements of Φt are time varying. The non-negative index value indicates the
column of the data matrix X which contains the time varying values4. For example, in the
time varying CAPM, the index matrix JΦ has the form

JΦ =





−1 −1
−1 −1
1 2



 .

The specification of the state space form for the time varying CAPM requires values for the
variances σ2ξ , σ

2
ς , and σ2ν as well as a data matrix X whose rows correspond with Zt = x′t =

(1, rM,t). For example, let σ2ξ = (0.01)2, σ2ς = (0.05)2 and σ2ν = (0.1)2 and construct the data

4When there are time varying elements in Tt, the initial values of these elements in the specification of Φt

should not be set to −1, 0, or 1 due to the way SsfPack handles sparse matrices. We suggest setting these
elements equal to 0.5 so that the sparse matrix operations know that there should be a non-trivial number
there.
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matrix X using the excess return data in the S+FinMetrics “timeSeries” excessReturns.ts.
The state space form is then created as in listing 2. Notice in the specification of Φt the values
associated with x′t in the third row are set to zero. In the index matrix JΦ, the (3,1) element
is 1 and the (3,2) element is 2 indicating that the data for the first and second columns of x′t
come from the first and second columns of the component mX, respectively.

> X.mat = cbind(1,as.matrix(seriesData(excessReturns.ts[,"SP500"]))
> Phi.t = rbind(diag(2),rep(0,2))
> Omega = diag(c((.01)^2,(.05)^2,(.1)^2))
> J.Phi = matrix(-1,3,2)
> J.Phi[3,1] = 1
> J.Phi[3,2] = 2
> Sigma = -Phi.t
> ssf.tvp.capm = list(mPhi=Phi.t,
+ mOmega=Omega,
+ mJPhi=J.Phi,
+ mSigma=Sigma,
+ mX=X.mat)
> ssf.tvp.capm
$mPhi: $mOmega:

[,1] [,2] [,1] [,2] [,3]
[1,] 1 0 [1,] 0.0001 0.0000 0.00
[2,] 0 1 [2,] 0.0000 0.0025 0.00
[3,] 0 0 [3,] 0.0000 0.0000 0.01
$mJPhi: $mSigma:

[,1] [,2] [,1] [,2]
[1,] -1 -1 [1,] -1 0
[2,] -1 -1 [2,] 0 -1
[3,] 1 2 [3,] 0 0
$mX:
numeric matrix: 131 rows, 2 columns.

SP500
1 1 0.002839

...
131 1 -0.0007466

Listing 2: The CAPM model in S+FinMetrics/SsfPack

In the general state space model (5), it is possible that all of the system matrices δt, Φt

and Ωt have time varying elements. The corresponding index matrices Jδ, JΦ and JΩ indicate
which elements of the matrices δt, Φt and Ωt are time varying and the data matrix X contains
the time varying components. The naming convention for these components is summarized in
Table 2.

2.3 Model Specification

S+FinMetrics/SsfPack has functions for the creation of the state space representation of some
common time series models. These functions and models are summarized in Table 3. For other
models, the system matrices can be created within S-PLUS and the function CheckSsf.

A complete description of the underlying statistical models and use of these functions is given
in Zivot & Wang (2003, Chapter 14). The use of some of these functions will be illustrated in
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Parameter Index Matrix List Component Name

Jδ mJDelta

JΦ mJPhi

JΩ mJOmega

Time Varying Component Data Matrix List Component Name

X mX

Table 2: S+FinMetrics/SsfPack time varying state space components

Function Description

GetSsfReg Create state space form for linear regression model
GetSsfArma Create state space form for stationary and invertible ARMA model
GetSsfRegArma Create state space form for linear regression model with ARMA errors
GetSsfStsm Create state space form for structural time series model
GetSsfSpline Create state space form for nonparametric cubic spline model

Table 3: S+FinMetrics/SsfPack functions for creating common state space models

the applications to follow.

2.4 Simulating Observations

Once a state space model has been specified, it is often interesting to draw simulated values
from the model. Simulation from a given state space model is also necessary for Monte Carlo
and bootstrap exercises. The S+FinMetrics/SsfPack function SsfSim may be used for such a
purpose. The arguments expected from SsfSim are as illustrated in listing 3. The variable ssf
represents either a list with components giving a minimal state space form or a valid “ssf”
object, n is the number of simulated observations, mRan is user-specified matrix of disturbances,
and a1 is the initial state vector.

Example 3 Simulating observations from the local level model

The code in listing 3 generates 250 observations on the state variable αt+1 and observations
yt in the local level model (9) - (11). The function SsfSim returns a matrix containing the
simulated state variables αt+1 and observations yt. These values are illustrated in Figure 1.

> set.seed(112)
> ll.sim = SsfSim(ssf.ll.list,n=250)
> class(ll.sim)
[1] "matrix"
> colIds(ll.sim)
[1] "state" "response"

Listing 3: Simulating observations and states in S+FinMetrics/SsfPack
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Simulated observations from local level model
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Figure 1: Simulated values from local level model created using the S+FinMetrics function
SsfSim.

3 Overview of Algorithms

In this section we review the algorithms that are considered in S+FinMetrics/SsfPack. The
most relevant equations are reproduced but the review does not aim to be complete and to
provide the detail of implementation. The derivations of the algorithms can be found in, for
example, Harvey (1989), Shumway & Stoffer (2000) and Durbin & Koopman (2001). Details of
numerical implementation are reported in Koopman et al. (1999) and Koopman et al. (2001)
unless indicated otherwise.

The S+FinMetrics/SsfPack functions for computing the algorithms described below are
summarized in Table 4. All of the functions except KalmanSmo have an optional argument task
which controls the task to be performed by the function. The values of the argument task with
brief descriptions are given in Table 5.

3.1 Kalman Filter

The Kalman filter is a recursive algorithm for the evaluation of moments of the normally
distributed state vector αt+1 conditional on the observed data Yt = (y1, . . . , yt). Let at =
E[αt|Yt−1] denote the conditional mean of αt based on information available at time t − 1
and let Pt = var(αt|Yt−1) denote the conditional variance of αt. The filtering or updating
equations of the Kalman filter compute at|t = E[αt|Yt] and Pt|t = var(αt|Yt), as well as the
measurement equation innovation or one-step ahead prediction error vt = yt−ct − Ztat and
prediction error variance Ft = var(vt). The prediction equations of the Kalman filter compute
at+1 and Pt+1.

The function KalmanFil implements the Kalman filter recursions in a computationally
efficient way. The output of KalmanFil is primarily used by other functions, but it can also
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be used directly to evaluate the appropriateness of a given state space model through the
analysis of the innovations vt. The function SsfMomentEst computes the filtered state and
response estimates from a given state space model and observed data with the optional argument
task="STFIL". Predicted state and response estimates are computed using SsfMomentEst with
the optional argument task="STPRED".

When the initial conditions a1 and P1 can be properly defined, the Kalman filter can be used
for prediction and filtering. For example, for a stationary ARMA process in state space, the
initial conditions of the state vector are obtained from the unconditional mean and variance
equations of the ARMA process. For nonstationary processes however the initial conditions
can not be properly defined for the obvious reasons. The same applies to fixed unknown state
elements. In such cases the applicable initial state element is taken as diffuse which implies
that its mean is arbitrary, usually zero, and its variance is infinity.

3.2 Kalman Smoother

The Kalman filtering algorithm is a forward recursion which computes one-step ahead estimates
at+1 and Pt+1 based on Yt for t = 1, . . . , n. The Kalman smoothing algorithm is a backward
recursion which computes the mean and variance of specific conditional distributions based on
the full data set Yn = (y1, . . . , yn). The state smoothing residuals are denoted rt and the
response smoothing residuals are denoted by et.

The function KalmanSmo implements the Kalman smoother recursions in a computationally
efficient way and it computes the smoothing residuals together with the diagonal elements of
their variances. The output of KalmanSmo is primarily used by other functions for computing
smoothed estimates of the state and disturbance vectors but it can also be used to compute
score information for parameter estimation and to evaluate diagnostics for the detection of
outliers and structural breaks .

3.3 Smoothed State, Response and Disturbance Estimates

The smoothed estimates of the state vector αt and its variance matrix are denoted α̂t =
E[αt|Yn] (or at|n) and var(αt|Yn), respectively. The smoothed estimate α̂t is the optimal
estimate of αt using all available information Yn, whereas the filtered estimate at|t is the
optimal estimate only using information available at time t,Yt. The computation of α̂t and
its variance from the Kalman smoother algorithm is described in Durbin & Koopman (2001).
The smoothed estimate of the response yt and its variance are computed using

ŷt = ct+Ztα̂t, var(yt|Yn) = Ztvar(αt|Yn)Z
′
t. (16)

Smoothed estimates of states and responses may be computed using the functions SsfCondDens
and SsfMomentEst with the optional argument task="STSMO". The function SsfCondDens

only computes the smoothed states and responses whereas SsfMomentEst also computes the
associated variances.

The smoothed disturbance estimates are the estimates of the measurement equations inno-
vations εt and transition equation innovations ηt based on all available information Yn, and
are denoted ε̂t = E[εt|Yn] (or εt|n) and η̂t = E[ηt|Yn] (or ηt|n), respectively. The computation
of ε̂t and η̂t from the Kalman smoother algorithm is described in Durbin & Koopman (2001).
These smoothed disturbance estimates can be useful for parameter estimation by maximum
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likelihood and for diagnostic checking. The functions SsfCondDens and SsfMomentEst, with
the optional argument task="DSSMO", may be used to compute smoothed estimates of the mea-
surement and transition equation disturbances. The function SsfCondDens only computes the
smoothed states and responses whereas SsfMomentEst also computes the associated variances.

3.4 Missing Values and Forecasting

The Kalman filter prediction equation produces one-step ahead predictions of the state vec-
tor, at+1 = E[αt+1|Yt], along with prediction variance matrices Pt+1. In the Kalman filter
recursions, if there are missing values in yt then vt= 0, F

−1
t = 0 and Kt = 0. This allows out-

of-sample forecasts of αt and yt to be computed from the updating and prediction equations.
Out-of-sample predictions, together with associated mean square errors, can be computed from
the Kalman filter prediction equations by extending the data set y1, . . . ,yn with a set of missing
values. When yτ is missing, the Kalman filter reduces to the prediction step described above.
As a result, a sequence of m missing values at the end of the sample will produce a set of
h-step ahead forecasts for h = 1, . . . ,m. Forecasts with their variances based on a given state
space model may be computed using the function SsfMomentEst with the optional argument
task="STPRED".

3.5 Simulation Smoothing

The joint simulation of state and response vectors αt and yt, t = 1, . . . , n, or disturbance
vectors ηt and εt, t = 1, . . . , n, conditional on the observations Yn is called simulation smooth-
ing. Simulation smoothing is useful for evaluating the appropriateness of a proposed state
space model, for the Bayesian analysis of state space models using Markov chain Monte Carlo
(MCMC) techniques and for the evaluation of the likelihood function using importance sampling
techniques. Initial work on simulation smoothing has been developed by Fruhwirth-Schnatter
(1994),Carter & Kohn (1994) and de Jong & Shephard (1995). The recent simulation smoothing
method of Durbin & Koopman (2002) is used for the S+FinMetrics/SsfPack implementation.
The function SimSmoDraw generates random draws from the distributions of the state and re-
sponse variables (argument task="STSIM") or from the distributions of the state and response
disturbances (argument task="DSSIM").

3.6 Prediction Error Decomposition and Log-Likelihood

The prediction error decomposition of the log-likelihood function for the unknown parameters
ϕ of a state space model may be conveniently computed using the output of the Kalman filter

lnL(ϕ|Yn) =
n
∑

t=1

ln f(yt|Yt−1;ϕ) (17)

= −nN
2

ln(2π)− 1

2

n
∑

t=1

(

ln |Ft|+ v′tF−1
t vt

)

where f(yt|Yt−1;ϕ) is a conditional Gaussian density implied by the state space model (1) -
(2). The vector of prediction errors vt and prediction error variance matrices Ft are computed
from the Kalman filter recursions.
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Function Description Tasks

KalmanIni Initialize Kalman filter All
KalmanFil Kalman filtering and likelihood eval All
KalmanSmo Kalman smoothing None
SsfCondDens Conditional density/mean calculation STSMO,DSSMO

SsfMomentEst Moment estimation and smoothing STFIL,STPRED,STSMO,DSSMO

SimSmoDraw Simulation smoother draws STSIM,DSSIM

SsfLoglike Log-likelihood of state space model None
SsfFit Estimate state space model parameters None

Table 4: General S+FinMetrics/SsfPack state space functions

Task Description

KFLIK Kalman filtering and loglikelihood evaluation
STFIL State filtering
STPRED State prediction
STSMO State smoothing
DSSMO Disturbance smoothing
STSIM State simulation
DSSIM Disturbance simulation

Table 5: Task argument to S+FinMetrics/SsfPack functions

The functions KalmanFil and SsfLoglike may be used to evaluate the prediction error
decomposition of the log-likelihood function for a given set of parameters ϕ. The S+FinMetrics
function SsfFit, which evaluates (17) using SsfLoglike, may be used to find the maximum
likelihood estimators of the unknown parameters ϕ using the S-PLUS optimization function
nlminb5.

4 The Capital Asset Pricing Model

This section illustrates the use of the S+FinMetrics/SsfPack state space modeling and analysis
functions for an empirical analysis of the Capital Asset Pricing Model (CAPM).

4.1 Recursive Least Squares

Consider the typical CAPM regression model

yt = α + βMxM,t + ξt, ξt ∼ iid N(0, σ2ξ )

where yt denotes the return on an asset in excess of the risk free rate, and xM,t is the excess
return on a market index. The state space representation is given by

(

αt+1

yt

)

=

(

Ik
x′t

)

αt +

(

0

σξξt

)

(18)

5There are several optimization algorithms available in S-PLUS besides nlminb. Most notable are the func-
tions nlmin, ms and optim (in the MASS library provided by Venables and Ripley).
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with xt = (1, xM,t)
′ and the state vector satisfies

αt+1 = αt = β = (α, βM)′.

The state space system matrices are Tt = Ik, Zt = x′t, Gt = σξ and Ht = 0 and may be
compared with the ones in Example 2. The monthly excess return data on Microsoft and the
S&P 500 index over the period February, 1990 through December, 2000 are used as in listing
2. The state space form for the CAPM with fixed regressors may be created using the function
GetSsfReg as in listing 4.

An advantage of analyzing the linear regression model in state space form is that recursive
least squares (RLS) estimates of the regression coefficient vector β are readily computed from
the Kalman filter. The RLS estimates are based on estimating the model

yt = β
′
txt + ξt, t = 1, . . . , n (19)

by least squares recursively for t = 3, . . . , n giving n − 2 least squares (RLS) estimates
(β̂3, . . . , β̂T ). If β is constant over time then the recursive estimates β̂t should quickly settle
down near a common value. If some of the elements in β are not constant then the correspond-
ing RLS estimates should show instability. Hence, a simple graphical technique for uncovering
parameter instability is to plot the RLS estimates β̂it (i = 1, 2) and look for instability in the
plots.

The RLS estimates are simply the filtered state estimates from the model (18), and may be
computed using the function SsfMomentEst with the optional argument task="STFIL":

The component state.moment contains the filtered state estimates at|t for t = 1, . . . , n,
which are equal to the RLS estimates of the linear regression coefficients, and the component
response.moment contains the filtered response estimates yt|t. The first column of the compo-
nent state.moment contains the RLS estimates of α, and the second column contains the RLS
estimates of βM . The last row contains the full sample least squares estimates of α and βM .
The RLS estimates can be visualized using the generic plot method for objects of the class
SsfMomentEst. The resulting plot is illustrated in Figure 2. Notice that the RLS estimates of
βM seem fairly constant whereas the RLS estimates of α do not.

4.2 Tests for constant parameters

Formal tests for structural stability of the regression coefficients, such as the CUSUM test of
Brown, Durbin & Evans (1975), may be computed from the standardized 1-step ahead recursive
residuals

wt =
vt√
ft

=
yt − β̂

′

t−1xt√
ft

where ft is an estimate of the recursive error variance

σ2
[

1 + x′t(X
′
t−1Xt−1)

−1
xt
]

and Xt is the (t × k) matrix of observations on xs using data from s = 1, . . . , t. These
standardized recursive residuals result as a by-product of the Kalman filter recursions and may
be extracted using the S+FinMetrics/SsfPack function KalmanFil as in listing 5. Diagnostic
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Figure 2: RLS estimates of CAPM for Microsoft using the Kalman filter.

-0
.3

-0
.2

-0
.1

0.0
0.1

0.2

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

innovations

Va
lue

s

Standardized Prediction Errors

Figure 3: Standardized innovations, wt = vt/
√
ft, computed from the RLS estimates of the

CAPM for Microsoft.

14



> ssf.reg = GetSsfReg(X.mat)
> ssf.reg
$mPhi: $mOmega: $mSigma: $mJPhi:

[,1] [,2] [,1] [,2] [,3] [,1] [,2] [,1] [,2]
[1,] 1 0 [1,] 0 0 0 [1,] -1 0 [1,] -1 -1
[2,] 0 1 [2,] 0 0 0 [2,] 0 -1 [2,] -1 -1
[3,] 0 0 [3,] 0 0 1 [3,] 0 0 [3,] 1 2
> filteredEst.reg = SsfMomentEst(msft.ret,ssf.reg,task="STFIL")
> class(filteredEst.reg)
[1] "SsfMomentEst"
> names(filteredEst.reg)
[1] "state.moment" "state.variance" "response.moment"
[4] "response.variance" "task" "positions"
> filteredEst.reg$state.moment
numeric matrix: 131 rows, 2 columns.

state.1 state.2
[1,] 0.06186 0.0001756
[2,] 0.05179 3.5482887
[3,] 0.07811 1.2844189

...
[131,] 0.01751 1.568
> ols.fit = OLS(MSFT~SP500,data=excessReturns.ts)
> coef(ols.fit)
(Intercept) SP500

0.01751 1.568
> colIds(filteredEst.reg$state.moment) = c("alpha","beta")
> plot(filteredEst.reg,main="Filtered estimates: RLS")

Listing 4: A recursive least squares analysis of the CAPM

> kf.reg = KalmanFil(msft.ret,ssf.reg)
> class(kf.reg)
[1] "KalmanFil"
> names(kf.reg)
[1] "mOut" "innov" "std.innov" "mGain"
[5] "loglike" "loglike.conc" "dVar" "mEst"
[9] "mOffP" "task" "err" "call"
[13] "positions"

> plot(kf.reg)

Listing 5: Kalman filter for CAPM

plots of the standardized innovations may be created using the plot method for objects of class
“KalmanFil”. Selection 3 produces the graph shown in Figure 3.

The CUSUM test is based on the cumulated sum of the standardized recursive residuals

CUSUMt =
t
∑

j=k+1

ŵj

σ̂w

where σ̂w is the sample standard deviation of ŵj and k denotes the number of estimated coeffi-
cients. Under the null hypothesis that β in (19) is constant, CUSUMt has mean zero and vari-
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ance that is proportional to t−k−1. Brown et al. (1975) show that approximate 95% confidence
bands for CUSUMt are given by the two lines which connect the points (k,±0.948

√
n− k − 1)

and (n,±0.948 · 3
√
n− k − 1). If CUSUMt wanders outside of these bands, then the null of

parameter stability may be rejected. The S-PLUS commands to compute CUSUMt are in list-
ing 6. The CUSUM plot is given in Figure 4 and it indicates that the CAPM for Microsoft has
stable parameters.

> w.t = kf.reg$std.innov[-c(1,2)] # first two innovations are equal to zero
> cusum.t = cumsum(w.t)/stdev(w.t)
> nobs = length(cusum.t)
> tmp = 0.948*sqrt(nobs)
> upper = seq(tmp,3*tmp,length=nobs)
> lower = seq(-tmp,-3*tmp,length=nobs)
> tmp.ts = timeSeries(pos=kf.reg$positions[-c(1,2)],
+ data=cbind(cusum.t,upper,lower))
> plot(tmp.ts,reference.grid=F,
+ plot.args=list(lty=c(1,2,2),col=c(1,2,2)))

Listing 6: Computing the CUSUM test
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Figure 4: CUSUM test for parameter constancy in CAPM regression for Microsoft.

4.3 CAPM with Time Varying Parameters

Consider estimating the CAPM with time varying coefficients (14) subject to random walk evo-
lution, using monthly data on Microsoft and the S&P 500 index over the period February, 1990
through December, 2000 contained in the S+FinMetrics “timeSeries” object excessReturns.ts.
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Neumann (2002) surveys several estimation strategies for time varying parameter models and
concludes that the state space model with random walk specifications for the evolution of
the time varying parameters generally performs very well. The parameters of the model are
the variances of the innovations to the transition and measurement equations: σ2 = (σ2ξ , σ

2
ς ,

σ2ν)
′. Since these variances must be positive the log-likelihood is parameterized using ϕ =

(ln(σ2ξ ), ln(σ
2
ς ), ln(σ

2
ν))

′, so that σ2 = (exp(ϕ1), exp(ϕ2), exp(ϕ3))
′. The state space form for the

CAPM with time varying coefficients requires a data matrix X containing the excess returns
on the S&P 500 index and therefore the function SsfFit has ϕ and X as input and it returns
the appropriate state space form. Listing 7 provides an example of an implementation for
estimating the time varying CAPM.

Starting values for ϕ are specified by tvp.start. The maximum likelihood estimates for ϕ
are computed using tvp.mle The print method gives estimates of ϕ = (ln(σ2ξ ), ln(σ

2
ς ), ln(σ

2
ν))

′

and the summary method The estimates for the standard deviations σξ, σς and σν as well
as estimated standard errors, from the delta method6, are: It appears that the estimated
standard deviations for the time varying parameter CAPM are close to zero, suggesting a
constant parameter model.

Given the estimated parameters, the filtered estimates of the time varying parameters αt

and βM,t may be computed using SsfMomentEst. The filtered moments, without standard
error bands, may be visualized using the plot method for objects of class “SsfMomentEst” as
illustrated in Figure 5. The filtered estimates of the parameters from the CAPM with time
varying parameters look remarkably like the RLS estimates computed earlier.
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Figure 5: Filtered estimates of CAPM for Microsoft with time varying parameters.

The smoothed estimates of the time varying parameters αt and βM,t as well as the expected
returns may be extracted using SsfCondDens as in listing 7. The plotmethod is then used to vi-
sualize the smoothed estimates as illustrated in Figure 6. The smoothed state estimates appear

6If
√
n(θ̂ − θ)

d→ N(θ, V ) and g is a continuous function then
√
n(g(θ̂)− g(θ))

d→ N(0, ∂g
∂θ′

V ∂g
∂θ′

′
).
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> tvp.mod = function(parm,mX=NULL) {
parm = exp(parm) # 3 x 1 vector containing log variances
ssf.tvp = GetSsfReg(mX=mX)
diag(ssf.tvp$mOmega) = parm
CheckSsf(ssf.tvp)

}

> tvp.start = c(0,0,0)
> names(tvp.start) = c("ln(s2.alpha)","ln(s2.beta)","ln(s2.y)")

> tvp.mle = SsfFit(tvp.start,msft.ret,"tvp.mod",mX=X.mat)
Iteration 0 : objective = 183.2
...
Iteration 22 : objective = -123
RELATIVE FUNCTION CONVERGENCE
> class(tvp.mle)
[1] "SsfFit"
> names(tvp.mle)
[1] "parameters" "objective" "message" "grad.norm" "iterations"
[6] "f.evals" "g.evals" "hessian" "scale" "aux"
[11] "call" "vcov"

> summary(tvp.mle)
Log-likelihood: -122.979
131 observations
Parameters:

Value Std. Error t value
ln(s2.alpha) -12.480 2.8020 -4.453
ln(s2.beta) -5.900 3.0900 -1.909

ln(s2.y) -4.817 0.1285 -37.480

> tvp2.mle = tvp.mle
> tvp2.mle$parameters = exp(tvp.mle$parameters/2)
> names(tvp2.mle$parameters) = c("s.alpha","s.beta","s.y")
> dg = diag(tvp2.mle$parameters/2)
> tvp2.mle$vcov = dg %*% tvp.mle$vcov %*% dg
> summary(tvp2.mle)
Log-likelihood: -122.979
131 observations
Parameters:

Value Std. Error t value
s.alpha 0.001951 0.002733 0.7137
s.beta 0.052350 0.080890 0.6472

s.y 0.089970 0.005781 15.5600

> smoothedEst.tvp = SsfCondDens(msft.ret,
+ tvp.mod(tvp.mle$parameters,mX=X.mat),
+ task="STSMO")

Listing 7: An analysis of the time-varying CAPM

quite different from the filtered state estimates shown in Figure 5, but this difference is primarily
due to the erratic behavior of the first few filtered estimates. The function SsfCondDens does
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not compute estimated variances for the smoothed state and response variables. If standard
error bands for the smoothed estimates are desired, then SsfMomentEst with task="STSMO"

must be used and the state variances are available in the component state.variance.
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Figure 6: Filtered estimates of CAPM for Microsoft with time varying parameters.

5 Time Series Decompositions

In this section we use state space methods to compute some common trend-cycle decompositions
of U.S. postwar quarterly real GDP. These decompositions are used to estimate the long-run
trend in output as well as business cycles. We illustrate the well known Beveridge-Nelson
decomposition as well as several unobserved components decompositions.

5.1 ARMA Modeling and Beveridge-Nelson Decompositions

Consider the problem of decomposing the movements in the natural logarithm of U.S. postwar
quarterly real GDP into permanent and transitory (cyclical) components. Beveridge & Nelson
(1981) proposed a definition for the permanent component of an I(1) time series yt with drift
µ as the limiting forecast as horizon goes to infinity, adjusted for the mean rate of growth:

BNt = lim
h→∞

Et[yt+h − µh]

where Et[·] denotes expectation conditional on information available at time t. The transitory
or cycle component is then defined as the gap between the present level of the series and its
long-run forecast:

ct = yt −BNt
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This permanent-transitory decomposition is often referred to as the “BN decomposition”. In
practice, the BN decomposition is obtained by fitting an ARMA(p, q) model to ∆yt, where
∆ = 1− L is the difference operator, and then computing BNt and ct from the fitted model.

As shown recently by Morley (2002), the BN decomposition may be easily computed using
the Kalman filter by putting the forecasting model for ∆yt−µ in state space form. In particular,
suppose ∆yt − µ is a linear combination of the elements of the m× 1 state vector αt :

∆yt − µ =
[

z1 z2 · · · zm
]

αt

where zi (i = 1, . . . ,m) is the weight of the ith element of αt in determining ∆yt− µ. Suppose
further that

αt+1 = Tαt + η
∗
t , η∗

t ∼ iid N(0,V),

such that all of the eigenvalues of T have modulus less than unity, and T is invertible. Then,
Morley shows that

BNt = yt +
[

z1 z2 · · · zm
]

T(Im−T)
−1
at|t (20)

ct = yt −BNt = −
[

z1 z2 · · · zm
]

T(Im−T)
−1
at|t

where at|t denotes the filtered estimate of αt.
To illustrate the process of constructing the BN decomposition for U.S. postwar quarterly

real GDP over the period 1947:I to 1998:II, we follow Morley, Nelson & Zivot (2002) (hereafter
MNZ) and consider fitting the ARMA(2,2) model

∆yt − µ = φ1(∆yt−1 − µ) + φ2(∆yt−2 − µ) + εt + θ1εt−1 + θ2εt−2

εt ∼ iid N(0, σ2)

where yt denotes the natural log of real GDP multiplied by 100. In S+FinMetrics/SsfPack,
the ARMA(p, q) model for a demeaned stationary variable y∗t has a state space representation
with transition and measurement equations

αt+1 = Tαt +Hξt, ξt ∼ N(0, σ2ε)

y∗t = Zαt

and time invariant system matrices

T =















φ1 1 0 · · · 0
φ2 0 1 0
...

. . .
...

φm−1 0 0 1
φm 0 0 · · · 0















, H =















1
θ1
...

θm−1

θm















, (21)

Z =
(

1 0 · · · 0 0
)

where d, c and G of the state space form (1)-(3) are all zero and m = max(p, q+1). The state
vector αt has the form

αt =















y∗t
φ2y

∗
t−1 + · · ·+ φpy

∗
t−m+1 + θ1ξt + · · ·+ θm−1ξt−m+2

φ3y
∗
t−1 + · · ·+ φpy

∗
t−m+2 + θ2ξt + · · ·+ θm−1ξt−m+3

...
φmy

∗
t−1 + θm−1ξt















(22)
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The exact maximum likelihood estimates of the ARMA(2,2) parameters may be computed
using the S+FinMetrics/SsfPack functions GetSsfArma and SsfFit. The function SsfFit

requires as input a function which takes the unknown parameters ϕ and produces the state
space form for the ARMA(2,2) as is illustrated in listing 8. Notice that the function arma22.mod

parameterizes the error variance as σ2 = exp(γ), −∞ < γ < ∞, to ensure that the estimated
value of σ2 is positive, and utilizes the S+FinMetrics/SsfPack function GetSsfArma to create
the state space form for the ARMA(2,2) function. Starting values for the estimation are given
by (conditional) MLE using S-PLUS function arima.mle. The data used for the estimation is
in the “timeSeries” lny.ts and the demeaned first difference data is in the “timeSeries”
dlny.ts.dm. The exact maximum likelihood estimates for ϕ = (φ1, φ2, θ1, θ2, γ)

′ are computed
using SsfFit7.

> arma22.mod = function(parm) {
phi.1 = parm[1]
phi.2 = parm[2]
theta.1 = parm[3]
theta.2 = parm[4]
sigma2 = exp(parm[5]) # require positive variance
ssf.mod = GetSsfArma(ar=c(phi.1,phi.2),ma=c(theta.1,theta.2),
sigma=sqrt(sigma2))
CheckSsf(ssf.mod)

}

> arma22.start = c(1.34,-0.70,-1.05,0.51,-0.08)
> names(arma22.start) = c("phi.1","phi.2","theta.1","theta.2","ln.sigma2")

> arma22.mle = SsfFit(arma22.start,dlny.ts.dm,"arma22.mod")
Iteration 0 : objective = 284.6686
...
Iteration 27 : objective = 284.651
RELATIVE FUNCTION CONVERGENCE

> summary(arma22.mle)
Log-likelihood: 284.651
205 observations
Parameters:

Value Std. Error t value
phi.1 1.34200 0.14480 9.2680
phi.2 -0.70580 0.14930 -4.7290

theta.1 -1.05400 0.18030 -5.8490
theta.2 0.51870 0.19330 2.6830

ln.sigma2 -0.06217 0.09878 -0.6294

Listing 8: Estimation of an ARMA model

Given the maximum likelihood estimates ϕ, the filtered estimate of the state vector may be
computed using the function SsfMomentEst with optional argument task="STFIL". The BN
decomposition (20) may then be computed as in listing 9. Figure 7 illustrates the results of

7One may also estimate the ARMA(2,2) model with SsfFit by maximizing the log-likelihood function
concentrated with respect to the error variance σ2.
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the BN decomposition for U.S. real GDP. The BN trend follows the data very closely and, as
a result, the BN cycle behaves much like the first difference of the data.

> ssf.arma22 = arma22.mod(arma22.mle$parameters)
> filteredEst.arma22 = SsfMomentEst(dlny.ts.dm,
+ ssf.arma22,task="STFIL")
> at.t = filteredEst.arma22$state.moment

> T.mat = ssf.arma22$mPhi[1:3,1:3]
> tmp = t(T.mat %*% solve((diag(3)-T.mat)) %*% t(at.t))
> BN.t = lny[2:nobs,] + tmp[,1]
> c.t = lny[2:nobs,] - BN.t

Listing 9: Implementation of Beveridge Nelson Decomposing using Morley (2002)

Log Real GDP and BN Trend
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Figure 7: BN decomposition for U.S. postwar quarterly real GDP.

5.2 Unobserved Components Decompositions: Clark Model

Harvey (1985) and Clark (1987) provide an alternative to the BN decomposition of an I(1) time
series with drift into permanent and transitory components based on unobserved components
structural time series models. For example, Clark’s model for the natural logarithm of postwar
real GDP specifies the trend as a pure random walk, and the cycle as a stationary AR(2)
process:

yt = τt + ct (23)

τt = µ+ τt−1 + vt

ct = φ1ct−1 + φ2ct−2 + wt
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where the roots of φ(z) = 1 − φ1z − φ2z
2 = 0 lie outside the complex unit circle8. For

identification purposes, Clark assumes that the trend innovations and cycle innovations are
uncorrelated and normally distributed:

(

vt
wt

)

∼ iid N

((

0
0

)

,

(

σ2v 0
0 σ2w

))

The Clark model may be put in state-space form (5) with

αt+1 =





τt+1
ct+1
ct



 , δ =









µ
0
0
0









,Φ =









1 0 0
0 φ1 φ2
0 1 0
1 1 0









ut =

(

η∗t
0

)

,η∗
t =





vt+1
wt+1

0



 ,Ω =









σ2v 0 0 0
0 σ2w 0 0
0 0 0 0
0 0 0 0









Since the trend component is nonstationary, it is given a diffuse initialization. The initial
covariance matrix P∗ of the stationary cycle is determined from

vec(P∗) = (I4−(F⊗ F)−1)vec(Vw)

where

F =

(

φ1 φ2
1 0

)

, Vw =

(

σ2w 0
0 0

)

The initial value parameter matrix (7) is then

Σ =









−1 0 0
0 p11 p12
0 p21 p22
0 0 0









where pij denotes the (i, j) element of P∗.
The exact maximum likelihood estimates of the Clark model parameters, based on the

prediction error decomposition of the log-likelihood function, may be computed using the
S+FinMetrics/SsfPack SsfFit. The function SsfFit requires as input a function which takes
the unknown parameters ϕ and produces the state space form for the Clark model; an exam-
ple is given in listing 10. Notice that the state variances are parameterized as σ2v = exp(γv)
and σ2w = exp(γw), −∞ < γv, γw < ∞, to ensure positive estimates. Starting values for the
parameters are based on values near the estimates of the Clark model from MNZ.

The data used for the estimation is in the “timeSeries” lny.ts, and is the same data used
to compute the BN decomposition earlier. The maximum likelihood estimates and asymptotic

8Harvey’s model differs from Clark’s model in that the stationary AR(2) cycle is restricted to have complex
roots. The function GetSsfStsm in Table 3 may be used to easily construct the state space form for Harvey’s
model.
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Log Real GDP and Filtered Trend from Clark Model
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Figure 8: Filtered estimates of the trend and cycle from the Clark model estimated to U.S. real
GDP.

standard errors of the parameters ϕ = (µ, γv, γw, φ1, φ2)
′ using SsfFit are9 The maximum

likelihood estimates for the Clark model parameters are almost identical to those found by
MNZ10. Estimates of the error component standard deviations are also produced.

The filtered estimates of the trend, τt|t, and cycle, ct|t, given the estimated parameters may
be computed using the function SsfMomentEst with the optional argument task="STFIL" as
in listing 10. The filtered estimates are in the state.moment component and the variances of
the filtered estimates are in the state.variance component. The filtered trend estimate is in
the first column of the state.moment component and the filtered cycle is in the second column.
These filtered estimates are illustrated in Figure 8. The filtered trend estimate is fairly smooth
and is quite similar to a linear trend. The filtered cycle estimate is large in amplitude and
has a period of about eight years. In comparison to the BN decomposition, the trend-cycle
decomposition based on the Clark model gives a much smoother trend and longer cycle, and
attributes a greater amount of the variability of log output to the transitory cycle.

The smoothed estimates of the trend, τt|n, and cycle, ct|n, along with estimated standard
errors, given the estimated parameters, may be computed using the function SsfMomentEst

with the optional argument task="STSMO". The smoothed cycle estimates with 95% standard
error bands are illustrated in Figure 9.

The Clark model assumes that the unobserved trend evolves as a random walk with drift

9In the estimation, no restrictions were imposed on the AR(2) parameters φ1 and φ2 to ensure that the
cycle is stationary. The function SsfFit uses the S-PLUS optimization algorithm nlminb, which performs
minimization of a function subject to box constraints. Box constraints on φ1 and φ2 may be used to constrain
their estimated values to be near the appropriate stationary region.

10MNZ estimate the Clark model in GAUSS using the prediction error decomposition with the variance of
the initial state for the nonstationary component set to a large positive number. The state space representation
of the Clark model here utilizes an exact initialization of the Kalman filter.
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Clark.mod = function(parm) {
mu = parm[1]
phi1 = parm[2]
phi2 = parm[3]
sigma2.v = exp(parm[4])
sigma2.w = exp(parm[5])
bigV = diag(c(sigma2.v,sigma2.w))
Omega = matrix(0,4,4)
Omega[1:2,1:2] = bigV
a1 = matrix(0,3,1)

# solve for initial variance of stationary part
bigF = matrix(c(phi1,1,phi2,0),2,2)
vecV = c(sigma2.w,0,0,0)
vecP = solve(diag(4)-kronecker(bigF,bigF))%*%vecV
P.ar2 = matrix(vecP,2,2)
Sigma = matrix(0,4,3)
Sigma[1,1] = -1
Sigma[2:3,2:3] = P.ar2

# create state space list
ssf.mod = list(mDelta=c(mu,0,0,0),
mPhi=rbind(c(1,0,0),c(0,phi1,phi2),c(0,1,0),c(1,1,0)),
mOmega=Omega,
mSigma = Sigma)
CheckSsf(ssf.mod)

}

> Clark.start=c(0.81,1.53,-0.61,-0.74,-0.96)
> names(Clark.start) = c("mu","phi.1","phi.2",
+ "ln.sigma2.v","ln.sigma2.w")

> Clark.mle = SsfFit(Clark.start,lny.ts,"Clark.mod")
> summary(Clark.mle)
Log-likelihood: 287.524
206 observations
Parameters:

Value Std. Error t value
mu 0.8119 0.05005 16.220

phi.1 1.5300 0.10180 15.030
phi.2 -0.6097 0.11450 -5.326

ln.sigma2.v -0.7441 0.30100 -2.472
ln.sigma2.w -0.9565 0.42490 -2.251

> Clark.sd = sqrt(exp(coef(Clark.mle)[4:5]))
> names(Clark.sd) = c("sigma.v","sigma.w")
> Clark.sd
sigma.v sigma.w
0.6893 0.6199

> ssf.Clark = Clark.mod(Clark.mle$parameters)
> filteredEst.Clark = SsfMomentEst(lny.ts,ssf.Clark,task="STFIL")

Listing 10: Estimating Clark’s model
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Figure 9: Smoothed cycle estimate, ct|n, with 95% error bands from Clark model for U.S. real
GDP.

. That is, the unobserved trend component is nonstationary. If the variance of the drift
innovation, σ2v , is zero then the trend becomes deterministic. A number of statistics have been
proposed to test the null hypothesis that σ2v = 0, see Harvey & Streibel (1997) and Harvey
(2001) for reviews. For the Clark model, a Lagrange multiplier (LM) test of the null hypothesis
σ2v = 0, against the alternative that σ2v > 0, can be formulated as

η = T−1

T
∑

i=1

[

i
∑

t=1

et

]2

> c

where et is the standardized innovation at time t from the model assuming that τ0 is fixed,
and c is the desired critical value. Harvey & Streibel (1997) show that the statistic η has a
second-level Cramér-von Mises distribution. Table I(b) of Harvey (2001) gives c = 0.149 as the
5% critical value.

To compute the standardized innovations assuming that τ0 is fixed, Harvey & Streibel (1997)
suggest the following procedures. Start by estimating the unrestricted model by maximum
likelihood and compute the smoothed estimates of τt. Then the standardized innovations et,
assuming that τ0 is fixed, are computed from the Kalman filter algorithm by setting σ2v = 0
and initializing τ0 at the smoothed estimate of τ1−µ. The commands to compute the LM test
statistic are listed in 11. Since the test statistic is greater than the 5% critical value of 0.149,
the null hypothesis of a deterministic trend is rejected.

5.3 Unobserved Components Decompositions: MNZ Model

Recently, Morley et al. (2002) have shown that the apparent difference between BN decomposi-
tion and the Clark model trend-cycle decomposition is due to the assumption of independence
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> n = nrow(lny.ts)
> ssf.Clark0 = ssf.Clark
> ssf.Clark0$mOmega[1,1] = 0
> ssf.Clark0$mSigma[1,1] = 0
> ssf.Clark0$mSigma[4,1] = smoothedEst.Clark$state.moment[1,1] -
> Clark.mle$parameters["mu"]
> kf.Clark0 = KalmanFil(lny.ts,ssf.Clark0)
> test.stat = sum(cumsum(kf.Clark0$std.innov)^2)/n^2
> test.stat
[1] 56.71

Listing 11: Computing the LM test for the null of σ2v = 0.

between trend and cycle innovations in the Clark model. In particular, they show that the
independence assumption is actually an overidentifying restriction in the Clark model, and
once this assumption is relaxed to allow correlated components the difference between the
decompositions disappears.

The MNZ model is simply Clark’s model (23) where the trend and cycle innovations are
allowed to be correlated with correlation coefficient ρvw:

(

vt
wt

)

∼ iid N

((

0
0

)

,

(

σ2v ρvwσvσw

ρvwσvσw σ2w

))

The new state space system matrix Ω becomes

Ω =









σ2v ρvwσvσw 0 0
ρvwσvσw σ2w 0 0

0 0 0 0
0 0 0 0









An S-PLUS function, to be passed to SsfFit, to compute the new state space form is given in
listing 12. No restrictions are placed on the correlation coefficient ρvw in the function MNZ.mod.
A box constraint −0.999 < ρvw < 0.999 will be placed on ρvw during the estimation. Starting
values for the parameters are based on values near the estimates of the Clark model from MNZ.
Box constraints on the AR parameters φ1 and φ2, to encourage stationarity, and the correlation
coefficient ρvw, to enforce validity. The ML estimates are almost identical to those reported
by MNZ. Notice that the estimated value of ρvw is −0.91 and that the estimated standard
deviation of the trend innovation is much larger than the estimated standard deviation of the
cycle innovation.

The filtered estimates of the trend, τt|t, and cycle, ct|t, given the estimated parameters are
computed using the SsfMomentEst function and are illustrated in Figure 10. Notice that the
filtered estimates of trend and cycle , when the correlation between the error components is
estimated, are identical to the estimated trend and cycle from the BN decomposition. The
smoothed estimates of trend and cycle are much more variable than the filtered estimates.
Figure 11 shows the smoothed estimate of the cycle. For more discussion see Proietti (2002).
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Log Real GDP and Filtered Trend from MNZ Model
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Figure 10: Filtered estimates from Clark model with correlated components for U.S. real GDP.
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Figure 11: Smooth cycle estimate, ct|n, from MNZ model for U.S. real GDP.
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MNZ.mod = function(parm) {
delta = parm[1]
phi1 = parm[2]
phi2 = parm[3]
sigma.v = exp(parm[4])
sigma.w = exp(parm[5])
rho.vw = parm[6]
sigma.vw = sigma.v*sigma.w*rho.vw
bigV = matrix(c(sigma.v^2,sigma.vw,sigma.vw,sigma.w^2),2,2)
Omega = matrix(0,4,4)
Omega[1:2,1:2] = bigV
a1 = matrix(0,3,1)

# solve for initial variance of stationary part
bigF = matrix(c(phi1,1,phi2,0),2,2)
vecV = c(sigma.w^2,0,0,0)
vecP = solve(diag(4)-kronecker(bigF,bigF))%*%vecV
P.ar2 = matrix(vecP,2,2)
Sigma = matrix(0,4,3)
Sigma[1,1] = -1
Sigma[2:3,2:3] = P.ar2
ssf.mod= list(mDelta=c(delta,0,0,0),
mPhi=rbind(c(1,0,0),c(0,phi1,phi2),c(0,1,0),c(1,1,0)),
mOmega=Omega,
mSigma = Sigma)
CheckSsf(ssf.mod)

}

> MNZ.start=c(0.81,1.34,-0.70,0.21,-0.30,-0.9)
> names(MNZ.start) = c("mu","phi.1","phi.2",
+ "ln.sigma.v","ln.sigma.w","rho")

> MNZ.mle = SsfFit(MNZ.start,lny.ts,"MNZ.mod",
+ lower=low.vals,upper=up.vals)
> summary(MNZ.mle)
Log-likelihood: 285.57
206 observations
Parameters:

Value Std. Error t value
delta 0.8156 0.08651 9.4280
phi.1 1.3420 0.14550 9.2250
phi.2 -0.7059 0.15050 -4.6890

ln.sigma.v 0.2125 0.13100 1.6230
ln.sigma.w -0.2895 0.38570 -0.7505

rho -0.9062 0.12720 -7.1260

> MNZ.sd = exp(coef(MNZ.mle)[4:5])
> names(MNZ.sd) = c("sigma.v","sigma.w")
> MNZ.sd
sigma.v sigma.w

1.237 0.7487

Listing 12: Estimating MNZ model.
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6 The Stochastic Volatility Model

Financial returns data can be characterized by noise processes with volatility clustering and
non-Gaussian features. In the financial and econometrics literature much attention is devoted to
the empirical modeling and analysing of volatility since volatility is important for the pricing of
financial securities and their associated derivatives. Much applied work on this topic is focused
on generalized autoregressive conditional heteroskedasticity (GARCH) models and its long list
of variants. Although most of these models are relatively straightforward to estimate, they are
not necessarily convincing in empirical analyses and do not necessarily produce satisfactory
forecasts. In this section we focus on the stochastic volatility model that describes volatility
as a stochastic process with its own independent source of randomness. Such descriptions are
in nature expressed in continuous time but they can also be formulated in discrete time. The
resulting model can then be regarded as the discrete time analogue of the continuous time
model used in papers on option pricing, see Hull & White (1987). The discrete SV model
is intrinsically a nonlinear model. The parameters can be estimated by using approximating
methods or by using exact methods based on simulation which are subject to Monte Carlo
error. Both estimation approaches will be illustrated in the next sections.

6.1 Quasi-Maximum Likelihood Estimation

Let rt denote the continuously compounded return on an asset between times t − 1 and t.
Following Harvey, Ruiz & Shephard (1994), hereafter HRS, a simple stochastic volatility (SV)
model has the form

rt = σtεt, εt ∼ iid N(0, 1) (24)

ht = ln σ2t = γ + φht−1 + ηt, ηt ∼ iid N(0, σ2η)

E[εtηt] = 0

Defining yt = ln r2t , and noting that E[ln ε2t ] = −1.27 and var(ln ε2t ) = π2/2 an unobserved
components state space representation for yt has the form

yt = −1.27 + ht + ξt, ξt ∼ iid (0, π2/2)

ht = γ + φht−1 + ηt, ηt ∼ iid N(0, σ2η)

E[ξtηt] = 0

If ξt were iid Gaussian then the parameters ϕ = (γ, σ2η, φ, )
′ of the SV model could be efficiently

estimated by maximizing the prediction error decomposition of the log-likelihood function con-
structed from the Kalman filter recursions. However, since ξt = ln ε2t is not normally distributed
the Kalman filter only provides minimum mean squared error linear estimators of the state and
future observations. Nonetheless, HRS point out that even though the exact log-likelihood
cannot be computed from the prediction error decomposition based on the Kalman filter, con-
sistent estimates of ϕ can still be obtained by treating ξt as though it were iid N(0, π2/2) and
maximizing the quasi log-likelihood function constructed from the prediction error decomposi-
tion.

The state space representation of the SV model has system matrices

δ =

(

γ
−1.27

)

, Φ =

(

φ
1

)

, Ω =

(

σ2η 0
0 π2/2

)
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Assuming that |φ| < 1, the initial value matrix has the form

Σ =

(

σ2η/(1− φ2)
γ/(1− φ)

)

If φ = 1 then use

Σ =

(

−1
0

)

sv.mod = function(parm) {
g = parm[1]
sigma2.n = exp(parm[2])
phi = exp(parm[3])/(1+exp(parm[3]))
ssf.mod = list(mDelta=c(g,-1.27),
mPhi=as.matrix(c(phi,1)),
mOmega=matrix(c(sigma2.n,0,0,0.5*pi^2),2,2),
mSigma=as.matrix(c((sigma2.n/(1-phi^2)),g/(1-phi))))
CheckSsf(ssf.mod)

}

> parm.hrs = c(-0.3556,log(0.0312),log(0.9646/0.0354))
> nobs = 1000
> set.seed(179)
> e = rnorm(nobs)
> xi = log(e^2)+1.27
> eta = rnorm(nobs,sd=sqrt(0.0312))
> sv.sim = SsfSim(sv.mod(parm.hrs),
+ mRan=cbind(eta,xi),a1=(-0.3556/(1-0.9646)))

> sv.start = c(-0.3,log(0.03),0.9)
> names(sv.start) = c("g","ln.sigma2","exp(phi)/(1+exp(phi))")

> sv.mle = SsfFit(sv.start,sv.sim[,2],"sv.mod")
Iteration 0 : objective = 5147.579
...
Iteration 32 : objective = 2218.26
RELATIVE FUNCTION CONVERGENCE
> sv.mle
Log-likelihood: 2218
1000 observations
Parameter Estimates:

g ln.sigma2 exp(phi)/(1+exp(phi))
-0.4815574 -3.561574 2.963182

Listing 13: Estimating the SV model.

The function to obtain the state space form of the SV model given a vector of parameters,
assuming |φ| < 1, is given in listing 13. The logit transformation is used to impose the restriction
0 < φ < 1.

The analysis reported in listing 13 starts with simulating T = 1000 observations from the
SV model using the parameters γ = −0.3556, σ2η = 0.0312 and φ = 0.9646. The simulated
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squared returns, r2t , and latent squared volatility, σ2t , are shown in Figure 12. To estimate the
underlying parameters of the simulated realisations, the starting values of ϕ = (γ, σ2η, φ, )

′ are
chosen close to the true values. The quasi-maximum likelihood (QML) estimates are obtained
using SsfFit. The QML estimates of σ2η and φ are 0.02839 and 0.95088, respectively11. These
values are fairly close to the true values.

The filtered and smoothed estimates of log-volatility and volatility may computed using
SsfMomentEst and SsfCondDens. One disadvantage of the QML approach is that the variances
for log-volatility computed from the Kalman filter and smoother are not valid.

Simulated values from SV model
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Figure 12: Simulated data from SV model.

6.2 Simulated Maximum Likelihood Estimation

We will consider here the estimation of the parameters of the SV model by exact maximum
likelihood methods using Monte Carlo importance sampling techniques. For this purpose, we
will use the following reparameterization of the SV model

rt = σ exp

(

1

2
θt

)

εt, εt ∼ N(0, 1) (25)

θt = φθt−1 + ηt, ηt ∼ N(0, σ2η)

where σ represents average volatility. The likelihood function of this SV model can be con-
structed using simulation methods developed by Shephard & Pitt (1997) and Durbin & Koop-
man (1997). The nonlinear relation between log-volatility θt and the observation equation of

11Currently, SsfFit does not compute the “sandwhich” covariance matrix estimator required for the quasi-
MLE.
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rt does not allow the computation of the exact likelihood function by linear methods such as
the Kalman filter. However, for the SV model (25) we can express the likelihood function as

L(ψ) = p(y|ψ) =
∫

p(y,θ|ψ)dθ =

∫

p(y|θ,ψ)p(θ|ψ)dθ, (26)

where

y = (r1, . . . , rn)
′, ψ = (σ, φ, σ2η)

′, θ = (θ1, . . . , θn)
′.

An efficient way of evaluating such expressions is by using importance sampling; see Ripley
(1987, Chapter 5). A simulation device is required to sample from an importance density
p̃(θ|y,ψ) which we prefer to be as close as possible to the true density p(θ|y,ψ). An obvious
choice for the importance density is the conditional Gaussian density since in this case it is
relatively straightforward to sample from p̃(θ|y,ψ) = g(θ|y,ψ) using simulation smoothers
such as the ones developed by de Jong & Shephard (1995) and Durbin & Koopman (2002).
For constructing of the likelihood function using this approach, the following three steps are
important.

1. The likelihood function (26) is obtained by writing

L(ψ) =

∫

p(y|θ,ψ) p(θ|ψ)
g(θ|y,ψ)g(θ|y,ψ)dθ = Ẽ{p(y|θ,ψ) p(θ|ψ)

g(θ|y,ψ)}, (27)

where Ẽ denotes expectation with respect to the importance density g(θ|y,ψ). Expres-
sion (27) can be simplified using a suggestion of Durbin & Koopman (1997). This leads
to

L(ψ) = Lg(ψ)Ẽ{
p(y|θ,ψ)
g(y|θ,ψ)}, (28)

and is a convenient expression that we will use in the calculations. The likelihood function
of the approximating Gaussian model Lg(ψ) can be calculated via the Kalman filter. The
conditional density functions p(y|θ,ψ) and g(y|θ,ψ) are obviously easy to compute for
given values of θ and ψ. It follows that the likelihood function of the SV model is
equivalent to the likelihood function of an approximating Gaussian model, multiplied by
a correction term. This correction term only needs to be evaluated via simulation.

2. An obvious estimator for the likelihood of the SV model is

L̂(ψ) = Lg(ψ)w̄, (29)

where

w̄ =
1

M

M
∑

i=1

wi, wi =
p(y|θi,ψ)

g(y|θi,ψ)
, (30)

and θi denotes a draw from the importance density g(θ|y,ψ). The accuracy of this
estimator depends on M , the number of simulation samples. In practice, we usually work
with the log of the likelihood function to manage the magnitude of density values. The log
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transformation of L̂(ψ) introduces bias for which we can correct up to order O(M−3/2).
We obtain

ln L̂(ψ) = lnLg(ψ) + ln w̄ +
s2w

2Mw̄2
, (31)

with s2w = (M − 1)−1
∑M

i=1(wi − w̄)2.

3. Denote

p(y|θ) =
T
∏

t=1

pt, g(y|θ) =
T
∏

t=1

gt,

where pt = p(yt|θt) and gt = g(yt|θt). The importance density is based on the linear
Gaussian model

yt = ht + ut, ut ∼ N(ct, dt), (32)

where ct and dt are chosen such that the first and second derivatives of pt and gt are
equal for t = 1, . . . , n. These conditions lead to n nonlinear equations which we solve by
a Newton-Raphson scheme of optimisation . This involves a sequence of Kalman filter
smoothers. Convergence is usually fast.

Once the maximum likelihood estimates are obtained, smoothed estimates of volatility may
be computed using Monte Carlo integration with importance sampling based on the weights wi

in (30).
The S-PLUS code to estimate the SV model (25) by maximizing the simulated log-likelihood

function (31) is somewhat involved so we do not list all of the details here12. The key computa-
tions involve evaluating (32) and (31). For (32), the linear Gaussian model is an AR(1) model
with autoregressive coefficient φ and heteroskedastic errors. This may be constructed using
the SsfPack function GetSsfArma and then modifying the state space representation to allow
for time varying variances. The solution for ct and dt involves a loop in which SsfCondDens

is called repeatedly until convergence is achieved. To evaluate (31), the term lnLg(ψ) is com-
puted using SsfLoglike and the weights wi are computed by drawing θi using SimSmoDraw. As
noted in Durbin & Koopman (2002), antithetic variates may be used to improve the efficiency
of w̄.

To illustrate, consider estimating the SV model (25) for daily log returns on the UK/US
spot exchange rate over the period 10/1/1981 through 6/28/1985. The MLEs for the elements
of ψ = (σ, φ, σ2η)

′ are found to be σ̂ = 0.6352, φ̂ = 0.9744 and σ̂2η = 0.0278. Figure 13 shows the
absolute log returns along with the smoothed volatility estimates and 95% error bands.

7 Term Structure Models

This section illustrates how some common affine term structure models may be expressed in
state space form, estimated and evaluated using the Kalman filter and smoothing algorithms in
S+FinMetrics/SsfPack. The notation and examples are taken from Duan & Simonato (1999).

12The code is contained in the file ssStochasticVolatility.ssc, available on Eric Zivot’s web page, and
replicates the Ox code in the files ssfnong.ox and sv mcl est.ox written by Siem Jan Koopman.
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Figure 13: Smoothed volatility from maximum simulated likelihood estimates of SV model fit
to daily UK/US log returns.

7.1 Affine Term Structure Models

Traditionally the study of the term structure of interest rates focuses on either the cross sec-
tional aspect of the yield curve, or the time series properties of the interest rate. Recently,
researchers have utilized state space models and Kalman filtering techniques to estimate affine
term structure models by combining both time series and cross sectional data. For simple mod-
els, the state space representation is often linear and Gaussian and analysis is straightforward.
For more general models, the unobserved state variables generally influence the variance of the
transition equation errors making the errors non-Gaussian. In these cases, non-standard state
space methods are necessary.

Duffie & Kan (1996) show that many of the theoretical term structure models, such as the
Vasicek (1977) Ornstein-Uhlenbeck model, Cox, Ingersoll & Ross (1985) square root diffusion
model and its multi-factor extensions (for example, see Chen & Scott (1993), Longstaff &
Schwartz (1992) two-factor model, and Chen (1996) three factor model, are special cases of the
class of affine term structure models. The class of affine term structure models is one in which
the yields to maturity on default-free pure discount bonds and the instantaneous interest rate
are affine (constant plus linear term) functions of m unobservable state variables Xt, which are
assumed to follow an affine diffusion process

dXt = U(Xt; Ψ)dt+ Σ(Xt; Ψ)dWt, (33)

where Wt is an m × 1 vector of independent Wiener processes ; Ψ is a p × 1 vector of model
specific parameters; U(·) and Σ(·) are affine functions in Xt such that (33) has a unique
solution. In general, the functions U(·) and Σ(·) can be obtained as the solution to some
ordinary differential equations. Only in special cases are closed form solutions available. In
this class of models, the price at time t of a default-free pure discount bond with time to
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maturity τ has the form

Pt(Xt; Ψ, τ) = A(Ψ, τ) exp {−B(Ψ, τ)′Xt} (34)

where A(τ,Ψ) is a scalar function and B(τ,Ψ) is an m × 1 vector function. The time-t con-
tinuously compounded yield-to-maturity on a pure discount bond with time to maturity τ is
defined as

Yt(Xt; Ψ, τ) = −
lnPt(Xt; Ψ, τ)

τ
, (35)

which, using (34), has the affine form

Yt(Xt; Ψ, τ) = −
lnA(Ψ, τ)

τ
+
B(Ψ, τ)′Xt

τ
(36)

7.2 State Space Representation

Although (36) dictates an exact relationship between the yield Yt(τ) and the state variables
Xt, in econometric estimation it is usually treated as an approximation giving rise to the
measurement equation

Yt(τ) = −
lnA(Ψ, τ)

τ
+
B(Ψ, τ)′Xt

τ
+ εt(τ), (37)

where εt is a normally distributed measurement error with zero mean and variance σ2τ . For any
time to maturity τ , the above equation can be naturally treated as the measurement equation
of a state space model, with Xt being the unobserved state variable. To complete the state
space representation, the transition equation for Xt over a discrete time interval h needs to
be specified. Defining Φ(Xt; Ψ, h) = var(Xt+h|Xt), Duan & Simonato (1999) show that the
transition equation for Xt has the form

Xt+h = a(Ψ, h) + b(Ψ, h)Xt + Φ(Xt; Ψ, h)
1/2ηt+h (38)

where ηt ∼ iid N(0, Im), and Φ(Xt; Ψ, h)
1/2 represents the Cholesky factorization of Φ(Xt; Ψ, h).

In general, the state space model defined by (37) and (38) is non-Gaussian because the
conditional variance of Xt+h in (38) depends on Xt. Only for the special case in which Σ(·) in
(33) is not a function of Xt, is the conditional variance term Φ(Xt; Ψ, h) also not a function of
Xt and the state space model is Gaussian13. See Lund (1997) for a detailed discussion of the
econometric issues associated with estimating affine term structure models using the Kalman
filter. Although the quasi-maximum likelihood estimator of the model parameters based on the
modified Kalman filter is inconsistent, the Monte Carlo results in Duan & Simonato (1999) and
de Jong (2000) show that the bias is very small even for the moderately small samples likely to
be encountered in practice.

13To estimate the non-Gaussian state space model, Duan & Simonato (1999) modify the Kalman filter recur-
sions to incorporate the presence of Φ(Xt; Ψ, h) in the conditional variance of ηt+h. The S+FinMetrics/SsfPack
functions KalmanFil and SsfLoglike can be modified to accommodate this modification.
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7.3 Estimation of Vasicek’s model

The data used for the following example are in the S+FinMetrics “timeSeries” fama.bliss,
and consist of four monthly yield series over the period April, 1964 to December, 1997 for the
U.S. Treasury debt securities with maturities of 3, 6, 12 and 60 months, respectively. This
data was also used by Duan & Simonato (1999). All rates are continuously compounded rates
expressed on an annual basis. These rates are displayed in Figure 14.
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Figure 14: Monthly yields on U.S. treasury debt securities.

In the Vasicek (1977) model, the state variable driving the term structure is the instanta-
neous (short) interest rate, rt, and is assumed to follow the mean-reverting diffusion process

drt = κ(θ − rt)dt+ σdWt, κ ≥ 0, σ > 0 (39)

where Wt is a scalar Wiener process, θ is the long-run average of the short rate, κ is a speed
of adjustment parameter, and σ is the volatility of rt. Duan & Simonato (1999) show that the
functions A(·), B(·), a(·), b(·) and Φ(·) have the form

lnA(Ψ, τ) = γ(B(Ψ, τ)− τ)− σ2B2(Ψ, τ)

4κ
, B(Ψ, τ) =

1

κ
(1− exp(−κτ))

γ = θ +
σλ

κ
− σ2

2κ2

a(Ψ, h) = θ(1− exp(−κh)), b(Ψ, h) = exp(−κh)

Φ(Xt; Ψ, h) = Φ(Ψ, h) =
σ2

2κ
(1− exp(−2κh))

where λ is the risk premium parameter. The model parameters are Ψ = (κ, θ, σ, λ)′. Notice that
for the Vasicek model, Φ(Xt; Ψ, h) = Φ(Ψ, h) so that the state variable rt does not influence
the conditional variance of transition equation errors, the state space model is Gaussian.
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The state space representation of the Vasicek model has system matrices

δ =











a(Ψ, h)
− lnA(Ψ, τ1)/τ1

...
− lnA(Ψ, τ4)/τ4











, Φ =











b(Ψ, h)
B(Ψ, τ1)/τ1

...
B(Ψ, τ4)/τ4











(40)

Ω = diag(Φ(Ψ, h), σ2τ1 , . . . , σ
2
τ4
)

and initial value matrix

Σ =

(

θ
σ2/2κ

)

based on the stationary distribution of the short rate in (39). Notice that this a multivariate
state space model.

A function to compute the state space form of the Vasicek model for a given set of parameters
Ψ, number of yields τ1, . . . , τN , and sampling frequency h is given in listing 14. Notice that the
exponential transformation is used for those parameters that should be positive, and, since the
data in fama.bliss are monthly, the default length of the discrete sampling interval, h, is set
to 1/12.

An implementation of the Vasicek model is provided in listing 15. Specific starting values
for the parameters

ϕ = (lnκ, ln θ, ln σ, λ, ln στ1 , ln στ2 , ln στ3 , ln στ4)
′

and the maturity specification for the yields are given and maximum likelihood estimates for
the parameters are obtained using SsfFit. The maximum likelihood estimates and asymptotic
standard errors for the model parameters

θ = (κ, θ, σ, λ, στ1 , στ2 , στ3 , στ4)
′

computed using the delta method are ????
These results are almost identical to those reported by Duan & Simonato (1999). All

parameters are significant at the 5% level except the measurement equation standard deviation
for the six month maturity yield. The largest measurement equation error standard deviation
is for the sixty month yield, indicating that the model has the poorest fit for this yield. The
short rate is mean reverting since κ̂ > 0, and the long-run average short rate is θ̂ = 5.74% per
year. The estimated risk premium parameter, λ̂ = 0.3477, is positive indicating a positive risk
premium for bond prices.

The smoothed estimates of the short-rate and the yields are computed using SsfCondDens

with task="STSMO". Figure 15 gives the smoothed estimate of the instantaneous short rate rt
from (39). The differences between the actual and smoothed yield estimates are displayed in
Figure 16. The model fits well on the short end of the yield curve but poorly on the long end.

As another check on the fit of the model, the presence of serial correlation in the stan-
dardized innovations is tested using the Box-Ljung modified Q-statistic (computed using the
S+FinMetrics function autocorTest) The null of no serial correlation is easily rejected for the
standardized innovations of all yields.
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Figure 15: Smoothed estimate of short rate rt from (39).
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Figure 16: Smoothed estimated of yields from Vasicek term structure model.
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vasicek.ssf = function(param, tau=NULL, freq=1/52)
{
## 1. Check for valid input.

if (length(param) < 5)
stop("param must have length greater than 4.")

N = length(param) - 4
if (length(tau) != N)
stop("Length of tau is inconsistent with param.")

## 2. Extract parameters and impose constraints.
Kappa = exp(param[1]) ## Kappa > 0
Theta = exp(param[2]) ## Theta > 0
Sigma = exp(param[3]) ## Sigma > 0
Lamda = param[4]
Var = exp(param[1:N+4]) ## meas eqn stdevs

## 3. Compute Gamma, A, and B.
Gamma = Theta + Sigma * Lamda / Kappa - Sigma^2 / (2 * Kappa^2)
B = (1 - exp(-Kappa * tau)) / Kappa
lnA = Gamma * (B - tau) - Sigma^2 * B^2 / (4 * Kappa)

## 4. Compute a, b, and Phi.
a = Theta * (1 - exp(-Kappa * freq))
b = exp(-Kappa * freq)
Phi = (Sigma^2 / (2 * Kappa)) * (1 - exp(-2 * Kappa * freq))

## 5. Compute the state space form.
mDelta = matrix(c(a, -lnA/tau), ncol=1)
mPhi = matrix(c(b, B/tau), ncol=1)
mOmega = diag(c(Phi, Var^2))

## 6. Duan and Simonato used this initial setting.
A0 = Theta
P0 = Sigma * Sigma / (2*Kappa)
mSigma = matrix(c(P0, A0), ncol=1)

## 7. Return state space form.
ssf.mod = list(mDelta=mDelta, mPhi=mPhi, mOmega=mOmega, mSigma=mSigma)
CheckSsf(ssf.mod)

}

Listing 14: Computing the state space form for Vasicek model.

8 Conclusion

This paper provides an overview of the SsfPack state space functions available in S+FinMetrics.
The functions can be used to implement the state space methods and algorithms presented in,
for example, Durbin & Koopman (2001). We also illustrate the use of the SsfPack functions
through several examples from macroeconomics and finance. With powerful easy-to-use soft-
ware, a wide variety of state space models are straightforward to estimate and analyze.

40



> start.vasicek = c(log(0.1), log(0.06), log(0.02), 0.3, log(0.003),
+ log(0.001), log(0.003), log(0.01))
> names(start.vasicek) = c("ln.kappa","ln.theta","ln.sigma","lamda",
+ "ln.sig.3M","ln.sig.6M","ln.sig.12M","ln.sig.60M")
> start.tau = c(0.25, 0.5, 1, 5)

> ans.vasicek = SsfFit(start.vasicek, fama.bliss, vasicek.ssf,
+ tau=start.tau, freq=1/12, trace=T,
+ control=nlminb.control(abs.tol=1e-6, rel.tol=1e-6,
+ x.tol=1e-6, eval.max=1000, iter.max=500))
Iteration 0 : objective = -6347.453
...
Iteration 37 : objective = -6378.45

> ssf.fit = vasicek.ssf(ans.vasicek$parameters,tau=start.tau,freq=1/12)

Log-likelihood: -6378.45
1620 observations
Parameters:

Value Std. Error t value
kappa 0.11880000 0.0106300 11.1700
theta 0.05729000 0.0269000 2.1300
sigma 0.02139000 0.0007900 27.0800
lamda 0.34800000 0.1500000 2.3200

sig.3M 0.00283500 0.0001011 28.0500
sig.6M 0.00001773 0.0001148 0.1544
sig.12M 0.00301700 0.0001083 27.8600
sig.60M 0.00989800 0.0003703 26.7300

> autocorTest(KalmanFil(fama.bliss,ssf.fit)$std.innov)

Test for Autocorrelation: Ljung-Box
Null Hypothesis: no autocorrelation
Test Statistics:

3M 6M 12M 60M
Test Stat 80.9471 282.4316 756.3304 3911.7736

p.value 0.0000 0.0000 0.0000 0.0000

Dist. under Null: chi-square with 26 degrees of freedom
Total Observ.: 405

Listing 15: An analysis of the Vasicek model.
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