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Abstract

Conventionally, shocks to permanent and transitory components in the unobserved components

(UC) model for the log of real GDP are assumed to be uncorrelated. This assumption is mainly for

identification of model parameters. In this paper, we show important implications of two popular

measures of persistence for the correlation between permanent and transitory shocks in the UC

model, and demonstrate that the correlation is negative for the log of U.S. real GDP under a very

general specification of the cycle process.
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1 Introduction

It is a widely accepted view that real GDP can be thought to consist of two components, a

permanent and a transitory component. Shocks to the permanent component have long-lasting

effects, whereas shocks to the transitory component are temporary and vanish in the long-run.

The unobserved components (UC) model has proved to be useful to analyze these two components

in real GDP. See, for example, Watson (1986) and Clark (1987). In this model, a time series

is represented by the sum of two unobserved components, namely, stochastic trend (permanent

component), which follows a random walk process, and cycle (transitory component), which is a

stationary process.

In most of the UC literature, it is assumed that the correlation between shocks to trend and

cycle is zero. The zero correlation assumption is often imposed not because it is reasonable, but

mainly for identification of model parameters. However, imposing such restrictions may distort

estimates of trend and cycle. This issue has been recently raised in Morley, Nelson, and Zivot

(2003, hereafter MNZ); they pointed out that the correlation can be identified for UC models with

an AR(2) cycle process and they estimated the correlation for U. S. quarterly real GDP data.

Their estimate of the correlation is −0.9062 and significantly far away from zero (see also Oh at

al., 2006; Proietti, 2006).

Our paper shows that the correlation is negative for U. S. quarterly real GDP under a much more

general cycle process than an AR(2) process. For this purpose, we extend the theorem by Lippi

and Reichlin (1992). Suppose that real GDP can also be represented by a difference-stationary

process {yt}∞t=−∞, whose first difference admits a MA(∞) representation ∆yt = a0 + A(L)ut with

white noise ut and absolutely summable coefficients. Campbell and Mankiw (1987a,b) defined

A(1) as a measure of persistence for a shock to yt; we call it the impulse response (IR) measure.

Lippi and Reichlin (1992) showed that if A(1)2 is greater than or equal to 1, then the correlation
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between trend and cycle is not zero.

We show that if A(1)2 is greater than or equal to 1, then the correlation is negative. This

suggests a useful way of examining the sign of correlation; if an estimate of A(1)2 is significantly

greater than or equal to 1 then we may conclude that the correlation is negative. Note that the

method does not require parameters of the UC model to be identified and thus can be applied even

for unidentified UC models.

There is another popular measure of persistence called the variance ratio (VR) measure, de-

noted by V , which was introduced by Cochrane (1988). In addition to the above results on the

IR measure, we show that the VR measure also has an important implication for the correlation

ρ. Specifically, we show that if V is greater than one, then there exists an upper bound for the

correlation ρ which is a function of the VR measure. This upper bound is denoted by ρub.

For estimating A(1), the most straightforward way is to assume that the time series follows an

ARIMA(p, 1, q) process and then estimate A(1) using estimates of the AMRA(p, q) coefficients

of the first difference, as Campbell and Mankiw (1987a,b) did. However, it is known that the

estimate by this approach is very sensitive to the order of the fitted ARIMA process (Christiano

and Eichenbaum, 1989; Hauser et al., 1999).

We propose non-parametric estimators for A(1)2 and ρub, and discuss methods for constructing

their confidence intervals. Our estimator for A(1)2 is free from the order selection problem of

ARIMA models although we need to choose a tuning or bandwidth parameter. Properties of the

estimators and accuracy of the confidence intervals are examined by Monte Carlo experiments. It

is found that the nonparametric estimator for A(1)2 is comparable with the parametric estimator

for a correctly parameterized ARIMA model.

We estimate A(1)2 and ρub for US quarterly real GDP applying our non-parametric estimators.

The estimates of A(1)2 with various values of bandwidth parameters are all greater than 1; however,

one of the valid upper 95 % confidence intervals does not include 1. This implies that the correlation
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of the trend and cycle innovations for U. S. quarterly real GDP is negative. The estimates of the

upper bounds range from −0.3409 to −0.7481 depending on the bandwidth parameter.

The rest of the paper is organized as follows. Section 2 gives some theoretical results, where

we derive relationships between A(1)2, V and the correlation ρ. In Section 3, we propose non-

parametric estimators for A(1)2 and the upper bound of ρ implied from V , and illustrate how we

construct their confidence intervals. In Section 4, we conduct several Monte Carlo experiments

to investigate the properties of our non-parametric estimators and the accuracy of the confidence

intervals. We also examine the performance of conventional parametric estimators based on various

ARIMA models; especially, we examine their behaviors under a misspecification of orders of a fitted

ARIMA model. Section 5 reports some empirical results for US quarterly real GDP applying our

non-parametric estimators, where we find that the estimate of A(1)2 is significantly greater than

1. Some concluding remarks are given in Section 6. All proofs are relegated to the Appendix.

2 Measures of persistence and the UC model

2.1 Relationships of two measures of persistence to the UC model

Consider a difference-stationary process {yt}∞t=−∞ (hereafter we abbreviate this to {yt} for nota-

tional simplicity) whose first difference admits a MA(∞) representation:

∆yt = a0 + A(L)ut, ut ∼ WN(0, σ2
u), t = 0,±1,±2, ... (1)

where ∆yt ≡ yt − yt−1, A(L) = 1 + a1L + a2L
2 + · · · , ∑∞

j=1 |aj | < ∞, A(1) �= 0, and WN(0, σ2
u)

denotes a white noise process with mean zero and variance σ2
u > 0.1 Various measures of persistence

for a shock to yt have been proposed. Two of the most popular ones are the impulse response

(hereafter IR) measure suggested by Campbell and Mankiw (1987a,b), and the variance ratio

1Thus, the MA(∞) process has absolutely summable autocovarinces; see Hamilton (1994, p 52).
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(hereafter VR) measure introduced by Cochrane (1988). The former is defined as A(1). This

definition is motivated by the fact that the cumulated responses of yt in the infinite future to a

unit innovation is the sum of the MA coefficients, A(1). Beveridge and Nelson (1981) pointed out

that

lim
k→∞

[Et(yt+k) − Et−1(yt+k)] = A(1)ut, (2)

where Et(ys) denotes the conditional expectation of ys conditioned on (yt, ut, ut−1, ...) assuming

that we know the values of (a1, a2, ...). This shows that A(1) can also be interpreted as a revision

in the long run prediction of yt due to the occurrence of a unit shock at t. Because of this, the

measure is sometimes called Beverage-Nelson persistence measure (Lippi and Reichlin, 1992, 1994).

The latter measure is defined as

V ≡ σ2
lrv

σ2
∆y

(3)

where σ2
lrv and σ2

∆y are the long-run and the unconditional variances of ∆yt, which are defined as

σ2
lrv ≡ A(1)2σ2

u and σ2
∆y ≡ (1 +

∑∞
j=1 a2

j)σ
2
u, respectively.2 It is easily shown that A(1)2 ≥ V for

the process in (1); that is, Cochrane’s persistence measure is a lower bound of A(1)2, and equality

holds when {∆yt} is a white noise process.

Consider the following representation for yt:

yt = τt + ct, t = 0,±1,±2, ..., (4)

where (a) ct = B(L)εt, εt ∼ WN(0, σ2
ε ), σ2

ε > 0 is a zero mean stationary MA(∞) process with

absolutely summable coefficients (b) τt is a random walk process with drift, i.e., τt = µ + τt−1 + ηt

2More precisely, Cochrane (1988) proposed the ratio of the variance of kth difference of the series

to the variance of the first difference. When k → ∞, it will converge to the quantity V defined

above. This quantity is used most often in the literature. Cochrane (1988) also proposed the ratio

of the sample variances of kth and the first differences as the estimator for V .
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with ηt ∼ WN(0, σ2
η) and σ2

η > 0; (c) cov(εt, ηs) = σηε for t = s and zero otherwise; (d) |ρ| < 1,

where ρ ≡ corr(εt, ηt) = σηε/(σεση). This representation is known as the unobserved components

(hereafter UC) model with correlated shocks. Note that if the representation exists then it implies

that V cannot be one, which in turn implies that the process {∆yt} is not a white noise process 3

and A(1)2 is always strictly greater than V ; the proof of this result can be found in the footnote

of the proof of Proposition 2 in Appendix. Note also that when {∆yt} is a white noise process,

we have A(1)2 = 1; however, A(1)2 = 1 does not necessarily imply that {∆yt} is a white noise

process.4

Lippi and Reichlin (1992) showed that A(1)2 < 1 when the correlation ρ is zero. First, we

generalize the Lippi and Reichlin’s result in Proposition 1 below.

Proposition 1 Let {yt} be the difference-stationary process defined in (1). Assume further that

{yt} admits the UC model representation defined in (4). Then A(1)2 < (1 + ρδ)−2 when ρδ �= −1,

and A(1)2 < δ2/(1 − δ2)2 when ρδ = −1, where δ ≡ σε/ση.

Note that ρδ = −1 automatically implies that ρ < 0 and δ > 1.

Remark 1 Proposition 1 includes Lippi and Reichlin (1992)’s theorem as a special case (ρ = 0).

3This implies that if the process is a white noise process, then this UC representation does not

exist. However, it is not obvious whether this UC representation always exists for an arbitrary

MA(∞) process that is not a white noise process, since we assume |ρ| < 1, which excludes the

famous “Beveridge-Nelson decomposition” representation (see p 504, Hamilton, 1994, it actually

requires a more strict condition, i.e., the one-summmability condition).

4Consider, for example, ARIMA(0,1,2) process such as ∆yt = ut + 0.2ut−1 − 0.2ut−2. The

coefficients of the MA process satisfy the invertible condition and we have A(1)2 = (1+0.2−0.2)2 =

1.
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From this proposition, we immediately obtain the following corollary:

Corollary 1 Assume further that 0 ≤ ρ < 1 in Proposition 1. Then A(1)2 < 1.

Remark 2 The above corollary can be equivalently stated as: if A(1)2 ≥ 1, then ρ < 0.

Remark 2 can be used to examine the sign of the correlation; it implies that if an estimate of

A(1)2 is significantly greater than or equal to 1, then we may conclude that the correlation ρ is

negative.

The result in Remark 2 is useful for examining the sign of the correlation. However, it is not

informative about the magnitude of correlation since we cannot directly observe nor estimate δ

(without further assumptions) and so the correlation may be arbitrary close to zero. The next

proposition is useful for examining the magnitude of the negative correlation when A(1)2 ≥ 1.

Proposition 2 Assume that {yt} satisfies the conditions in Proposition 1. If V > 1, then ρ < ρub,

where ρub ≡ −√
1 − V −1.

Note that to apply this upper bound, we need the condition that V > 1. This condition is stronger

than A(1)2 ≥ 1; V > 1 implies A(1)2 ≥ 1 but the converse is not true. Then it makes sense that

this stronger condition gives the result on ρ (i.e., the negative upper bound) which is stronger

than the result implied by A(1)2 ≥ 1 (i.e., negative correlation). This upper bound is applicable

regardless of the underlying cycle process. Unfortunately, because of this wide applicability, this

upper bound may not be tight; the true value of ρ may be much less than the upper bound. We

discuss this issue briefly in the next subsection using a particular UC model.
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2.2 The upper bound for a particular UC model

As an illustrative example, consider the following simple UC model:

yt = τt + ct,

τt = µ + τt + ηt,

(1 − φ1)ct = εt,

 ηt

εt

 ∼ i.i.d.


 0

0

 ,

 σ2
η ρσησε

· σ2
ε


 , (5)

where |φ| < 1. The reduced form of the UC model in (5) is an ARIMA(1,1,1) model. When φ = 0,

the model reduces to the random walk plus noise process, which was considered in Oh at al. (2006)

and Harvey and Koopman (2000). There are four parameters in this model; however only the

AR(1) coefficient of the cycle process is identified and the other three parameters are not uniquely

identified, as emphasized in Oh at al. (2006) for a special case of the model, namely the random

walk plus noise process. However, we can show that5

V =
σ2

η

σ2
η + 2ρσησε + 2σ2

ε (1 + φ1)−1
.

Note that the condition V > 1 is equivalent to ρ < −δ(1+φ1)−1, where δ ≡ σε/ση. Note also that

this immediately implies that ρ < 0 since |φ| < 1. When this condition is satisfied, we can show

that the upper bound derived in Proposition 2, i.e., ρub, is

ρub = −
√
−2δ[ ρ + δ(1 + φ1)−1] = −

√
2δ[ |ρ| − δ(1 + φ1)−1]. (6)

Thus, the difference between ρub and the true value ρ is

d ≡ ρub − ρ = −
√

2δ[ |ρ| − δ(1 + φ1)−1] + |ρ| ≥ |ρ|
(

1 −
√

1 + φ1

2

)
. (7)

The last inequality is obtained by minimizing d with respect to δ; the equality holds when δ =

|ρ|(1 + φ1)/2.

5First, it can be shown that the long-run variance of ∆yt is always equal to the trend innovation

variance σ2
η (see Appendix). The denominator is obtained by taking the variance of ∆yt = µ +

ηt + ct − ct−1.
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These equations show that for a fixed φ1, the minimum of d with respect to δ becomes larger

in proportion to |ρ|, and d becomes as large as the absolute value of ρ as δ gets closer to 0 or

|ρ|(1 + φ1). Consider the case in which φ = 0. In this case, when ρ = −0.8 and δ = 0.4, then

ρub ≈ −0.5657 and thus d = 0.2343; we can see that ρub is not very tight. Figure 1 plots (ρub, δ)

according to (6) with ρ fixed at −0.8 and various values of φ1. The last remark is that from the

derivation of ρub in the Appendix, we can see that ρub would become tighter as the underlying

cycle process gets closer to a random walk process, which is also observed in Figure 1.

This example makes it very clear that ρub is merely an upper bound; it does not imply that

the true value of ρ is close to ρub. However ρub can be calculated from a reduced form ARIMA

model and can be applied to any UC model, even to unidentified UC models like the one above.

Furthermore, we do not need to know the true orders of the reduced form ARIMA model since ρub

can be estimated nonparametrically as shown in Section 3.

3 Non parametric estimators for A(1)2 and ρub

3.1 Estimation of A(1)2

In this subsection, we consider various estimators of A(1)2. First, we consider a parametric ap-

proach used in Campbell and Mankiw (1987a,b). They assumed that the stationary process {∆yt}

can be represented by an ARMA(p, q) process,

Φ(L)(∆yt − a0) = Θ(L)ut, ut ∼ WN(0, σ2
u), (8)

where Φ(L) and Θ(L) are the lag polynomials of AR and MA coefficients, respectively. Then it

can be shown that A(1)2 = (Θ(1)/Φ(1))2. Campbell and Mankiw (1987a,b) estimated Φ(1) and

Θ(1) by substituting Gaussian MLEs of the coefficients into these polynomials.

This approach was, however criticized by Cochrane (1988); Cochrane argued that the estimates
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of persistence obtained by fitting ARMA (or any parametric) model with Gaussian MLE would

have upward bias if the fitted model is misspecified and the true value of persistence is small (see

also Christiano and Eichenbaum, 1989, who pointed that estimates by this approach are sensitive

to the choice of ARMA orders). Hauser et al. (1999) questioned this criticism insisting that there is

flaw in Cochrane’s argument. They argued that the estimates may actually be downwardly biased

if the orders of fitted ARMA models are greater than the true orders.

While the parametric ARMA approach is simple and can be easily implemented, it is also pos-

sible to estimate A(1)2 in non-parametric ways, which is free from the choice of ARIMA orders but

subject to bandwidth estimator issues. In this subsection we propose a non-parametric estimator

for A(1)2. Note that A(1)2 can be rewritten as

A(1)2 =
A(1)2σ2

u

σ2
u

=
σ2

lrv

σ2
u

. (9)

That is, it is the ratio of the long-run variance to the prediction error variance σ2
u. This suggests

the ratio of two consistent nonparametric estimators for σ2
lrv and σ2

u as a natural estimator for

A(1)2. Below first we explain some existing estimators for σ2
lrv and σ2

u. Then we define the ratio

of them as our nonparametric estimator. Estimating A(1)2 in this way has not been considered in

the literature.

Hereafter, we assume that the innovation process {ut} in (1) is i.i.d. with finite fourth moment

and s(1) < ∞, where s(q) ≡ ∑∞
j=−∞ |j|q|γj |, γj = cov(∆yt, ∆yt−j), j = 0, 1, 2..., and γ−j = γj .

This assumption is needed to show the asymptotic normality of the spectral density estimator

with the Bartlett kernel. Also, we denote ∆yt by xt and A(1)2 by W for the sake of notational

simplicity. Let fx(ω) be the spectral density function of the stationary process {xt}, i.e.,

fx(ω) ≡ 1
2π

∞∑
j=−∞

γje
−ijω . (10)

Note that σ2
lrv is equal to 2π times the spectral density at zero frequency, i.e., σ2

lrv = 2πfx(0).

This motivates the use of spectral density estimators to estimate σ2
lrv. The most popular spectral
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density estimators are the non-parametric kernel spectral density estimators.

Following Andrews (1991), given T observations xt t = 1, ..., T , we consider the class of kernel

estimators of the form

σ̂2
lrv,T =

T

T − 1

T−1∑
j=−T+1

k

(
j

ST

)
γ̂j,T , where

γ̂j,T =
1
T

T−|j|∑
t=1

(xt − â0)(xt+|j| − â0) for j = 0,±1, ...,±(T − 1),

(11)

â0 = 1
T

∑T
t=1 xt is the estimate of the unconditional mean, T/(T − 1) is the factor for a small

sample degrees of freedom adjustment to offset the effect of estimation of the unconditional mean,

k(·) is a real-valued kernel in the set K1 defined in equation (2.6) in Andrews (1991), and ST is a

band-width parameter.

The stationary process xt satisfies the assumptions of Theorem 1(b) in Andrews (1991), and

thus under a suitable choice of ST , we have

√
T/ST (σ̂2

lrv,T − σ2
lrv) = Op(1). (12)

Considerable research has been conducted on the properties of kernel spectral density estimators.

See, for example, Newey and West (1987), Andrews (1991), Newey and West (1994), Hannan

(1970), Percival and Walden (1994) and Priestley (1981) among many others. In this paper, we

consider only the Bartlett kernel :

k(x) =


1 − |x| for |x| ≤ 1,

0 otherwise
.

However, the arguments below can be immediately extended to other kernels.

Andrews (1991) showed that, for the Bartlett (hereafter BT) kernel, the asymptotically optimal

growth rate of the bandwidth parameter, which minimizes the asymptotic mean square error, is
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O(T 1/3).6 Andrews (1991) also suggested a plug-in type automatic bandwidth selection procedure.

For the BT kernel, the method determines a bandwidth parameter according to:

ST = 1.1447(ν̂T )g, (13)

where ν̂ is a value estimated with the formula in Andrews (1991, p835), T is the sample size, and

g is the growth rate of bandwidth parameter, which is typically chosen to be 1/3 for the BT kernel

since it is optimal in the sense that it minimizes the asymptotic MSE. Note that ST determined

by (13) is a positive real value but may not be a positive integer.7 We apply this procedure when

we estimate σ2
lrv by kernel spectral density estimations.

Next we describe an estimator for the prediction error variance σ2
u. At this point, we further

assume that {ut} in (1) is normal, which assures the asymptotic normality and, in particular,

√
T consistency of the estimator. It is well known that for a stochastic process admitting a Wold

representation with the prediction error variance σ2
u and a spectral density function f(ω) that

is positive almost everywhere, the following equation, which is known as Kolmogorov’s formula,

holds:

σ2
u = exp

1
2π

∫ π

−π

log2πf(ω)dω = exp
1
π

∫ π

0

log2πf(ω)dω. (14)

See Hannan (1970, p137). Using (14), Davis and Jones (1968) proposed a nonparametric estimator

for σ2
u, which replaces the unknown f(ω) by the periodogram and the integral by a finite Riemann

sum. In our case, it is given by

σ̂2
u,T = exp

{
1
M

M∑
k=1

log IT (ωk) + γ

}
, (15)

6Strictly speaking, to get this result we need an additional assumption (Assumption D in An-

drews (1991)), which is satisfied by the additional assumption of normality below.

7As Andrews (1991) argued, bandwidth parameter does not have to be a positive integer.
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where IT (ω) = (1/T )|∑T
t=1 xte

−iωt|2 is the periodogram of the stationary process xt, 8 M =

�(T − 1)/2�, ωk = 2πk/T , and γ ≈ 0.57721 is Euler’s constant (not an autocovariance) used for

bias correction.

Davis and Jones (1968) proved the asymptotic normality of their estimator assuming that

the process is independent normal. Hannan and Nicholls (1977, 1979) established the strong

consistency and asymptotic normality of the Davis - Jones estimator, namely,
√

T (σ̂2
u,T − σ2

u) →d

N(0, ψ′(1)σ4
u), where ψ(x) is the digamma function, without assuming independence (but assuming

normality) and with fairly minimal assumptions on fx(w), which is shown to be slightly weaker

than our assumptions here. In the appendix, we show that their assumptions are indeed satisfied

under our assumptions.

Some other estimators were suggested by Chen and Hannan (1980) and An (1981). Chen

and Hannan (1980) proved the strong consistency of their estimator under weaker assumptions

than Hannan and Nicholls (1977); however they did not derive its asymptotic distribution nor its

convergence rate. An (1981) proposed an estimator and established its strong consistency and

asymptotic normality under conditions weaker than the conditions of Hannan and Nicholls (1979).

The estimator, however, requires a numerical evaluation of an integral and is more difficult to

calculate than the Davis - Jones estimator. See also Pukkila and Nyquist (1985), Mohanty and

Pourahmadi (1996), Janacek (1975), Bhansali (1974), Taniguchi (1980), and Walden (1995) for

related works.

We use the Davis - Jones estimator with the above assumptions, which are slightly stronger

8Note that the periodogram can be also written as (1/T )
∑T

j=1

∑T
t=1 xtxj cos(ω(t− j)). Here we

do not have to center the time series unlike (11) since even if we centered the time series by true a0,

the resulting periodogram is numerically the same as in (15) at Fourier frequencies ωk = 2πk/T ,

k = 1, ..., M . See Percival and Walden (1994, p196, p204) for more details.
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than the ones assumed in Hannan and Nicholls (1977). Although Hannan and Nicholls (1977,

p835) conjectured that their result would hold for non-normal cases, it seems that no formal proof

for that claim has been available.

Finally, we define the ratio of σ̂2
lrv,T in (11) to σ̂2

u,T in (15), i.e.,

ŴT =
σ̂2

lrv,T

σ̂2
u,T

, (16)

as our non-parametric estimator for W . We examine the finite sample properties of this estimator

by Monte Carlo experiment in Section 4.

3.2 Confidence intervals for W

Suppose that
√

T/ST (σ̂2
lrv,T − σ2

lrv) →d Z, where Z is a random variable with non-degenerated

distribution. Then we can show that
√

T/ST (ŴT − W ) →d Z/σ2
u.9 Thus, the asymptotic distri-

bution of ŴT is essentially the same as that of σ̂2
lrv. It can be shown that the distribution of Z

is normal whose variance depends on the true spectral density. However, its mean may or may

not be zero depending on the growth rate of the bandwidth parameter ST ; when ST increases at

a sufficiently fast rate, the mean is zero; however, when ST is increased at a slower rate, then the

mean is an unknown nonzero constant, which differs depending on the true process.

More precisely, under our assumption that s(1) < ∞, for the BT kernel with ST = O(T g),

1/3 ≤ g < 1, we can show that Z ∼ N(µ
BT

, (4/3)σ4
lrv), where µ

BT
= −(T 1/2S

−3/2
T )s(1). See

Priestley (1981, p469) on the asymptotic normality of kernel spectral density estimators. Notice

that if 1/3 < g, then µBT goes to zero as T → ∞; however, it is a non-zero constant when g = 1/3.

Although µ
BT

may be estimated, we construct confidence intervals for W assuming that µ
BT

= 0.

Then, we have
√

T/ST (ŴT −W ) →d N(0, (4/3)W 2). The point in this argument is that although

for the BT kernel setting g = 1/3 is minimizing the asymptotic MSE, it would not be desirable

9A simple application of Slutsky Theorem leads to the result.
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for the purpose of constructing confidence intervals. This issue will be examined in Monte Carlo

experiments in the next section.

Next we consider the construction of confidence intervals for W . Since our objective is to

provide evidence that W is greater than 1 for U. S. real GDP, it is natural to consider one-sided

upper confidence intervals; if they do not contain 1, then we may reject that W < 1. Let cα be

the 100α % point of the standard normal distribution; i.e., Pr(N(0, 1) ≤ cα) = α. For example, if

α = 0.95, then cα = 1.64. Then, for the BT kernel, the one-sided upper 100α % confidence interval

is given by[
ŴT

1 + cα/κT
, ∞

)
, (17)

where κT =
√

3T/4ST , since

α = Pr
(
κT W−1(ŴT − W ) ≤ cα

)
= Pr

(
κT W−1ŴT − κT ≤ cα

)
= Pr

(
κT ŴT

κT + cα
≤ W

)
= Pr

(
ŴT

1 + cα/κT
≤ W

)
.

The first equality comes from the fact that κT W−1(ŴT −W ) (asymptotically) follows the standard

normal distribution. Note that for a fixed T , the confidence interval becomes wider as ST increases

(as κT decreases). This implies that there is a trade off between obtaining a more accurate

confidence interval and obtaining a tighter confidence interval. Later, we examine the accuracy of

the confidence intervals with various values of g by simulation.

3.3 An Estimator and confidence interval for ρub

In Section 2.1, we derived an upper bound of the correlation ρ, which is given by ρub ≡ −√
1 − V −1.

Consider the following consistent estimator for V :

V̂T ≡ σ̂2
lrv,T

σ̂2
x,T

, (18)
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where σ̂2
x,T is the usual sample variance and σ̂2

lrv,T is given by (11). Here, again we restrict our

attention only to the BT kernel. Then, the estimator V̂T is asymptotically equivalent to the

variance ratio estimator proposed by Cochrane (1988)10, as the aggregation value k, or ST in our

notation, grows with (but more slowly than) the sample size T . Since the sample variance is
√

T

consistent, by exactly the same argument as in the case of ŴT , we can show that11

√
T/ST (V̂T − V ) →d N(0, (4/3)V 2), (19)

where ST = O(T g) with 1/3 < g < 1. In particular, when V = 1, which implies that {yt} is

a random walk process, the asymptotic distribution of
√

T/ST (V̂T − 1) is N(0, 4/3). This result

is consistent with the result of Lo and MacKinlay (1988, p.47).12 The upper 100α % confidence

interval for V̂T is given by[
V̂T

1 + cα/κT
, ∞

)
, (20)

where κT ≡ √
(3T )/(4ST ). With this V̂T , there is no difficulty to estimate the upper bound ρub if

it exists; it can be consistently estimated by ρ̂ub,T ≡ −
√

1 − V̂ −1
T with V̂T > 1.

Next, we consider the construction of confidence intervals for ρub. When it comes to ρub, we

would be interested in how far it is away from zero. Therefore, it is more appropriate to consider

lower one-sided confidence intervals. Also, since ρ̂ub is defined only when V̂T > 1, it would be

10See the footnote 2.

11Here, we do not need the normality assumption on {ut}, which was necessary to assure the
√

T

consistency of σ̂2
u,T in ŴT .

12They showed that
√

T/q(M̂r(q) − 1) ∼a N(0, 2(2q − 1)(q − 1)/3q2), where M̂r(q) is their

estimator for the ratio of the variances of q-th and the first differences of the series, which is

asymptotically equivalent to V̂T . Here q corresponds to St. When q → ∞, the asymptotic variance

reduces to 3/4. See also Lo and MacKinlay (1989).

16



reasonable to construct the confidence intervals only when V̂T > 1. However, this brings an

additional complication because then we have to deal with a conditional distribution conditioned

on V̂T > 1.

Let z be a random variable defined as z ≡ κT V −1(V̂T − V ). Note that the condition V̂T >

1 is equivalent to z > κT (V −1 − 1). First we will find a constant cβ such as β = P (z <

cβ | z > κT (V −1 − 1)) for 0 < β < 1. Noting that z ∼a N(0, 1), this constant is given by

cβ = Φ−1(βΦ(κT (1 − V −1)), where Φ(.) is the cumulative distribution function of the standard

normal distribuion.13 With this constant cβ, we have

β = P
(
z ≤ cβ

∣∣∣ V̂T > 1
)

= P

(
V̂T ≤ V + V

cβ

κT

∣∣∣ V̂T > 1
)

. (21)

Here, we use a crude approximation for cβ , namely, the first order Taylor expansion of cβ of V −1

around V̂ −1
T :

cβ ≈ ĉ − βφ(ν̂)κT

φ(ĉ)

[
1
V

− 1

V̂T

]
, (22)

where ĉ ≡ Φ−1(βΦ(ν̂)) and ν̂ ≡ κT (1 − V̂ −1
T ). Substituting this into (21), we have

P
(
V̂T ≤ V + bc

κT
V − βφ(bν)

φ(bc) + βφ(bν)
φ(bc)

V
bVT

∣∣∣ V̂T > 1
)

= P
(
V̂T + βφ(bν)

φ(bc) ≤
[
1 + bc

κT
+ βφ(bν)

φ(bc)
1

bVT

]
V
∣∣∣ V̂T > 1

)
.

= P
(
c̄ ≤ V

∣∣∣ V̂T > 1
)

= P
(
c̄−1 ≥ V −1

∣∣∣ V̂T > 1
)

= P
(
1 − c̄−1 ≤ 1 − V −1

∣∣∣ V̂T > 1
)

= P
(
−√

1 − c̄−1 ≥ −√
1 − V −1

∣∣∣ V̂T > 1
)

or P
(
−√

1 − c̄−1 ≥ ρub

∣∣∣ V̂T > 1
)

,

(23)

where

c̄ ≡
V̂T + βφ(bν)

φ(bc)

1 + bc
κT

+ βφ(bν)
φ(bc)

1
bVT

.

13Following the convention, we use Φ(.) for the cdf and φ(.) for the pdf of the standard normal

distribution, although the same notations were used for the AR lag polynomials and the coefficients.
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Note that the numerator and denominator of c̄ are both always positive, which justifies the second

and third equalities in (23). Based on this approximation, we suggest (−1, −√
1 − c̄−1] as a β %

lower confidence interval for ρub. As it is obvious from the derivation, this confidence interval is

valid only when ρub exists; i.e., V > 1. For 1− c̄−1 to be positive (otherwise,
√

1 − c̄−1 becomes a

complex number), c̄ must be greater than 1. We can show that this is in fact always satisfied.14

To obtain this confidence interval, we have to calculate c̄ at each time. This can be easily

done numerically. The above argument relies on two approximations, (19) and (22). Although

both of them become more and more accurate as the sample size increases, they may not be

good approximations in a finite sample size. In the next section we examine the accuracy of this

confidence interval by simulation.

4 Monte Carlo study

Using Monte Carlo experiments, we first check the finite sample properties of the proposed non-

parametric estimators, namely, ŴT and V̂T , and compare them with several parametric estimators

derived from ARIMA models. Then, we examine the accuracy of our suggested method for con-

structing confidence intervals for W , V , and ρub.

Throughout this section, we consider the following ARIMA(1,1,1) processes:

(1 − φ1L)(1 − L)yt = c + (1 + θ1L)ut, ut ∼ NID(0, σ2
u), t = 0,±1,±2, ... (24)

Here, c and σ2
u are fixed at c = 0.4431 and σ2

u = 0.9723, which are the actual estimates of

the ARIMA(1,1,1) model for the log of U.S. real GDP. The following four sets of φ1 and θ1 are

14First, we have ĉ ≤ κT (1−V̂ −1
T ) since β < 1. Then, we have 1−V̂ −1

T ≥ ĉ/κT . Since (V̂T −1)2 > 0,

we have V̂T −1 > 1− V̂ −1
T and thus V̂T −1 > ĉ/κT or V̂T > 1+ ĉ/κT . Then, noting βφ(ν̂)/φ(ĉ) > 0

and V̂T > 1, we obtain the result.
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examined:

(A) (φ1, θ1) = (0.4591, − 0.1310) (W = 2.5811, V = 2.2713, ρub = −0.7481),

(B) (φ1, θ1) = (0.3, − 0.5) (W = 0.5102, V = 0.4887, ρub does not exist),

(C) (φ1, θ1) = (0.5, − 0.3) (W = 1.9600, V = 1.8608, ρub = −0.6801),

(D) (φ1, θ1) = (0.3, − 0.29) (W = 1.0288, V = 1.0287, ρub = −0.1669),

where the values inside of the parentheses are the true values of W , V , and ρub. These values cover

several important cases in which W is less than 1, close to 1 and much greater than 1.

The values of φ1, θ1 given in (A) (and c, σ2
u) are the Gaussian ML estimates of the ARIMA(1,1,1)

model for the log of U. S. quarterly real GDP data.15 (B) and (C) are well identified cases. (D)

is a near cancellation case; i.e., φ1 and −θ are very close to each other, and it is known that the

Gaussian MLE behaves very badly (see, e.g., Nelson and Startz, 2006). For (B), ρ may be positive

or negative, and ρub does not exist. For (A), (C) and (D), ρ must be negative and ρup exists.

We also compare our non-parametric estimators with parametric estimators computed from

several ARIMA(p, 1, q) models. Specifically, we consider three ARIMA models: ARIMA(1,1,1),

ARIMA(0,1,1), and ARIMA(2,1,2) models. The ARIMA(0,1,1) and ARIMA(2,1,2) models are

under and over parameterized models, respectively.16 They are used to address the concerns from

Cochrane (1988) and Hauser et al. (1999).17 Let ŴT (p, q) denote the parametric estimator from

the ARIMA(p, 1, q) model.

15The quarterly real GDP data are the same as the data used in Morley, Nelson, and Zivot (2003)

and Oh at al. (2006). Details of the data will be given in Section 4.

16Strictly speaking, if the true process is ARIMA(1,1,1) model, ARIMA(2,1,2) parameters are not

uniquely identified and the parametric estimator of persistence with this model is not consistent.

See Hauser et al. (1999) for more details on the effect of overparameterizing ARIMA model.

17These ARIMA models are estimated by exact MLE using the Kalman filter. The program was

written by the Matlab programming language version 6.1. The program uses Matlab command
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For the BT kernel, setting g = 1/3 in (13) is asymptotically optimal for estimating the long-

run variance, however, as argued in Section 3.2, this could lead to inaccurate confidence intervals

and even may not be optimal in finite samples. With this in mind, we examine several values

for the growth rate of the bandwidth parameter; specifically, we include g = 1/2 and g = 2/3 18

additionally. We denote the nonparametric estimator with the growth rate g by ŴT,g; for example,

when g = 1/2, it is denoted by ŴT,1/2.

The Monte Carlo experiment is conducted as follows:

(1) Generate T samples from the ARIMA(1,1,1) processes in (24) with coefficients specified

by (A)-(D).

(2) Estimate W and V using parametric and nonparametric estimators.

(3) Construct 100α % upper confidence intervals for V and W by the method suggested

in Section 3.

(4) For Case (A), (C), and (D), if V̂T,g > 1, then construct β % lower confidence intervals

for ρub by the method suggested in Section 3. If V̂T,g ≤ 1, regenerate T samples

and estimate V . Repeat this until we can construct the confidence interval.

(5) Repeat (1)-(4) R times.

(6) Calculate the mean, bias, mean absolute error (MAE) of the estimators and the actual

coverage probabilities of the confidence intervals.

Here, we set T = 100, 200, and R = 1000 for the parametric estimators; T = 100, 200, 1000,

fminunc for the maximization, which is based on a quasi-Newton method with the numerical

Hessian updated by the BFGS algorithm.

18Under our assumptions, (12) holds with these values of g. See Theorem 1(b) in Andrews (1991).

20



and R = 10000 for the nonparametric estimators; and α, β = 0.01, 0.05, 0.10. Tables 1 and 2 re-

port the mean, bias and mean absolute error (MAE) of the estimators for W and V , respectively;

we report MAE instead of mean square error (MSE) since these two have essentially the same

implications.

First, consider the results for parametric estimators of W . We can observe that the parametric

estimators constructed from the misspecified ARIMA models, ŴT (0, 1), and ŴT (2, 2) tend to have

larger biases than the one computed from the correctly specified ARIMA model, i.e., ŴT (1, 1).

Interestingly, in Case (D), ŴT (1, 1) has the largest bias among the three. Also the biases of

ŴT (0, 1) and ŴT (2, 2) are not always negative; they are so in three cases, but are positive in Case

(B). In terms of MAE, the performance of ŴT (2, 2) is usually inferior to the other two except in

Case (D). Also the performances of ŴT (0, 1) are better than those of ŴT (1, 1) in Cases (B) and

(D). The results for the estimator of V parallel those for the estimator of W . From these limited

experiments, we may say that if our objective is to estimate W or V , under-parameterization

does not pose a severe problem, though it would depend on the underlying true process, and

over-parameterizing would be more problematic.

Next, consider the nonparametric estimators of W and V . We find that their performances are

comparable to those of parametric ARIMA estimators; they indeed often perform better than the

parametric ones, especially in Case (D). Choice of the growth rate does not seem to give much

differences here, although ŴT,1/3 and ŴT,1/2 seem to perform slightly better than ŴT,2/3, except

in Case (B). We note that the models we examined here are very simple processes. For different

processes, these estimators may perform very differently. Then the selection of the bandwidth

parameters may become more important. The above comments apply to both ŴT,g and V̂T,g.

Last, we check the accuracies of the confidence intervals for W , V and ρub. Tables 3 and 4

report the empirical coverage probabilities of those confidence intervals. Again almost the same

comments apply to both W and V . The empirical coverage probabilities tend to be higher than the
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nominal levels except in Case (B). Although as the sample size increases, the accuracies improve,

the improvements are quite slow in some cases; confidence intervals constructed with g = 1/3

are quite inaccurate and the accuracy does not improve as the number of sample size increases,

especially in Case (B). This is because for this process, the neglected mean is very large and thus

the asymptotic approximation by the zero mean normal distribution does not work well. This

result indicates that, at least when we use the asymptotic normal approximation for constructing

confidence intervals, we have to be careful in choosing the growth rate of bandwidth parameter;

it should be larger than the asymptotically optimal rate. Regarding the confidence intervals for

ρub, we find that their empirical coverage probabilities also have a tendency to be higher than the

nominal level and they becomes quite inaccurate when the true value of ρub is close to 0 or the

true value of V is close to 1.

5 Empirical application to U. S. real GDP

In this section we apply our non-parametric estimators to the growth rate of US quarterly real

GDP over the period 1947.1-1998.2 (sample size is 205). The data is the same as used in MNZ.

Assuming real GDP is a difference stationary process defined in (1), we estimate the values of

W , V , and ρub by parametric and nonparametric approaches. We apply 6 estimators for each of

W , V , and ρub: ŴT (p, q) and V̂T (p, q) with (p, q) = (0, 1), (1, 1), and (2, 2); ŴT,g and V̂T,g with

g = 1/3, 1/2 and 2/3. The estimation results are summarized in Table 5. For both W and V , all

estimates are greater than 1, ranging from 1.3160 to 2.5811 for W and from 1.1315 to 2.22713 for

V .19 The values of W and V implied from the estimated parameters of ARIMA(2,1,2) reduced

model in MNL are 1.6275 and 1.3878, which are in fact almost the same as the estimates of W and

19We select the bandwidth parameter following the formula in (13); it gives ST = 5.7720 when

g = 1/3, ST = 12.9612 when g = 1/2, and ST = 29.1047 when g = 2/3.
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V by ARIMA(2,1,2) model here (ŴT (2, 2) = 1.6278 and V̂T (2, 2) = 1.3880). MNZ could estimate ρ

since their UC model with AR(2) cycle is identified. The advantage of the nonparametric approach

here for estimating the upper bound is that it does not require a parametric cycle nor that the UC

model is identified. The estimates of ρub range from −0.3409 to −0.7481.

Next, we construct 90, 95, and 99 % confidence intervals for W , V , and ρub. The results are

summarized in Table 6. The 95 % confidence intervals for W with ŴT,1/3 and ŴT,1/2 do not

include W = 1. However, all of the the confidence intervals computed from ŴT,2/3 include W = 1.

Unfortunately, the conclusion about the true value of W depends on the value of the bandwidth

parameter. The results for V are similar to those for W except that the 95% confidence interval

with V̂T,1/2 barely includes 1. The confidence intervals for ρub indicate that the correlation is at

least lower than −0.254, if it is negative. Note that the confidence intervals for ρub are obtained

under the assumption that it exists or V > 1, which may not be true.

6 Conclusion

In this paper we extended the theorem in Lippi and Reichlin (1992) to the UC model with correlated

components. It was shown that the square of the impulse response measure has an important

implication for the correlation between shocks in trend and cycle; if it is greater than or equal

to one, then the correlation must be negative. Furthermore, we derived an upper bound for the

correlation, which is a function of the variance ratio measure, and we suggested non-parametric

estimators for the square of the impulse response measure and the upper bound.

A method for constructing confidence intervals of the proposed estimators was also discussed.

It is based on an asymptotic normal approximation. We investigated properties of the estimators

and the accuracies of the confidence intervals by Monte Carlo experiments. Our Monte Carlo

experiments indicate that the choice of bandwidth parameter is important; in general, the band-
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width parameter must grow faster than its asymptotically optimal rate for constructing accurate

confidence intervals.

The estimators are applied to U. S. quarterly real GDP data. It is found that the estimates

by various methods, parametrically and non-parametrically, are all greater than 1, but one of the

valid upper 95% confidence intervals does not include the value of 1. Hence, we find compelling

evidence that the correlation between shocks in trend and cycle in the UC model is negative for

U. S. quarterly real GDP data.

In the definition of the UC model, we assumed that the trend is a random walk. Several authors

(e.g., Blanchard and Quah, 1989; Lippi and Reichlin, 1994; Quah, 1992) considered UC models in

which the trend follows a general I(1) process. It would be interesting to extend our analysis to

this larger class of UC models and see whether a similar result is obtained.
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Appendix: Proofs

In this appendix, first we show that our assumptions actually satisfy the assumptions made in

Hannan and Nicholls (1977). Second, we prove Proposition 1 and 2. Our proof of Proposition 1 is

similar to that of the theorem in Lippi and Reichlin (1992).

A function f(ω) is said to belong to Λα, 0 < α ≤ 1 if sup
ω

|f(ω + d) − f(ω)| ≤ C|d|α with some

constant C > 0 independent of d. In addition to normality of ut, Hannan and Nicholls (1977)

assumed that fx(ω) ∈ Λα with α > 1
2 to prove the asymptotic normality and

√
T convergence of

σ̂2
u. Our assumption that s(1) < ∞ satisfies the above assumption as the following proposition

shows.

Proposition 3 If s(q) < ∞ for some 0 < q ≤ 1, where s(q) ≡∑∞
j=−∞ |j|q|γj |, then fx(ω) ∈ Λq.

Proof. From the definition of the spectral density function, we have

|f(ω + d) − f(ω)| = 1
2π

∣∣∣∣∣ ∞∑
j=−∞

γj [cos(jω + jd) − i sin(jω + jd) − cos(jω) + i sin(jω)]

∣∣∣∣∣
= 1

2π

∣∣∣∣∣ ∞∑
j=−∞

γj

[
−2 sin

(
2jω+jd

2

)
sin

(
jd
2

)
+ i2 cos

(
2jω+jd

2

)
sin

(
jd
2

)]∣∣∣∣∣
≤ 1

2π

∞∑
j=−∞

|γj |
[
4 sin2

(
2jω+jd

2

)
sin2

(
jd
2

)
+ 4 cos2

(
2jω+jd

2

)
sin2

(
jd
2

)]1/2

= 2
π

∞∑
j=−∞

|γj |
∣∣∣sin( jd

2

)∣∣∣ ,
where we used the well known formulas: cos(x) − cos(y) = −2 sin

(
x+y

2

)
sin

(
x−y

2

)
, and sin(x) −

sin(y) = −2 cos
(

x+y
2

)
sin

(
x−y

2

)
. Noting that | sin(x)| ≤ |x|α for any 0 ≤ α ≤ 1,20 we have

|f(ω + d) − f(ω)| ≤ 21−α

π
|d|α

∞∑
j=−∞

|j|α|γj |

20This obviously holds for |x| > 1. It also holds for |x| ≤ 1 because sin(x) ≤ |x| ≤ |x|α with

0 ≤ α ≤ 1.
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Therefore, if s(q) < ∞ for some 0 < q ≤ 1, then

|f(ω + d) − f(ω)| ≤ C|d|q, where C =
21−q

π
s(q). Q.E.D.

Next, we shall prove Proposition 1. Let ∆yt be rewritten as

∆yt = ∆(τt + ct) = µ + ηt + C(L)εt, (25)

where C(L) = ∆B(L) and C(L) = 1 + c1L + c2L
2 + · · · . It is easy to show that if coefficients of

B(L) are absolutely summable, so are coefficients of C(L). Note that cj = bj − bj−1 for j =1,...

with b0 = 1 and so C(1) = 0.

Here, we derive the spectral density function of ∆yt.

Lemma 1 The spectral density function of ∆yt in (25) is given by

f∆y(ω) =
1
2π

{
σ2

η + σηε[C(eiω) + C(e−iω)] + σ2
ε C(eiω)C(e−iω)

}
. (26)

Proof Rewrite ∆yt as ∆yt = µ + i′vt, where i = (1, 1)′ and vt = (ηt, C(L)εt)′. vt can be

represented by the following vector MA(∞):

vt ≡

 ηt

C(L)εt

 =

 1 0

0 1


 ηt

εt

+

 0 0

0 c1


 ηt−1

εt−1

+

 0 0

0 c2


 ηt−2

εt−2

+ · · ·

= I2et + C1et−1 + C2et−2 + · · ·

= C(L)et,

where et = (ηt, εt)′ with variance-covariance matrix Σ. The autocovariance generating function of

∆yt is defined as g∆y(z) =
∑∞

j=−∞ γjz
j, where γj is the j-th order autocovariance of ∆yt. Noting
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that γj = cov(∆yt, ∆yt−j) = E(i′vtv′
t−ji) = i′E(vtv′

t−j)i, we have

g∆y(z) =
∑∞

j=−∞ i′E(vtv′
t−j)iz

j

= i′
[∑∞

j=−∞ E(vtv′
t−j)z

j
]
i

= i′
[
C(z)ΣC(z−1)′

]
i

= σ2
η + σηε

[
C(z) + C(z−1)

]
+ σ2

ε C(z)C(z−1).

(27)

Thus, the spectral density function of ∆yt is given in (26). Q.E.D.

From the above lemma, we immediately have A(1)2σ2
u = 2πf∆y(0) = σ2

η, the result already shown

in Cochrane (1988).

Proof of Proposition 1. First we consider the case that ρδ �= −1. Then, by Kolmogorov’s

formula21

σ2
u = exp 1

2π

∫ π

−π
log 2πf∆y(ω)dω

= exp 1
2π

∫ π

−π
log

[
σ2

η

(
1 + σεη

σ2
η

[
C(eiω) + C(e−iω)

]
+ σ2

ε

σ2
η
C(eiω)C(e−iω)

)]
dω

= σ2
η exp 1

2π

∫ π

−π log
{
1 + ρδ

[
C(eiω) + C(e−iω)

]
+ δ2C(eiω)C(e−iω)

}
dω

> σ2
η exp 1

2π

∫ π

−π log
{
1 + ρδ

[
C(eiω) + C(e−iω)

]
+ (ρδ)2C(eiω)C(e−iω)

}
dω

= σ2
η exp 1

2π

∫ π

−π
log

{[
1 + ρδC(eiω)

] [
1 + ρδC(e−iω)

]}
dω

= σ2
η exp 1

2π

∫ π

−π
log

{
2π 1

2π (1 + ρδ)2
[
1 + (1 + ρδ)−1ρδc1e

iω + (1 + ρδ)−1ρδc2e
2iω + · · · ]

× [
1 + (1 + ρδ)−1ρδc1e

−iω + (1 + ρδ)−1ρδc2e
−2iω + · · · ]}dω

= σ2
η(1 + ρδ)2

(28)

The inequality in the forth line comes from that C(eiω)C(e−iω) is positive almost everywhere in

[−π, π] and |ρ| < 1.The last equality is obtained by regarding the inside of the logarithm as the

spectral density of MA(∞) process with the prediction error variance (1 + ρδ)2 and coefficients

(1 + ρδ)−1ρδcj j = 1, ..., which can be shown to be absolutely summable, and then applying

21Note that 2π in the formula cancels out the 2π of the spectral density function.
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Kolmogorov’s formula. Note that 1 + ρδ �= 0 since ρδ �= −1 is assumed here. Substituting

σ2
η = A(1)2σ2

u into the above, we obtain the desired inequality. Care must be given when ρδ = −1.

In this case, 1+ ρδ = 0 and so the above argument does not apply. However a simple modification

can still give a similar result.

Note that when ρδ = −1, we have 1 > 1/δ since ρ = −1/δ and |ρ| < 1. From the third line in

(28), we have

σ2
u = σ2

η exp 1
2π

∫ π

−π log
{
1 − [

C(eiω) + C(e−iω)
]
+ δ2C(eiω)C(e−iω)

}
dω

> σ2
η exp 1

2π

∫ π

−π log
{
1/δ2 − [

C(eiω) + C(e−iω)
]
+ δ2C(eiω)C(e−iω)

}
dω

= σ2
η exp 1

2π

∫ π

−π
log

{[
1/δ − δC(eiω)

] [
1/δ − δC(e−iω)

]}
dω

= σ2
η exp 1

2π

∫ π

−π
log

{
[(1 − δ2)2/δ2]

[
1 − (1 − δ2)−1δ2c1e

iω − (1 + δ2)−1δ2c2e
2iω + · · · ]

× [
1 − (1 − δ2)−1δ2c1e

−iω − (1 + δ2)−1δ2c2e
−2iω + · · · ]} dω

= σ2
η(1 − δ2)2/δ2.

Again the last line is obtained by regarding the inside of logarithm as 2π times the spectral

density function of MA(∞) process with prediction error variance (1 − δ2)2/δ2. Thus, we have

δ2/(1 − δ2)2 > A(1)2 when ρδ = −1. Q.E.D.

Proof of Proposition 2 Taking the variances of both sides in (25), we have σ2
∆y = σ2

lrv +

2σηε + ωσ2
ε , or V −1 = 1 + 2ρδ + ωδ2, where ω ≡ 1 + c2

1 + c2
2 + · · · . From the absolute summability

of bj j = 1, 2, ..., we have ω �= 1 and thus ω > 1. Therefore, it follows that V −1 > 1 + 2ρδ + δ2.

Solving this inequality for δ, we have −ρ −
√

ρ2 − (1 − V −1) < δ < −ρ +
√

ρ2 − (1 − V −1). For

this inequality to have a solution for δ, it must be satisfied that ρ2 − 1 + V −1 > 0. When V < 1,

this is trivially satisfied. When V > 1, 22 which implies that ρ < 0, we have ρ < −√
1 − V −1.

Q.E.D.

22We do not need to consider the case V = 1; we have δ > 0 under the assumption σ2
ε > 0,

however if V = 1 then the above inequality for δ implies δ < 0, which is a contradiction and
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Figure 1: Implied upper bound ρub of ρ = −0.8 with various values of φ1

Note: The figure plots the function ρub = −√2δ[ |ρ| − δ(1 + φ)−1] in (6) with various values of

φ1. Here the true value of the correlation is fixed at −0.8.
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Table 1: Mean, Bias, and Mean absolute error (MAE) of Parametric and Nonparametric estimators
for W

(a) Parameteric estimator (ŴT (p, q))

ŴT (0, 1) ŴT (1, 1) ŴT (2, 2)
φ1 θ1 T Mean Bias MAE Mean Bias MAE Mean Bias MAE

0.4591 −0.1310 100 1.6722 −0.9089 0.9089 2.7774 0.1963 0.9436 1.8198 −0.7613 1.5855
(W = 2.5811) 200 1.6779 −0.9032 0.9032 2.6466 0.0655 0.5957 1.9569 −0.6242 1.4420
0.3 −0.5 100 0.6088 0.0986 0.1637 0.3693 −0.1409 0.2592 0.5888 0.0786 0.3650
(W=0.5102) 200 0.6143 0.1041 0.1286 0.4420 −0.0682 0.1631 0.5535 0.0433 0.3127
0.5 −0.3 100 1.4001 −0.5599 0.5621 2.1507 0.1907 0.7914 1.4321 −0.5280 1.0959

(W=1.96) 200 1.4050 −0.5550 0.5551 2.0621 0.1021 0.5200 1.5736 −0.3864 0.9641
0.3 −0.29 100 1.0094 −0.0193 0.1704 0.9430 −0.0858 0.4709 1.0128 −0.0160 0.3382
(W=1.0288) 200 1.0190 −0.0098 0.1145 0.9923 −0.0365 0.3403 0.9861 −0.0427 0.2230

(b) Non-parametric estimator (ŴT,g)

ŴT,1/3 ŴT,1/2 ŴT,2/3

φ1 θ1 T Mean Bias MAE Mean Bias MAE Mean Bias MAE
0.4591 −0.1310 100 1.9161 −0.5935 0.7662 2.0460 −0.4636 0.8166 1.9202 −0.5894 0.9782

(W = 2.5811) 200 2.0550 −0.4546 0.5872 2.2031 −0.3065 0.6456 2.1001 −0.4090 0.8621
1000 2.2856 −0.2240 0.3076 2.4115 −0.0981 0.4003 2.3292 −0.1804 0.6554

0.3 −0.5 100 0.7647 0.2545 0.2597 0.6870 0.1768 0.2119 0.6250 0.1148 0.2022
(W=0.5102) 200 0.7259 0.2157 0.2174 0.6394 0.1292 0.1545 0.5775 0.0673 0.1435

1000 0.6375 0.1273 0.1276 0.5624 0.0522 0.0710 0.5217 0.0115 0.0813
0.5 −0.3 100 1.4224 −0.5376 0.6164 1.5293 −0.4307 0.6163 1.5430 −0.4170 0.6700

(W=1.96) 200 1.5038 −0.4562 0.5059 1.6378 −0.3222 0.4796 1.6702 −0.2898 0.5413
1000 1.6863 −0.2737 0.2929 1.8212 −0.1388 0.2649 1.8367 −0.1233 0.3704

0.3 −0.29 100 0.9973 −0.0315 0.1361 0.9962 −0.0326 0.1503 0.9909 −0.0379 0.1642
(W=1.0288) 200 1.0033 −0.0255 0.0949 1.0044 −0.0243 0.1051 1.0027 −0.0260 0.1149

1000 1.0104 −0.0183 0.0453 1.0129 −0.0158 0.0499 1.0146 −0.0142 0.0544

Note: The number of iterations is 1000 for the parametric estimators and 10000 for the nonpara-
metric estimators. Given T samples, (x1, ..., xT ), Mean= T−1

∑T
t=1 xt; Bias = Mean−true value;

MAE= T−1
∑T

t=1 |xt − true value|.
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Table 2: Mean, Bias, and Mean absolute error (MAE) of Parametric and Nonparametric estimators
for V

(a) Parameteric estimator (V̂T (p, q))

V̂T (0, 1) V̂T (1, 1) V̂T (2, 2)
φ1 θ1 T Mean Bias MAE Mean Bias MAE Mean Bias MAE

0.4591 −0.1310 100 1.5230 −0.7483 0.7483 2.3639 0.0926 0.6904 1.4962 −0.7751 1.3518
(V =2.2713 ) 200 1.5356 −0.7357 0.7357 2.2975 0.0262 0.4443 1.6780 −0.5933 1.2309
0.3 −0.5 100 0.5810 0.0923 0.1717 0.3478 −0.1409 0.2548 0.5240 0.0353 0.3215
(V = 0.4887) 200 0.5869 0.0982 0.1319 0.4200 −0.0687 0.1617 0.5150 0.0263 0.2909
0.5 −0.3 100 1.3378 −0.5230 0.5230 1.9808 0.1200 0.6800 1.2600 −0.6008 1.0403
(V = 1.8608) 200 1.3507 −0.5101 0.5101 1.9317 0.0709 0.4499 1.4491 −0.4117 0.8988
0.3 −0.29 100 0.9984 −0.0303 0.1670 0.9226 −0.1061 0.4610 0.9251 −0.1036 0.3198
(V = 1.0287) 200 1.0137 −0.0150 0.1125 0.9819 −0.0468 0.3355 0.9419 −0.0868 0.2166

(b) Non-parametric estimator (V̂T,g)

V̂T,1/3 V̂T,1/2 V̂T,2/3

φ1 θ1 T Mean Bias MAE Mean Bias MAE Mean Bias MAE
0.4591 −0.1310 100 1.7032 −0.5681 0.6181 1.8185 −0.4528 0.6445 1.7155 −0.5559 0.8157

(V =2.2713 ) 200 1.8184 −0.4529 0.4920 1.9492 −0.3221 0.5219 1.8623 −0.4090 0.7350
1000 2.0127 −0.2586 0.2857 2.1236 −0.1477 0.3460 2.0518 −0.2195 0.5835

0.3 −0.5 100 0.7489 0.2602 0.2663 0.6746 0.1859 0.2205 0.6152 0.1265 0.2093
(V = 0.4887) 200 0.7038 0.2151 0.2174 0.6207 0.1320 0.1581 0.5612 0.0725 0.1458

1000 0.6119 0.1232 0.1236 0.5399 0.0511 0.0702 0.5008 0.0121 0.0794
0.5 −0.3 100 1.3642 −0.4966 0.5245 1.4643 −0.3965 0.5112 1.4793 −0.3815 0.5668
(V = 1.8608) 200 1.4352 −0.4255 0.4438 1.5617 −0.2991 0.4033 1.5935 −0.2673 0.4671

1000 1.6015 −0.2593 0.2675 1.7295 −0.1313 0.2332 1.7443 −0.1165 0.3381
0.3 −0.29 100 1.0119 −0.0168 0.0831 1.0108 −0.0179 0.0994 1.0055 −0.0232 0.1141
(V = 1.0287) 200 1.0111 −0.0176 0.0614 1.0122 −0.0164 0.0732 1.0105 −0.0181 0.0834

1000 1.0114 −0.0173 0.0339 1.0139 −0.0148 0.0391 1.0155 −0.0132 0.0442

Note: The number of iterations is 1000 for the parametric estimators and 10000 for the nonpara-
metric estimators. Given T samples, (x1, ..., xT ), Mean= T−1

∑T
t=1 xt; Bias = Mean−true value;

MAE= T−1
∑T

t=1 |xt − true value|.
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Table 3: Empirical coverage probabilities of confidence intervals for W and V

For W

ŴT,1/3 ŴT,1/2 ŴT,2/3

1 − α
φ1 θ1 T 0.99 0.95 0.90 0.99 0.95 0.90 0.99 0.95 0.90

0.4591 -0.1310 100 0.9951 0.9861 0.9778 0.9925 0.9808 0.9673 0.9954 0.9862 0.9755
(W = 2.5811) 200 0.9958 0.9878 0.9799 0.9915 0.9759 0.9580 0.9924 0.9780 0.9617

1000 0.9985 0.9926 0.9826 0.9911 0.9697 0.9450 0.9894 0.9686 0.9429
0.3 -0.5 100 0.4778 0.3475 0.2721 0.6689 0.5717 0.5040 0.7583 0.6895 0.6381
(W=0.5102) 200 0.4432 0.2892 0.2107 0.7423 0.6244 0.5471 0.8556 0.7821 0.7227

1000 0.3728 0.1840 0.1144 0.9109 0.7894 0.6912 0.9750 0.9228 0.8702
0.5 -0.3 100 0.9960 0.9897 0.9821 0.9937 0.9817 0.9676 0.9928 0.9812 0.9699
(W=1.96) 200 0.9970 0.9924 0.9864 0.9925 0.9802 0.9663 0.9915 0.9765 0.9590

1000 0.9991 0.9970 0.9933 0.9947 0.9762 0.9542 0.9893 0.9683 0.9434
0.3 -0.29 100 0.9724 0.9341 0.9004 0.9666 0.9310 0.8953 0.9631 0.9302 0.8979
(W=1.0288) 200 0.9809 0.9460 0.9127 0.9752 0.9416 0.9056 0.9722 0.9400 0.9033

1000 0.9916 0.9651 0.9316 0.9870 0.9574 0.9240 0.9822 0.9539 0.9196

For V

V̂T,1/3 V̂T,1/2 V̂T,2/3

1 − α
φ1 θ1 T 0.99 0.95 0.90 0.99 0.95 0.90 0.99 0.95 0.90

0.4591 -0.1310 100 0.9999 0.9990 0.9968 0.9983 0.9927 0.9838 0.9981 0.9922 0.9848
(V =2.2713) 200 0.9999 0.9985 0.9964 0.9981 0.9889 0.9754 0.9959 0.9856 0.9701

1000 0.9997 0.9987 0.9958 0.9943 0.9770 0.9549 0.9914 0.9708 0.9469
0.3 -0.5 100 0.4336 0.3125 0.2466 0.6386 0.5384 0.4738 0.7347 0.6583 0.6078
(V = 0.4887) 200 0.4206 0.2729 0.2013 0.7199 0.5991 0.5191 0.8397 0.7630 0.6983

1000 0.3700 0.1902 0.1201 0.9004 0.7728 0.6748 0.9714 0.9156 0.8632
0.5 -0.3 100 1.0000 0.9985 0.9970 0.9988 0.9935 0.9871 0.9968 0.9899 0.9800
(V = 1.8608) 200 0.9999 0.9985 0.9977 0.9983 0.9918 0.9813 0.9961 0.9837 0.9703

1000 0.9997 0.9994 0.9980 0.9972 0.9847 0.9673 0.9908 0.9725 0.9486
0.3 -0.29 100 0.9980 0.9897 0.9743 0.9966 0.9841 0.9701 0.9960 0.9831 0.9697
(V = 1.0287) 200 0.9985 0.9901 0.9775 0.9973 0.9859 0.9710 0.9962 0.9853 0.9671

1000 0.9990 0.9929 0.9800 0.9974 0.9853 0.9683 0.9963 0.9815 0.9626

Note: Here, ŴT,g and V̂T,g mean that we used these estimators in the formulas of the confidence
intervals. T is the sample size. 1 − α is the nominal level of the confidence interval. The number
of iterations is 10000.
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Table 4: Actual coverage probabilities of confidence intervals for ρub

V̂T,1/3 V̂T,1/2 V̂T,2/3

1 − α
φ1 θ1 T 0.99 0.95 0.90 0.99 0.95 0.90 0.99 0.95 0.90

0.4591 -0.1310 100 0.9995 0.9980 0.9956 0.9832 0.9769 0.9655 0.9596 0.9510 0.9388
(V = 2.2713) 200 0.9998 0.9991 0.9962 0.9877 0.9798 0.9666 0.9575 0.9430 0.9253

(ρub = −0.7481) 1000 0.9999 0.9986 0.9950 0.9946 0.9766 0.9536 0.9654 0.9487 0.9242
0.5 -0.3 100 0.9982 0.9973 0.9955 0.9849 0.9790 0.9694 0.9626 0.9563 0.9430
(V = 1.8608) 200 0.9998 0.9985 0.9974 0.9907 0.9832 0.9743 0.9639 0.9538 0.9418

(ρub = −0.6801) 1000 0.9999 0.9996 0.9980 0.9968 0.9874 0.9704 0.9787 0.9606 0.9310
0.3 -0.29 100 0.6431 0.6176 0.5858 0.6304 0.6060 0.5767 0.6401 0.6152 0.5854
(V = 1.0287) 200 0.6955 0.6743 0.6420 0.6817 0.6528 0.6219 0.6985 0.6648 0.6259

(ρub = −0.1669) 1000 0.8533 0.8388 0.8109 0.8102 0.7918 0.7660 0.7860 0.7610 0.7456

Note: Here, V̂T,g means that we used these estimators in the formulas of the confidence intervals
for ρub. T is ths sample size. 1 − α is the nominal level of the confidence interval. The number of
iterations is 1000.

Table 5: Estimates of W , V and ρub for U. S. GDP growth rate data

(a) Estimates of W

ŴT (0, 1) ŴT (1, 1) ŴT (2, 2) ŴT,1/3 ŴT,1/2 ŴT,2/3

1.6265 2.5811 1.6278 1.9893 1.6400 1.3160

(b) Estimates of V

V̂T (0, 1) V̂T (1, 1) V̂T (2, 2) V̂T,1/3 V̂T,1/2 V̂T,2/3

1.5119 2.2713 1.3880 1.7104 1.4101 1.1315

(c) Estimates of ρub

ρ̂ub,T (0, 1) ρ̂ub,T (1, 1) ρ̂ub,T (2, 2) ρ̂ub,T,1/3 ρ̂ub,T,1/2 ρ̂ub,T,2/3

−0.5819 −0.7481 −0.5287 −0.6445 −0.5393 −0.3409
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Table 6: Confidence intervals for W , V , and ρub for U. S. GDP growth rate data

(a) CIs for W

α ŴT,1/3 ŴT,1/2 ŴT,2/3

0.90 [ 1.5940,∞) [ 1.1957,∞) [ 0.8453,∞)
0.95 [ 1.5090,∞) [ 1.1110,∞) [ 0.7680,∞)
0.99 [ 1.3706,∞) [ 0.9782,∞) [ 0.6535,∞)

(b) CIs for V

α V̂T,1/3 V̂T,1/2 V̂T,2/3

0.90 [1.3705,∞) [1.0280,∞) [0.7268,∞)
0.95 [1.2980,∞) [0.9553,∞) [0.6603,∞)
0.99 [1.1784,∞) [0.8411,∞) [0.5619,∞)

(b) CIs for ρub

β V̂T,1/3 V̂T,1/2 V̂T,2/3

0.90 (−1,−0.5408] (−1,−0.4410] (−1,−0.3030]
0.95 (−1,−0.5192] (−1,−0.4259] (−1,−0.2763]
0.99 (−1,−0.5063] (−1,−0.4149] (−1,−0.2540]

Note: Here, ŴT,g and V̂T,g means that we used these estimators in the formulas of the confidence
intervals. 1 − α is the nominal level of the confidence interval. Note that the CIs for ρub are
obtained under the assumption that it exists or V > 1.
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