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Abstract

In this paper we design two split-sample tests for subsets of structural coefficients in a linear

Instrumental Variables (IV) regression. Sample splitting serves two purposes – 1) validity

of the resultant tests does not depend on the identifiability of the coefficients being tested

and 2) it combines information from two unrelated samples one of which need not contain

information on the dependent variable. The tests are performed on sub-sample one using

the regression coefficients obtained from running the so-called first stage regression on sub-

sample two (sample not containing information on the dependent variable). The first test uses

the unbiased split-sample IV estimator of the remaining structural coefficients constrained

by the hypothesized value of the structural coefficients of interest [see Angrist and Krueger

(1995)]. We call this the USSIV score test. The USSIV score test is asymptotically equivalent

to the standard score test based on sub-sample one when the standard regularity conditions

are satisfied. However, the USSIV score test can be over-sized if the remaining structural

coefficients are not identified. This motivates another test based on Robins (2004), which

we call the Robins-test. The Robins-test is never oversized and if the remaining structural

coefficients are identified, the Robins-test is asymptotically equivalent to USSIV score test

against
√

n-local alternatives.
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1 Introduction

In this paper we propose a new split-sample score test for subsets of structural coefficients in

linear Instrumental Variables (IV) models and show that it is valid irrespective of the relevance

of the instruments. Our test is quite generally less conservative than the projection test based

on the split-sample (score) statistic proposed by Dufour and Jasiak (2001).

Split-sample methods of estimating structural coefficients in linear IV models were proposed

by Angrist and Krueger (1995) to avoid biased estimation in the presence of irrelevant instru-

ments. The estimation procedure typically involves three steps – 1) split the sample randomly

into two sub-samples, 2) compute the predicted values of the endogenous regressors by mul-

tiplying the values of the instruments in sub-sample one with the coefficients obtained by

running the so-called first-stage regression on sub-sample two and 3) use sub-sample one to

estimate the structural coefficients by running a regression of the dependent variable on the

predicted values of the endogenous regressors.

Dufour and Jasiak (2001) show that a split-sample version of the score test [see Wang and Zivot

(1998)] can be used to jointly test all the structural coefficients in a linear IV regression. Simu-

lation results from Kleibergen (2002) show that when the degree of over-identification is large,

split-sample score test can be more powerful than the Anderson-Rubin (AR) test based on the

whole sample [see Dufour (1997) and Staiger and Stock (1997)].

A common argument against sample-splitting is the wastage of information which results in

loss of power (efficiency). For example, the split-sample score test for jointly testing all the

structural coefficients is less powerful than other similar tests like the K-test [see Kleibergen

(2002)] and the Conditional Likelihood Ratio (CLR) test [see Moreira (2003)] based on the

whole sample. But there is another way to look at it – with randomly missing data, the

split-sample score test can actually use more information than the K-test or the CLR test
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mentioned above. For example, consider the familiar IV regression model:

y = Y θ + u

Y = ZΠ + V

where u and V are the unobserved correlated structural errors, Y is the set of endogenous

regressors and Z is the set of instrumental variables. Let θ be the parameter of interest and

suppose that all the regularity conditions are satisfied. Also, suppose that we have n indepen-

dent and identically distributed observations on Y and Z, but only n1 < n observations on y

where n2 = n − n1 observations of y are randomly missing. 1 In this situation the K-test and

the CLR-test, in their present form, can use only n1 of the observations on all the variables

and the remaining n2 observations on Y and Z are wasted, whereas the split-sample score

test actually uses all the information available. See Angrist and Krueger (1992) for another

example where sample splitting (in other words, using two different samples) is a reasonable

option. The structure of the split-sample score test does not allow for a gain in power under

the above situation. However, Monte-Carlo experiments (not reported in this paper) show

that if a majority of the observations on y are missing, the match between the nominal and

the asymptotic size is possibly better for the split-sample score test than it is for the AR-test,

the K-test or the CLR-test based on sub-sample one alone (i.e. the complete observations).

The present paper extends the split-sample score test to subsets of parameters. Suppose that

in the IV model described above, θ = (β′, γ′)′ and Y = (X,W ), i.e. β is the coefficient as-

sociated with the endogenous regressor X and γ is the coefficient associated with the other

endogenous regressor W . For example, if we are interested in the returns to schooling, X can

be considered as the years of schooling, W as the years of experience and y as logarithm of the

wage earned by the individual. Both X and W presumably depend on the unobserved ability

of the individual which is probably correlated with the individual’s earning, and hence X and

W can be argued to be endogenous. For simplicity, we do not mention the exogenous control

variables included in the regression. As mentioned above, β is the coefficient of interest. If

1If we think of each observation on y being included independently in the sample with probability p, then by
“randomly missing observations” we mean that p is determined exogenously.
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the instruments Z are “weak” for β, we cannot estimate β consistently but it is still possible

to validly test null hypotheses of the form H0 : β = β0 using projection test based on the AR-

statistic or the K-statistic or the LR-statistic [see Staiger and Stock (1997), Kleibergen (2002)

and Moreira (2003)]. 2 However, projection tests of H0 : β = β0 can be very conservative

when the instruments are “strong” for either γ or β.

Kleibergen (2004) proposes an alternative way of using the K-statistic to obtain a valid test

of H0 : β = β0 when the instruments are strong for γ; Zivot et al. (2006) call this the “par-

tial” K-test. The partial K-statistic replaces γ by its limited-information maximum likelihood

(LIML) estimator (constrained by H0 : β = β0) in the K-statistic and adjusts the degree of

freedom of the asymptotic distribution accordingly. The partial K-test is more powerful than

the projection test based on the K-statistic and the partial K-statistic is pivotal when the

instruments are strong for γ. Given that strong instruments are not easy to find, it is not

advisable to simply assume that the instruments are strong for γ. Hence a reliable use of the

partial K-test must be accompanied by a pretest for the strength of instruments for γ and

possibly with proper size-correction thereafter [see Hall et al. (1996)]. 3 However, similar to

Guggenberger and Smith (2005) and Zivot et al. (2006), we do not find any evidence of major

upward-size distortion of the partial K-test but we do observe that the size of the partial K-test

increases with the level of endogeneity of W (i.e. the regressor associated with the structural

coefficient γ).

In the present paper we propose a new test, the Robins-test, which is valid irrespective of the

strength of the instruments, for either β or γ, under weak assumptions about the underlying

data generating process. When all the standard regularity conditions are satisfied, the power

of this test is asymptotically equivalent to the power of the standard score test (based on

2In the rest of the paper “valid tests” is synonymous to “tests that are not over-sized”. If the instruments
are “weak” for any structural coefficient in the sense of Staiger and Stock (1997), then the coefficient is asymptot-
ically unidentified. However, strictly speaking, “strong” instrument for any structural coefficient in the sense of
Staiger and Stock (1997) does not necessarily mean that the parameter is identified [see WI Case 3 in Zivot et al.
(2006)]. In the present paper we do not consider this case and use the term “strong” instrument loosely to mean
that the corresponding structural coefficient is identified.

3However, to our knowledge, there does not exist any systematic way of pretesting the strength of instruments
in the presence of multiple endogenous regressors. A widely used (abused) measure of instrumental strength is the
partial R2 statistic proposed by Shea (1997). Zivot and Chaudhuri (2007) point out that the partial R2 statistic for
γ, in this case, can be totally misleading if the instruments are weak for β.
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sub-sample one). When the rank condition is not satisfied, the standard score test is invalid,

whereas, our method can still be relaibly used for inference on subsets of structural coefficients.

We also show that our method is computationally easy to implement and we recommend its

use for testing subsets of structural coefficients in linear IV models. As shown by Zivot et al.

(1998), we can also form a confidence interval (of any desired level and probably conservative)

for β as the collection of values β0 which cannot be rejected by our test (at the desired level).

Again, if all the standard regularity conditions are satisfied, any point belonging to such a

confidence interval (of non-trivial level) will belong to the
√

n-neighborhood of the true value

of the structural coefficients with probablity one. So like the standard tests, our method can

also be used for consistent interval-estimation of subsets of structural coefficients when the

standard regularity conditions are satisfied.

The main contributions of this paper are summarized below:

• First we propose a split-sample score test for the null hypothesis H0 : β = β0 which is

valid when the instruments are strong for γ. Let γ̂(β0) be the Unbiased-Split-Sample-

Instrumental-Variables (USSIV) estimator of γ constrained by the null hypothesis H0 :

β = β0 [see Angrist and Krueger (1995)]. We define a test which rejects the null hy-

pothesis at level α if the split-sample score statistic evaluated at β = β0 and γ = γ̂(β0)

exceeds the (1−α)100-th quantile of the central χ2 distribution with degrees of freedom

equal to the dimension of β [see Dufour and Jasiak (2001)]. We call this the USSIV score

test. When the instruments are strong for γ, the USSIV score test for β is valid and

asymptotically equivalent to the partial K-test (based on sub-sample one) against
√

n-

local alternatives. When the instruments are weak for γ, we do not have control over the

size of the USSIV score test. The USSIV score test serves the purpose of a benchmark

for split-sample score tests (or tests based on sub-sample one) of H0 : β = β0 when the

instruments are strong for γ.

• Finally, we design a new testing procedure for the null hypothesis H0 : β = β0 which is

always valid. When the instruments are strong for γ, it is asymptotically equivalent to

the USSIV score test. To our knowledge this kind of test was first proposed by Robins

(2004) and hence we call it the Robins-test. The Robins-test is quite generally more
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powerful than the projection test based on the split-sample score statistic proposed by

Dufour and Jasiak (2001).

The rest of the paper is organized as follows: Section 2 discusses the model and the weak in-

strument framework, Section 3 describes testing of hypotheses on subsets of parameters using

the USSIV score test and Robins-test, Section 4 is a Monte-Carlo study investigating the finite

sample behaviors of the USSIV score test and Robins-test, we conclude in Section 5.

We use the following notations throughout. Consider any n×m matrix A. If A has full column

rank then PA = A(A′A)−1A′ and MA = In − PA. If A is a symmetric, positive semidefinite

matrix then A = A
1

2 A
1

2

′

where A
1

2 is the lower-triangular Cholesky factor of A.

2 Linear IV Model with Weak Instruments

2.1 Model:

Suppose that we have the following structural equation model:

y = Xβ + Wγ + u (1)

X = ZΠX + VX (2)

W = ZΠW + VW (3)

where y is the dependent variable, X and W are the endogenous regressors, Z is the instrument

and u, VX and VW are the unobserved correlated structural errors. 4 Let the dimensions of β,

γ, ΠX and ΠW be respectively mx × 1, mw × 1, k × mx and k × mw. Let m = mx + mw and

m,mx,mw and k be fixed and finite numbers. We assume that the order condition k ≥ m is

satisfied. We do not, however, impose the restriction of full column rank on Π = [ΠX ,ΠW ].

Suppose that we have n observations on y, X, W and Z and we randomly split the sample

4For simplicity, we leave out the included exogenous variables. Adding them in the model does not entail any
fundamental change in our results because it is possible to find

√
n-consistent estimators for the corresponding

coefficients when the true values of β and γ are known.

7



in two parts – the first part containing n1 = [nζ] observations and the second part containing

n2 = n − n1 observations where ζ is a fixed number in the interval (0, 1). Let yi, Xi, Wi and

Zi represent the ni observations in the ith sub-sample (i = 1, 2) where the observations are

stacked in rows. To motivate alternatively, we can also assume that y2 is missing and hence

the AR-test, the K-test and the CLR test, in their present form, can only be performed based

on the first sub-sample. The asymptotic results discussed in this paper do not depend on

whichever motivation is used – sample splitting or missing y2. However, for the purpose of the

simulations we use the missing y2 scanario.

We make the following high level assumptions summarized under Assumption A.

Assumption A: We assume that the following results hold jointly as n → ∞ for i = 1, 2:

1. 1
ni

(ui, VXi, VWi)
′ (ui, VXi, VWi)

P−→ Σ =





σuu σuX σuW

σXu σXX σXW

σWu σWX σWW




where Σ is a symmetric,

positive definite matrix.

2. 1
ni

Z ′
iZi

P−→ Q where Q is a symmetric, positive definite matrix.

3. 1√
ni

Z ′
i (ui, VXi, VWi)

d−→ Q
1

2 (ΨZui,ΨZXi,ΨZWi) where vec (ΨZui,ΨZXi,ΨZWi) ∼ N(0,Σ⊗

Ik).

4. Finally, we assume that ΨZu1,ΨZX1,ΨZW1 are uncorrelated with ΨZX2 and ΨZW2.

See Staiger and Stock (1997) and Kleibergen (2002) for discussions on the first three assump-

tions. The fourth assumption ensures that the random functions computed from sub-sample

one are asymptotically uncorrelated with those computed from sub-sample two.

2.2 Weak Instrument Framework:

The weak-instrument framework proposed by Staiger and Stock (1997) models Π as O
(
nδ
)

where δ = 0 means that the instruments are strong and δ = −1
2 means that they are weak

for the corresponding structural coefficients. The framework ties the instrument-strength to

the sample size in a way which ensures that as the sample size goes to infinity the instru-
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ments become completely irrelevant at a rate that gives non-trivial asymptotic properties. We

use the weak-instrument framework to characterize four cases of partial identification under

Assumption A [see Zivot et al. (2006), Choi and Phillips (1992) and Phillips (1989)] as given

below:

• Case 1: ΠX = CX√
n

and ΠW = CW√
n

i.e. both β and γ are asymptotically unidentified.

• Case 2: ΠX = CX√
n

and ΠW = CW i.e. β is asymptotically unidentified but γ is identified.

• Case 3: ΠX = CX and ΠW = CW√
n

i.e. β is identified but γ is asymptotically unidentified.

• Case 4: ΠX = CX and ΠW = CW i.e. both β and γ are identified.

where C = [CX , CW ] is a full-column-rank, non-random matrix with fixed and bounded ele-

ments. This is by no means an exhaustive list of all possible cases, but is sufficiently rich to

highlight the interesting asymptotic results.

We also define Λ = (λX , λW ) = Q
1

2 C and note that under the special case λ′
XλW = 0 and

σXW = 0, Zivot et al. (2006) define the so-called concentration parameter (measuring the

instrument strength) for β and γ respectively as

µβ =
n(1+2δx)

k
σ
− 1

2

′

XX λ′
XλXσ

− 1

2

XX and µγ =
n(1+2δw)

k
σ
− 1

2

′

WW λ′
W λW σ

− 1

2

WW

where δx = −1
2 under Cases 1 and 2 and δx = 0 under Cases 3 and 4. Similarly δw = −1

2

under Cases 1 and 3 and δw = 0 under Cases 2 and 4. However, in the rest of the paper we do

not impose the restrictions λ′
XλW = 0 and σXW = 0 (except in Section 5: simulation study).

3 Testing the Null Hypothesis on Subsets of Param-

eters

Without loss of generality we treat β as the parameters of interest and γ as the nuisance

parameters.
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3.1 Why Split the Sample?

We follow the exposition by Wang and Zivot (1998) to motivate sample-splitting (or equiv-

alently using information from both sub-samples). The Wang and Zivot score statistic for

jointly testing β = β0 and γ = γ0, based on sub-sample one, uses the gradients of the following

objective function with respect to β and γ

max
β,γ

J(β, γ) = −1

2
(y1 − X1β − W1γ)′PZ1

(y1 − X1β − W1γ).

The gradients with respect to β and γ are, respectively, given by

OβJ11(β, γ) = Π̂′
X1Z

′
1(y1 − X1β − W1γ) (4)

OγJ11(β, γ) = Π̂′
W1Z

′
1(y1 − X1β − W1γ) (5)

where Π̂Xi = (Z ′
iZi)

−1 Z ′
iXi and Π̂Wi = (Z ′

iZi)
−1 Z ′

iWi are the first-stage estimators of ΠX

and ΠW based on sub-sample i (= 1,2). The subscript on OJ is used to distinguish (4) and

(5) from (8) and (9) respectively.

Let OJ11(β, γ) =
[
OβJ ′

11(β, γ),OγJ ′
11(β, γ)

]′
and Π̂i =

[
Π̂Xi, Π̂Wi

]
for i = 1, 2. The Wang and

Zivot score statistic is defined as

WZ(β0, γ0) =
OJ ′

11(β0, γ0)
(
Π̂′

1Z
′
1Z1Π̂1

)−1
OJ11(β0, γ0)

1
n1

(y1 − X1β0 − W1γ0)′(y1 − X1β0 − W1γ0)
(6)

and the score test rejects the hypotheses β = β0 and γ = γ0 jointly at level α if WZ(β0, γ0) >

χ2
m(1 − α) where χ2

m(1 − α) is the (1 − α)100-th quantile of the central χ2
m distribution.

Wang and Zivot (1998) point out that under Case I, if β0 and γ0 are the true values, then

WZ(β0, γ0)
d−→ 1

σuu
Ψ′

Zu1P[λX+ΨZX1,λW +ΨZW1]ΨZu1

which is not a (central) χ2
m distribution because ΨZu1 is correlated with ΨZX1 and ΨZW1. The

problem arises because 1√
n1

Z ′
1(y1 −X1β −W1γ) and Π̂1, used in the expression of OJ11(β, γ),

are asymptotically correlated in the presence of weak instruments.
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Dufour and Jasiak (2001) replace Π̂1 by Π̂2 in (6) and obtain the split-sample score statistic 5

LM(β0, γ0) =
OJ ′

21(β0, γ0)
(
Π̂′

2Z
′
1Z1Π̂2

)−1
OJ21(β0, γ0)

1
n1

(y1 − X1β0 − W1γ0)′(y1 − X1β0 − W1γ0)
(7)

where OJ21(β, γ) =
[
OβJ ′

21(β, γ),OγJ ′
21(β, γ)

]′
denotes the new gradient vector using informa-

tion from both the sub-samples and

OβJ21(β, γ) = Π̂′
X2Z

′
1(y1 − X1β − W1γ) (8)

OγJ21(β, γ) = Π̂′
W2Z

′
1(y1 − X1β − W1γ) (9)

It is probably more appropriate to call (8) and (9) the “pseudo-gradients” with respect to β

and γ respectively. When the instruments are strong, the pseudo-gradients are asymptotically

equivalent to the gradients given in (4) and (5).

When β = β0 and γ = γ0, LM(β0, γ0)
d−→ χ2

m. The split-sample score test for jointly testing

β = β0 and γ = γ0 rejects the hypotheses at level α if LM(β0, γ0) > χ2
m(1 − α). The test is

valid irrespective of the strength of the instruments.

In a separate Monte-Carlo study (not reported in this paper) we compare the finite sample be-

havior of the (joint) split-sample score test, the AR-test, the K-test and the CLR-test (based

on sub-sample one) for different levels of instrument relevance and endogeneity. When the

number of observations in sub-sample one is small, the nominal sizes of the AR-test, the K-

test and the CLR-test exceed the asymptotic size. On the other hand, the split-sample score

test has correct nominal size even when the number of observations in sub-sample one is small.

This is probably not surprising given that the two sub-samples are actually drawn indepen-

dently under our Monte-Carlo design. However, the fact that the split-sample score test uses

more information than the AR, the K and the CLR tests, based on sub-sample one only, does

5This is also referred to as the split-sample Anderson-Rubin statistic by Staiger and Stock (1997), as the split-
sample statistic by Dufour and Taamouti (2005) and Kleibergen (2002). However, we use the expression of the
denominator of the statistic from Wang and Zivot (1998). Since we will restrict ourselves to

√
n-local alternatives,

the choice of denominator is not going to matter asymptotically.
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not imply that it is more powerful in finite samples. Asymptotically these tests (except the

AR test in the over-identified case) have the same power against
√

n-local alternatives when

the instruments are strong.

In the following sub-sections we exploit the (asymptotic) absence of correlation between the

two sub-samples to design split-sample score tests for subsets of structural coefficients i.e. for

the null hypothesis H0 : β = β0.

3.2 USSIV Score Test:

Given any value β0, the USSIV estimator of γ, as defined in Angrist and Krueger (1995), is

obtained from (9) by solving OγJ21(β0, γ) = 0 and is given by

γ̂(β0) =
(
Π̂′

W2Z
′
1W1

)−1
Π̂′

W2Z
′
1 (y1 − X1β0) (10)

Replacing γ0 by γ̂(β0) in (7) we get what we call the USSIV-score statistic. The USSIV score

statistic is given by

LMβ(β0) =
OJ ′

21 (β0, γ̂(β0))
(
Π̂′

2Z
′
1Z1Π̂2

)−1
OJ21 (β0, γ̂(β0))

1
n1

(y1 − X1β0 − W1γ̂(β0))
′ (y1 − X1β0 − W1γ̂(β0))

=
OβJ ′

21 (β0, γ̂(β0))
(
Π̂′

X2Z
′
1MZ1Π̂W2

Z1Π̂X2

)−1
OβJ21 (β0, γ̂(β0))

1
n1

(y1 − X1β0 − W1γ̂(β0))
′ (y1 − X1β0 − W1γ̂(β0))

(11)

where (11) is obtained by using the definition of the USSIV estimator of γ given β0. The

USSIV score test rejects the null hypothesis H0 : β = β0 at level α if LMβ(β0) > χ2
mx

(1 − α).

Theorem 1: When n → ∞ and β = β0 +
dβ√

n
, the asymptotic distribution of the USSIV score

statistic under Cases 2 and 4 is given by

• In Case 2: LMβ(β0)
d−→ χ2

mx
.

• In Case 4: LMβ(β0)
d−→ χ2

mx

(
ζd′βλ′

XPMλW
λX

λXdβ

σuu

)
.

We prove Theorem 1 in the Appendix. Theorem 1 says that in Case 2, where the instruments
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are weak for β but strong for γ, the USSIV score test cannot distinguish the true β from the

√
n-local alternatives. In Case 4, where the instruments are strong for both β and γ, the USSIV

score test behaves like the standard score test for a subset of structural coefficients in a linear

IV model using the whole sample – the only difference being the non-centrality parameter

of the asymptotic distribution which is a fraction ζ of the non-centrality parameter of the

asymptotic distribution of the standard score statistic based on the whole sample. Theorem 1

does not tell us anything about Cases 1 and 3 where the instruments are weak for γ. Noting

that under Cases 1 and 3,

γ̂(β0)−γ
d−→
[(

λW

√
1 − ζ + ΨZW2

)′ (
λW

√
ζ + ΨZW1

)]−1 (
λW

√
1 − ζ + ΨZW2

)′
ΨZu1 > op(1)

when H0 : β = β0 is true, it can be shown that the asymptotic distribution of the USSIV

score statistic under H0 : β = β0 does not follow χ2
mx

unless the regressor W in (1) is (weakly)

exogenous. Similarity between the asymptotic behaviors of the USSIV test and the partial

K-test in Cases 2 and 4 follow from Theorem 1.

Now we define a new statistic which helps to explore the asymptotic relationship between

the USSIV score test discussed in this section and Robins-test discussed in the next section.

Consider any γ∗ in the
√

n-neighborhood of the true γ i.e. let γ = γ∗+
dγ√

n
. Define LM∗

β(β0, γ∗)

as

LM∗
β(β0, γ∗) =

(y1 − X1β0 − W1γ∗)′P[
M

Z1Π̂W2
Z1Π̂X2

](y1 − X1β0 − W1γ∗)

1
n1

(y1 − X1β0 − W1γ∗)
′ (y1 − X1β0 − W1γ∗)

. (12)

It is easier to motivate the two statistics LMβ(β0) and LM∗
β(β0, γ∗) if we think of the standard

IV regression without any weak instrument i.e. when sample splitting is not necessary. In this

setting the standard score test based on sub-sample one rejects H0 : β = β0 at level α if

WZβ(β0) =

(y1 − X1β0 − W1γ̂2SLS(β0))
′P[

M
Z1Π̂W1

Z1Π̂X1

](y1 − X1β0 − W1γ̂2SLS(β0))

σ̂2SLS
uu

> χ2
mx

(1−α)

(13)

where γ̂2SLS(β0) =
(
Π̂′

1Z
′
1Z1Π̂1

)−1
Π̂′

1Z
′
1(y1−X1β0) is the constrained two-stage least squares

(2SLS) estimator of γ satisfying OγJ11 (β0, γ̂2SLS(β0)) = 0 and and the estimator of the residual

variance under the null hypothesis is σ̂2SLS
uu = (y1−X1β0−W1γ̂2SLS(β0))′(y1−X1β0−W1γ̂2SLS(β0))

n1
. In
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the context of maximum likelihood (for example, if the structural errors jointly follow Gaussian

distribution), we can think of the term
(
σ̂2SLS

uu Π̂′
X1Z

′
1MZ1Π̂W1

Z1Π̂X1

)−1
as the top-left mx ×

mx block in the inverse of the (Hessian-based) estimator of the Information Matrix. i.e. as

the estimator of the information bound for estimating β. Equivalently, it is the inverse of the

variance estimator of the efficient score function for β evaluated at the (
√

n-neighborhood of

the) true values of β and γ. If we define the efficient score statistic for β as the quadratic form

of the sample efficient score function with respect to the inverse of its estimated variance, then

the efficient score statistic, based on sub-sample one, and evaluated at β0 and γ∗ is given by

WZ∗
β(β0) =

(y1 − X1β0 − W1γ∗)′P[
M

Z1Π̂W1
Z1Π̂X1

](y1 − X1β0 − W1γ∗)

1
n1

(y1 − X1β0 − W1γ∗)
′ (y1 − X1β0 − W1γ∗)

. (14)

The USSIV score statistic given in (11) is obtained by replacing Π̂1 by Π̂2 in the expression

of WZβ(β0) in (13) and the USSIV estimator of γ, (i.e. γ̂(β0) in (10)) can be thought of as

the split-sample version of the 2SLS estimator of γ. Similarly the statistic LM∗
β(β0, γ∗) given

in (12) can be thought of as a split-sample version of the efficient score statistic WZ∗
β(β0, γ∗)

given in (14). Lemma 1 discusses the asymptotic properties of LM∗
β(β0, γ∗) which are used to

prove Theorem 1. It also helps to motivate the new split-sample score test introduced in the

next section.

Lemma 1: Let 1[δx=0] be a dummy variable taking value one if δx = 0 and taking value

zero if δx = −1
2 where δx is such that ΠX = O

(
nδx
)
. Similarly define the dummy vari-

able 1[δw=0] where δw is such that ΠW = O
(
nδw
)
. Suppose that β = β0 +

dβ√
n

and γ =

γ∗ +
dγ√

n
. Also, let B = M[λW

√
1−ζ+(1−1δw=0)ΨZW2]

(
λX

√
1 − ζ + (1 − 1δx=0)ΨZX2

)
and D =

[
ΨZu1 +

√
ζ
(
1[δx=0]λXdβ + 1[δw=0]λW dγ

)]
. When n → ∞ the asymptotic distribution of

LM∗
β(β0, γ∗) is given by

LM∗
β(β0, γ∗)

d−→ D
′PBD

σuu
(15)

We prove Lemma 1 in the Appendix. Several points are worth mentioning here.

1. The asymptotic distribution of LM∗
β(β, γ∗) is central χ2

mx
, i.e. at the true value of β the

asymptotic distribution does not depend on the strength of the instruments.

2. Under Case 2, the asymptotic distribution of LM∗
β(β0, γ∗) is again central χ2

mx
.
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3. Under Case 4, the asymptotic distribution of LM∗
β(β0, γ∗) is non-central χ2

mx
with non-

centrality parameter given by
ζd′βλ′

XPMλW
λX

λXdβ

σuu
.

The above observations suggest asymptotic equivalence between LMβ(β0) and LM∗
β(β0, γ∗)

when instruments are strong for γ. See the proof of Theorem 1 for a formal statement of

asymptotic equivalence between LMβ(β0) and LM∗
β(β0, γ∗) under cases 2 and 4.

Lemma 1 holds for any γ∗ in the
√

n-neighborhood of true γ. Hence, if we can obtain a
√

n-

consistent estimator of γ, Lemma 1 can be used to construct a valid test of the null hypothesis

H0 : β = β0 regardless of the instrumental relevance. The USSIV score test fails under the

weak-instrument asymptotics because even under the null hypothesis the estimator γ̂(β0) is not

consistent for γ in Cases 1 and 3. It should not, however, be possible to find a
√

n- consistent

estimator of γ when instruments are weak for γ rendering it asymptotically unidentified. Hence

it is not possible to find a valid test for H0 : β = β0 (unless VW is uncorrelated with u and

VX) using tests like the USSIV score test or for that matter, any “standard” test. However, as

discussed earlier, under Cases 2 and 4 and against
√

n-local alternatives, the USSIV score test

can be used as a benchmark for the tests based only on sub-sample one and the split-sample

tests.

3.3 The Robins-Test:

In this section we propose a new test for H0 : β = β0 which is always valid and when the in-

struments are strong it is asymptotically equivalent to the USSIV score test against
√

n-local

alternatives. Our test is based on the general testing procedure proposed by Robins (2004),

and we call this the Robins-test. When the instruments are strong for γ, the Robins-test based

on the split-sample score function is quite generally less conservative than the projection test

based on the split-sample score statistic.

If γ belongs to the parameter space Θγ ⊆ R
mw , the projection test based on LM(β0, γ0) rejects
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the null hypothesis H0 : β = β0 at level α if

inf
γ0∈Θγ

LM(β0, γ0) > χ2
m(1 − α) (16)

The projection test can be very conservative when the instruments are strong for γ (and β).

Now we describe the Robins-test. Suppose that, given a specific value β0, it is possible

to construct a 1 − ε confidence region for γ and let us denote it by Cγ(1 − ε, β0). The

Robins-test rejects the null hypothesis H0 : β = β0 if either Cγ(1 − ε, β0) is empty or if

inf
γ0∈Cγ(1−ε,β0)

LM∗
β(β0, γ0) > χ2

mx
(1 − α). Theorem 2 stated below shows that the size of the

Robins-test cannot exceed α + ε and when the instruments are strong for γ the test is asymp-

totically equivalent to the size-α USSIV score test against
√

n-local alternatives.

Before stating Theorem 2, we note that there exist different methods to construct confidence

regions like Cγ(1− ε, β0). A general method of constructing the confidence region is as follows.

Let T (γ0|β0) denote a random function (test statistic) evaluated at β = β0 and γ = γ0 and

suppose that it converges to ξ (which does not depend on any unknown parameters) when

β0 and γ0 are the true values of β and γ. Then a 1 − ε confidence region for γ is given by

Cγ(1 − ε, β0) = {γ0|T (γ0|β0) ≤ ξ(1 − ε)} where ξ(1 − ε) is the (1 − ε)100-th quantile of the

distribution of ξ. By definition Cγ(1 − ε, β0) contains the true value of γ with probability

1 − ε when the null hypothesis H0 : β = β0 is true. If y2 is not missing, the above confidence

region can be constructed based on the whole sample otherwise we need to construct it based

on sub-sample one. This method can be applied to the AR statistic, the K statistic or the

LR statistic which have pivotal asymptotic distributions. 6 When the instruments are strong

for γ, Cγ(1 − ε, β0), obtained by inverting the AR-test, the K-test or the CLR-test, can only

contain values γ0 such that ‖γ − γ0‖ = O
(
n− 1

2

)
[see Chaudhuri (2007)].

However, we consider a different choice of T (γ0|β0) to construct Cγ(1 − ε, β0) in this paper.

6For the LR statistic, the asymptotic distribution conditional on an ancillary statistic is pivotal [see Moreira
(2003)].
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We define

Cγ(1−ε, β0) =





γ0

∣∣∣∣∣∣∣
T (γ0|β0) =

OγJ ′
21(β0, γ0)

(
Π̂′

W2Z
′
1Z1Π̂W2

)−1
OγJ21(β0, γ0)

1
n1

(y1 − X1β0 − W1γ0)′(y1 − X1β0 − W1γ0)
≤ χ2

mw
(1 − ε)





.

(17)

The only reason behind this choice is to maintain the uniformity of the presentation and we

do not make any optimality statement regarding the choice of Cγ(1 − ε, β0). However, given

that the (joint) tests for all structural coefficients (against
√

n-local alternatives) using the K

statistic or the LR statistic (based on sub-sample one) and the split-sample score test have the

same asymptotic power under strong instruments, the choice of Cγ(1−ε, β0) should not matter

at least when the instruments are strong for γ. Lemma 2 summarizes the relevant asymptotic

properties of Cγ(1 − ε, β0).

Lemma 2: Let 1[δx=0] be a dummy variable taking value one if δx = 0 and zero if δx =

−1
2 where δx is such that ΠX = O

(
nδx
)
. Similarly define the dummy variable 1[δw=0]

where δw is such that ΠW = O
(
nδw
)
. Suppose that β = β0 +

dβ√
n

and γ = γ∗ +
dγ√

n
.

Also, for notational simplicity let us define G = λW

√
1 − ζ + (1 − 1[δw=0])ΨZW2 and H =

lim
n→∞

[
ΨZu +

√
ζ1[δx=0]λXdβ +

(
[(1 − 1[δw=0]) + 1[δw=0]

√
n]
√

ζλW + ΨZW1

)
(γ − γ0)

]
. When

n → ∞,

T (γ0|β0) =
OγJ ′

21(β0, γ0)
(
Π̂′

W2Z
′
1Z1Π̂W2

)−1
OγJ21(β0, γ0)

1
n1

(y1 − X1β0 − W1γ0)′(y1 − X1β0 − W1γ0)

d−→ H
′PGH

σuu + (γ − γ0)′
[
1[δw=0]λ

′
W λW + σWW

]
(γ − γ0) + 2σuW (γ − γ0)

(18)

We prove Lemma 2 in the Appendix. We list below those properties of Cγ(1− ε, β0) which are

useful for the construction of the Robins-test.

1. It is clear from (18) that T (γ0|β0)
d−→ χ2

mw
when β0 and γ0 are the true values of β and γ.

Hence under the null hypothesis H0 : β = β0, the confidence region Cγ(1− ε, β0) contains

the true value of γ with probability 1 − ε.

2. When the instruments are strong for γ, the asymptotic distribution in (18) is that of a
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non-central χ2
mw

whose non-centrality parameter is finite iff ‖γ − γ0‖ = O
(
n− 1

2

)
. Hence

for β0 = β− dβ√
n
, the confidence region Cγ(1−ε, β0) can contain, with positive probability,

only those values that are in a
√

n-neighborhood of the true γ.

Now we state the main result of this paper, Theorem 2.

Theorem 2: The Robins-test which rejects H0 : β = β0 if either Cγ(1− ε, β0) given in (17) is

empty or if inf
γ0∈Cγ(1−ε,β0)

LM∗
β(β0, γ0) > χ2

mx
(1 − α) has the following properties. As n → ∞:

1. The size of the Robins-test never exceeds α + ε.

2. When γ is identified, the Robins-test is at least as powerful as the projection test described

in (16) and it is also asymptotically equivalent to the USSIV score test against
√

n-local

alternatives.

We prove Theorem 2 in the Appendix. When the instruments are strong for γ, Theorem 2

states that the Robins-test is asymptotically equivalent to the USSIV score test, our bench-

mark, against
√

n-local alternatives. However, unlike the USSIV score test, we have control

over the size of Robins-test when the instruments are weak for γ.

Theorem 2 also implies that the confidence region for β obtained by inverting the Robins-test

(i.e. the collection of all β0’s which cannot be rejected) has at least α + ε coverage probability

asymptotically and when the instruments are strong for γ, this confidence region is asymptot-

ically less conservative than the projection confidence region based on the joint split-sample

score test of β and γ. Since, under weak instruments, any confidence region for β is unbounded

with positive probability making the expected length of the confidence region infinite, it is not

possible to analytically compare the expected length of the confidence regions obtained from

the projection test and Robins-test. 7

Following Dufour and Taamouti (2005), we also show that (a possibly) infinite grid search is

not required to perform the Robins-test. The rejection rule for the Robins-test boils down

7See Mikusheva (2006) for analytical comparison of the expected arc-length of the confidence regions (expressed
in spherical co-ordinates) for scalar β in a related context.
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to testing quadratic inequalities in terms of γ [see Appendix]. Similarly we can construct the

confidence region for β based on the Robins-test by analytically solving quadratic inequalities

in terms of β and γ. However, we note that the existence of analytical methods for solving

the inequalities exist because the statistics LM∗
β(β0, γ0) and T (γ0|β0) are ratios of quadratics

in terms of β0 and γ0 and it may not be possible to avoid grid search when the Robins-test is

applied to other statistics.

4 Finite Sample Behavior of Split-Sample Score Tests

In this section we perform Monte-Carlo experiments to study the finite sample behavior of

the different score tests under different levels of instrument relevance and endogeneity. Our

Monte-Carlo design closely follows Zivot et al. (2006). We describe below the Monte-Carlo

Design and the data generating process for the model described in (1) – (3).

4.1 Monte-Carlo Design and Parameter Specifications:

The structural errors [u, VX , VW ] are generated by drawing n independent random samples

from N3(0,Σ) where

Σ =





1 ρuX ρuW

ρXu 1 0

ρWu 0 1




(19)

If VX and VW are correlated, the level of endogeneity of the regressor X depends on the cor-

relations between VX and u, VX and VW and VW and u. Our choice of Σ in (19) simplifies the

set-up by ensuring that the level endogeneity of X depends only on the correlation between

VX and u and similarly the level of endogeneity of W depends only on the correlation between

VW and u. Because ρXW = 0, the overall endogeneity of the model can be measured by the

quantity ρ2
uX + ρ2

uW . We make three different choices for the pair (ρuX , ρuW ) – (0.5, 0.5),

(0.1, 0.99) and (0.99, 0.1). X and W are moderately (and equally) endogenous in the first

case, X is highly endogenous and W is mildly endogenous in the second case, X is mildly

endogenous and W is highly endogenous in the third case. 8

8For positive-definiteness of Σ we need ρ2

uX + ρ2

uW < 1.
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The instruments Z are generated by drawing n independent random samples from Nk(0, Q)

independently of the structural errors. For simplicity we choose Q = Ik where k = 4 is chosen

arbitrarily.

To our knowledge, there does not exist a universally accepted measure of instrumental relevance

for a particular structural coefficient in a linear IV model with more than one endogenous

regressor. However, for a model with a single endogenous regressor, the instruments are

considered weak for the structural coefficient if the concentration parameter is less than 10

[see Staiger and Stock (1997)]. We follow Zivot et al. (2006) and impose the restriction(s)

λ′
XλW = 0 (and σXW = 0) such that the concentration matrix given in (20) is diagonal where

the first diagonal element corresponds to the concentration parameter for β and the second

one to the concentration parameter for γ. Defining δx = −1
2 for Cases 1 and 2 and δx = 0 for

Cases 3 and 4 and similarly δw = −1
2 for Cases 1 and 3 and δw = 0 for Cases 2 and 4, the

concentration matrix is given by

µ =
1

k




σXX σXW

σWX σWW





1

2

′


n

1+2δx
2 λ′

X

n
1+2δw

2 λ′
W








n

1+2δx
2 λ′

X

n
1+2δw

2 λ′
W





′


σXX σXW

σWX σWW





1

2

=




µβ 0

0 µγ





(20)

We choose Π = [ΠX ,ΠW ] such that Π′
XΠW = 0 and such that µβ = 1 when the instruments

are weak for β and µβ = 10 when the instruments are strong for β. Similarly µγ = 1 when the

instruments are weak for γ and µγ = 10 when the instruments are strong for γ. In particular,

the ith element of ΠX is taken as
√

µβ

n
and the ith element of ΠW is taken as (−1)i

√
µγ

n
for

i = 1, . . . , k. 9

We choose the structural coefficients β = 1 and γ = 10. We take the sample size n = 100 and

randomly split the sample into two sub-samples where the first sub-sample contains n1 = [nζ]

observations and the second sub-sample contains n2 = n − n1 observations. Finally, following

the missing y2 motivation, we assume that y2 is not observable (delete y2 from sub-sample

two). The results reported below are based on 10,000 Monte-Carlo trials. The instrument

9In Section 4.3, we also consider strong instrument for β (γ) characterized by µβ = 100 (µγ = 100).
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matrix Z is kept fixed over the 10,000 trials.

The null hypothesis of interest is H0 : β = β0 and we compare the finite sample behaviors of

the USSIV score test, the Robins-test and the projection test based on the split-sample score

statistic under the null and alternative hypotheses. 10 We also compare the finite sample

behaviors of these tests with two other tests considered by Zivot et al. (2006) – the partial

K-test and the projection test based on the AR statistic [see Appendix]. The partial K-test

and the projection test based on the AR statistic are performed based on sub-sample one

alone, so that power of all the tests (except the AR-test) are asymptotically equal when the

instruments are strong for both β and γ.

4.2 Rejection Rates when the Null Hypothesis is True:

Tables 1 and 2 summarize the nominal size of the above five tests for different levels of en-

dogeneity, instrument relevance, critical values and proportion of observations in sub-sample

one. As discussed before, none of the tests are over-sized when the instruments are strong for

γ (i.e. under Cases 2 and 4). Under Cases 1 and 3, the USSIV score test over-rejects the null

hypothesis when it is true. The rate of over-rejection of the USSIV score test also increases

with the level of endogeneity of W . This should not be surprising because the asymptotic-bias

of the constrained USSIV estimator of γ increases with ρuW (the asymptotic bias does not

depend on the level of endogeneity of X and under the null hypothesis it does not depend on

the correlation between VX and VW ). The projection tests based on the AR and the split-

sample score statistics are conservative. Theorem 2 gives an upper bound of α+ ε for the level

of the Robins-test when the instruments are weak for γ. However, simulation results indicate

that the upper bound is overly conservative and the nominal size of the Robins-test does not

exceed α. Unlike the USSIV score test, the partial K-test is not over-sized even when the

instruments are weak for γ. Similar to the findings of Guggenberger and Smith (2005) and

Zivot et al. (2006), our simulation results show that the partial K-test is, in fact, size-distorted

downward when the instruments are weak for γ. [Chaudhuri (2007) shows how the downward

size-distortion of the partial K-test affects its power.]

10For the Robins-test we always choose ε = α.
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[INSERT TABLE-1 AND TABLE-2 HERE.]

4.3 Rejection Rates when the Null Hypothesis is False:

Figures 1 - 3 plot the (nominal) power curves of the different tests using the 5% critical values

under different specifications of the error covariance. In Figure 1, both X and W are moder-

ately endogenous, in Figure 2, X is mildly endogenous whereas W is highly endogenous and

in Figure 3, X is highly endogenous whereas W is mildly endogenous. We choose ζ = 75%

without loss of generality. Other (non-extreme and reasonable) choices of ζ do not change the

results (Figures 7 - 12 use ζ = 25% and Figures 13 - 18 use ζ = 50%). To highlight the fact

that when the instruments are weak for γ, the high power of the USSIV score test comes at

the cost of its upward size-distortion and the validity of the Robins-test and projection test

based on split-sample score statistic comes at the cost ot their low power, we choose not to

plot the size-adjusted powers.

[INSERT FIGURES 1 – 3 HERE.]

The projection test based on the split-sample score statistic and the Robins-test are extremely

conservative when the instruments are weak for γ. The USSIV score test has high power in

all cases, but because of its upward size-distortion under Cases 1 and 3, it cannot be reliably

used in practice. The partial K-test and the projection test based on the AR statistic are

not over-sized and at the same time are more powerful than the other tests. However, the

power of neither of these two tests dominate each other uniformly. Theorem 2 shows that

when instruments are strong for γ, the Robins-test is asymptotically equivalent to the US-

SIV score test and hence more powerful than the projection test based on the split-sample

score statistic. This result cannot be verified by simulations when “strong-instruments” for

γ is characterized by µγ = 10. However, when we consider strong instruments by taking the

corresponding concentration parameter to be 100, the claims of Theorem 2 are verified. We

note that the characterization of strong instrument, by taking the concentration parameter at

least 10, is proposed by Staiger and Stock (1997) and Stock and Yogo (2005) to ensure that
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the relative bias of the 2SLS estimator with respect to that of the OLS estimator (of the

corresponding structural parameter) does not exceed 10%. This characterization need not be

appropriate under our framework. In Figures 4 - 6, we plot the same power curves taking the

concentration parameter to be 100 when the corresponding instruments are strong.

[INSERT FIGURES 4 – 6 HERE.]

In Figures 4 – 6, the power of the Robins-test dominates the power of the projection test based

on the split-sample score statistic when the instruments are strong for γ. When the instruments

are weak for γ, powers of both these tests are close to zero and neither test can distinguish

the true value of β from the false ones. However, these tests are valid unlike the USSIV score

test which is over-sized when the instruments are weak for γ. We also note that when the

instruments are strong for both β and γ, the powers of the Robins-test and the projection

test based on the split-sample score statistic are very close to that of the partial-K test and

the USSIV score test, and are greater than that of the projection test based on the AR-statistic.

The simulations as a whole encourage the use of the partial K-test and the projection test based

on the AR statistic. This is similar to the conclusions of Zivot et al. (2006). We also note that

the instruments for γ have to be very strong for the asymptotic equivalence between the USSIV

score test and the Robins-test to hold. However, the Robins-test and the projection test based

on the split-sample score statistic could possibly be used reliably without over-rejecting the

true parameter value of β under all the cases discussed in this paper.

5 Conclusion

In the present paper we show how to construct valid tests for subsets of structural coefficients

by splitting the sample in two parts or, in other words, by combining information from two

“un-related” samples one of which need not contain information on the dependent variable.

The USSIV score test for subsets of structural coefficients (H0 : β = β0) against
√

n-local

alternatives is as powerful as the partial K-test (based on sub-sample one) when the instru-

ments are strong for the remaining structural coefficients (γ), but it is severely over-sized
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otherwise. On the other hand, the Robins-test is never over-sized and at the same time it is

asymptotically as powerful as the USSIV score test when the instruments are strong for the

remaining structural coefficients. However, moderate strength of instruments (for example,

when the corresponding concentration parameter takes the value 10) may not be enough to

ensure the asymptotic equivalence between USSIV score test and the Robins-test. In any case,

the Robins-test can be reliably used for testing subsets of structural coefficients in a linear

Instrumental Variables model. The projection test based on the (joint) split-sample score

statistic is also never over-sized, but can be extremely conservative. The power of Robins-test

is more than that of the projection test based on the (joint) split-sample score statistic when

the instruments are strong for the remianing structural coefficients. Similar to the finding of

Zivot et al. (2006), our simulation results also indicate that, for the sample sizes considered

here, the projection test based on the AR statistic and the partial K-test (both based on sub-

sample one) are never over-sized and not less powerful than the split-sample tests described in

the present paper.

In this paper, we introduced Robins’ method for testing hypotheses on subsets of parameters

and subsequently constructing valid confidence regions under partial identification. It is a

projection-based method that can be substantially less conservative than projections from

pivotal statistics for testing the significance of all parameters jointly. The application of

Robins’ method requires two statistics: a valid test of the parameters of interest when the

nuisance parameters are known; a valid confidence set for the nuisance parameters when the

parameters of interest are known. In principle, Robin’s method can be applied to the linear

IV model in a non-split sample context using, for example, the results of Kleibergen (2004),

and to nonlinear models estimated by the generalized method of moments using the results of

Kleibergen (2005). These extensions are the subject of our future research.
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6 Appendix

6.1 Proofs of Results:

It helps to prove Lemma 1 before proving Theorem 1.

Proof of Lemma 1: Using Assumption A, it is easy to see that

n−δxΠ̂X2
d−→ CX + (1 − ζ)−

1

2 (1 − 1[δx=0])Q
− 1

2 ΨZX2 and n−δwΠ̂W2
d−→ CW + (1 − ζ)−

1

2 (1 −

1[δw=0])Q
− 1

2 ΨZW2. Then it follows directly from Assumption A that

[
1
n1

Π̂′

X2

nδx
Z ′

1M
Z1

Π̂W2

nδw

Z1
Π̂X2

nδx

]− 1

2 Π̂′

X2

nδx
Z ′

1M
Z1

Π̂W2

nδw

y1−X1β0−W1γ∗√
n1

√
1
n1

(y1 − X1β0 − W1γ∗)
′ (y1 − X1β0 − W1γ∗)

d−→ (B′
B)−

1

2

′

B
′
D√

σuu

and hence LM∗
β(β0, γ∗)

d−→ D
′PBD

σuu
. [Q.E.D.]

Proof of Theorem 1: We restrict attention to Cases 2 and 4. Using (10) and the proof of

Lemma 1, we note that

1. y1 − X1β0 − W1γ̂(β0) =

[
In1

− W1

(
Π̂′

W2Z
′
1W1

)−1
Π̂′

W2Z
′
1

] [
u1 + Z1ΠX

dβ√
n

+ VX1
dβ√

n

]

2. Π̂W2
P−→ CW .

Hence, Assumption A gives that 1
n1

(y1 − X1β0 − W1γ̂(β0))
′ (y1 − X1β0 − W1γ̂(β0))

P−→ σuu

and

[
1
n1

Π̂′

X2

nδx
Z ′

1MZ1Π̂W2
Z1

Π̂X2

nδx

]− 1

2 Π̂′

X2

nδx

[
Ik − Z′

1
W1

n1

(
Π̂′

W2
Z′

1
W1

n1

)−1
Π̂′

W2

]
Z′

1√
n1

[
u1 + Z1ΠX

dβ√
n

+ VX1
dβ√

n

]

√
1
n1

(y1 − X1β0 − W1γ̂(β0))
′ (y1 − X1β0 − W1γ̂(β0))

d−→ (E′
E)−

1

2

′

E
′
F√

σuu

where E = MλW

√
1−ζ

(
λX

√
1 − ζ + (1 − 1δx=0)ΨZX2

)
and F =

[
ΨZu1 +

√
ζ1[δx=0]λXdβ

]
. Un-
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der Cases 2 and 4 it is easy to see that by definition B = E and D = F and hence

LMβ(β0) = LM∗
β(β0, γ∗) + op(1) (21)

Direct application of Lemma 1 proves Theorem 1. [Q.E.D.]

Proof of Lemma 2: Using Lemma 1, we get

(
Π̂′

W2

nδw

Z′

1Z1

n1

Π̂W2

nδw

)− 1

2 Π̂′

W2

nδw

Z′

1√
n1

[
u1 + Z1ΠX

dβ√
n

+ VX1
dβ√

n
+ Z1ΠW (γ − γ0) + VW1(γ − γ0)

]

√
1
n1

(y1 − X1β0 − W1γ0)
′ (y1 − X1β0 − W1γ0)

d−→ (G′
G)−

1

2

′

G
′
H√

σuu + (γ − γ0)′
[
1[δw=0]λ

′
W λW + σWW

]
(γ − γ0) + 2σuW (γ − γ0)

Hence T (γ0|β0)
d−→ H

′PGH

σuu + (γ − γ0)′
[
1[δw=0]λ

′
W λW + σWW

]
(γ − γ0) + 2σuW (γ − γ0)

. [Q.E.D]

Proof of Theorem 2:

Part 1: Using Lemma 2, it is straightforward to see

Prβ0

[
{Cγ(1 − ε, β0) = ∅} ∪

{
{Cγ(1 − ε, β0) 6= ∅} ∩

{
inf

γ0∈Cγ(1−ε,β0)
LM∗

β(β0, γ0) > χ2
mx

(1 − α)

}}]

≤ Prβ0

[
{γ /∈ Cγ(1 − ε, β0)} ∪

{
inf

γ0∈Cγ(1−ε,β0)6=∅

LM∗
β(β0, γ0) > χ2

mx
(1 − α)

}]

≤ Prβ0

[
{γ /∈ Cγ(1 − ε, β0)} ∪

{
LM∗

β(β0, γ) > χ2
mx

(1 − α)
}]

≤ Prβ0
[γ /∈ Cγ(1 − ε, β0)] + Prβ0

[
LM∗

β(β0, γ) > χ2
mx

(1 − α)
]

= ε + α

Part 2: When γ is asymptotically identified, Lemma 2 gives that only values from the
√

n-

neighborhood of the true γ can be contained in Cγ(1 − ε, β0) with positive probability. Hence

for any β0 such that β − β0 =
dβ√

n
, the value γ̂inf(β0) where the inf

γ0∈Cγ(1−ε,β0)
LM∗

β(β0, γ0) is

attained should be in the
√

n-neighborhood of the true γ. (21) gives

inf
γ0∈Cγ(1−ε,β0)

LM∗
β(β0, γ0) = LM∗

β(β0, γ̂inf(β0)) = LMβ(β0) + op(1). (22)
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The following steps show that the Robins-test is more asymptotically powerful than the pro-

jection test when γ is identified.

Prβ

[
inf

γ0∈Θγ

LM(β0, γ0) ≤ χ2
m(1 − α)

]

≥ Prβ

[
LM(β0, γ̂(β0)) ≤ χ2

m(1 − α)
]

= Prβ

[
LMβ(β0) ≤ χ2

m(1 − α)
]

≥ Prβ

[
LMβ(β0) ≤ χ2

mx
(1 − α)

]
.

Hence the USSIV score test is more powerful that projection test. Using (22) we can see that

the Robins-test is asymptotically more powerful than projection test whenever γ is identified.

[Q.E.D.]

6.2 K-Test, Partial K-Test and CLR-Test:

I) K-Test [see Kleibergen (2002)] rejects the null hypothesis H : β = β0, γ = γ0 at level α if

K(β0, γ0) =
(y1 − X1β0 − W1γ0)

′PZ1Π̃(β0,γ0)
(y1 − X1β0 − W1γ0)

1
n1

(y1 − X1β0 − W1γ0)′PZ1
(y1 − X1β0 − W1γ0)

> χ2
m(1 − α)

where Π̃(β0, γ0) =
[
Π̃X , Π̃W

]

(β0,γ0)
where Π̃X(β0, γ0) = (Z ′

1Z1)
−1 Z ′

1

[
X1 − (y1 − X1β0 − W1γ0)

σXu(β0,γ0)
σuu(β0,γ0)

]
,

Π̃W (β0, γ0) = (Z ′
1Z1)

−1 Z ′
1

[
W1 − (y1 − X1β0 − W1γ0)

σWu(β0,γ0)
σuu(β0,γ0)

]
, σU (β0, γ0) = 1

n1
(y1−X1β0−

W1γ0)
′MZ1

(y1−X1β0−W1γ0), σXu(β0, γ0) = 1
n1

X ′
1MZ1

(y1−X1β0−W1γ0) and σWu(β0, γ0) =

1
n1

W ′
1MZ1

(y1 − X1β0 − W1γ0).

II) Partial K-Test [see Kleibergen (2004)] rejects the null hypothesis H0 : β = β0 at level α

if

K(β0, γ̃(β0)) =
(y1 − X1β0 − W1γ̃(β0))

′PZ1Π̃(β0,γ̃(β0))(y1 − X1β0 − W1γ̃(β0))

1
n1

(y1 − X1β0 − W1γ̃(β0))′MZ1
(y1 − X1β0 − W1γ̃(β0))

> χ2
mx

(1 − α)

where γ̃(β0) solve Π̃′
W (β0, γ̃(β0))Z

′
1(y1 − X1β0 − W1γ̃(β0)) = 0.

III) CLR-Test [see Moreira (2003)] rejects the null hypothesis H : β = β0, γ = γ0 at level α
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if

L(β0, γ0) =
1

2

[
S′S − T ′T +

√
[S′S + T ′T ]2 − 4 [S′ST ′T − (S′T )2]

]
> ξLR

(
1 − α, T ′T = τ, k

)

where S =
1√

σuu(β0, γ0)
(Z ′

1Z1)
− 1

2 Z ′
1(y1−X1β0−W1γ0), T = (Z ′

1Z1)
− 1

2 Z ′
1 [y1,X1,W1] Ω̂

−1A(A′Ω̂−1A)−
1

2 ,

Ω̂ = 1
n1

[y1,X1,W1]
′ MZ1

[y1,X1,W1] and A = [(β′
0, γ

′
0)

′, Im]. Finally, ξ(1 − α, τ, k) is the

(1 − α)100-th quantile of the null-distribution of LR0 given T ′T = τ and the number of in-

struments k.

6.3 Rejection Rules for Projection Type Tests:

We discuss the rejection rules for different tests testing the null hypothesis H0 : β = β0. Follow-

ing our Monte-Carlo setting, we do it for the special case where γ is scalar. However, it is not

hard to extend the results to vector valued γ. Our discussion is based on Dufour and Taamouti

(2005).

I) Projection Test based on AR(β0, γ) based on sub-sample one rejects H0 : β = β0 at

level α if

inf
γ∈Θγ

AR(β0, γ) = inf
γ∈Θγ

(y1 − X1β0 − W1γ)′PZ1
(y1 − X1β0 − W1γ)

1
n1

(y1 − X1β0 − W1γ)′MZ1
(y1 − X1β0 − W1γ)

> χ2
k(1 − α)

i.e. if there does not exist any value of γ such that a0γ
2 − 2b0γ + c0 ≤ 0 where a0 = W ′

1A0W1,

b0 = W ′
1A0(y1 − X1β0), c0 = (y1 − X1β0)

′
1A0(y1 − X1β0) and A0 = PZ1

− 1

n1
χ2

k(1 − α)MZ1
.

Equivalently, reject H0 : β = β0 at level α if

{
b2
0 − a0c0 < 0, a0 > 0

}
∪ {a0 = b0 = 0, c0 > 0}

II) Projection Test based on LM(β0, γ) rejects H0 : β = β0 at level α if

inf
γ∈Θγ

LM(β0, γ) = inf
γ∈Θγ

OJ ′
21(β0, γ)

(
Π̂′

2Z
′
1Z1Π̂2

)−1
OJ21(β0, γ)

1
n1

(y1 − X1β0 − W1γ)′(y1 − X1β0 − W1γ)
> χ2

m(1 − α)
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i.e. if there does not exist any value of γ such that a1γ
2 − 2b1γ + c1 ≤ 0 where a1 = W ′

1A1W1,

b1 = W ′
1A1(y1 − X1β0), c1 = (y1 − X1β0)

′
1A1(y1 − X1β0) and A1 = P

Z1Π̂2
− 1

n1
χ2

m(1 − α)In1
.

Equivalently, reject H0 : β = β0 at level α if

{
b2
1 − a1c1 < 0, a1 > 0

}
∪ {a1 = b1 = 0, c1 > 0}

III) Robins-Test rejects H0 : β = β0 at level atmost α(+ε) if

{Cγ(1 − ε, β0) = ∅} ∪
{

inf
γ∈Cγ (1−ε,β0)

LM∗
β(β0, γ) > χ2

m(1 − α)

}

i.e. iff {Cγ(1 − ε, β0) ∩ Dγ(1 − α, β0)} = ∅

where Cγ(1−ε, β0) =
{
γ0|a2γ

2
0 − 2b2γ0 + c2 ≤ 0

}
and Dγ(1−α, β0) =

{
γ0|a3γ

2
0 − 2b3γ0 + c3 ≤ 0

}

and

a2 = W ′
1A2W1, a3 = W ′

1A3W1

b2 = W ′
1A2(y1 − X1β0), b3 = W ′

1A3(y1 − X1β0)

c2 = (y1 − X1β0)
′
1A2(y1 − X1β0), c3 = (y1 − X1β0)

′
1A3(y1 − X1β0)

A2 = P
Z1Π̂W2

− 1

n1
χ2

mw
(1 − ε)In1

, A3 = P[
M

Z1Π̂W2
Z1Π̂X2

] − 1

n1
χ2

mx
(1 − α)In1

Defining ∆i = b2
i − aici for i = 2, 3, Robins-test rejects H0 : β = β0 at level at most α + ε if

any one of the following six mutually exclusive conditions are satisfied:

1. {∆i < 0, ai > 0} ∪ {ai = bi = 0, ci > 0} for i = 2 and/or i = 3, i.e. if at least one of the

intervals Cγ(1 − ε, β0) and Dγ(1 − α, β0) is empty.

2.

{
ai = 0, bi > 0, aj = 0, bj < 0,

cj

2bj
<

ci

2bi

}
, for i, j = 2, 3 and i 6= j i.e. if the intervals

are of the form

[
ci

2bi
,+∞

]
and

[
−∞,

cj

2bj

]
where

cj

2bj
<

ci

2bi
.

3.

{

ai = 0, bi > 0, aj > 0,∆j ≥ 0,
bj +

√
∆j

aj
<

ci

2bi

}

for i, j = 2, 3 and i 6= j i.e. if the

intervals are of the form

[
ci

2bi
,+∞

]
and

[
bj −

√
∆j

aj
,
bj +

√
∆j

aj

]

where
bj +

√
∆j

aj
<

ci

2bi
.

4.

{
ai = 0, bi < 0, aj > 0,∆j ≥ 0,

bj −
√

∆j

aj
>

ci

2bi

}
for i, j = 2, 3 and i 6= j i.e. if the
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intervals are of the form

[
−∞,

ci

2bi

]
and

[
bj −

√
∆j

aj
,
bj +

√
∆j

aj

]
where

bj −
√

∆j

aj
>

ci

2bi
.

5.

{

ai > 0,∆i ≥ 0, aj < 0,∆j ≥ 0,
bi −

√
∆i

ai
>

bj +
√

∆j

aj
,
bi +

√
∆i

ai
<

bj −
√

∆j

aj

}

for i, j =

2, 3 and i 6= j i.e. if the intervals are of the form

[
bi −

√
∆i

ai
,
bi +

√
∆i

ai

]
and

[

−∞,
bj +

√
∆j

aj

]

∪
[

bj −
√

∆j

aj
,+∞

]

where
bi −

√
∆i

ai
>

bj +
√

∆j

aj
and

bi +
√

∆i

ai
<

bj −
√

∆j

aj
.

6.

{
ai > 0,∆i ≥ 0, aj > 0,∆j ≥ 0,

bi −
√

∆i

ai
>

bj +
√

∆j

aj

}
for i, j = 2, 3 and i 6= j i.e. if

the intervals are of the form

[
bi −

√
∆i

ai
,
bi +

√
∆i

ai

]
and

[
bj −

√
∆j

aj
,
bj +

√
∆j

aj

]
where

bi −
√

∆i

ai
>

bj +
√

∆j

aj
.

The above set of conditions are very useful and it reduces a grid search over (possibly) the

whole real line to testing just eleven mutually exclusive conditions which are easy to verify.
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7 Tables and Figures

Error Correlations ρuX = 0.5, ρuW = 0.5 ρuX = 0.1, ρuW = 0.99 ρuX = 0.99, ρuW = 0.1
ACV: α (in %) 1 5 10 1 5 10 1 5 10

Case I: µβ = 1 and µγ = 1
USSIV-Test 1.2 6 11.8 3.3 10.8 17.3 1.1 6.1 11.9
Proj SS-Test 0 0.1 0.3 0.1 0.8 2.5 0 0.1 0.3

ζ = 25% Robins-Test a 0 0.1 0.2 0 0.6 2.7 0 0 0.2
Proj AR-Test 0.1 1.1 2.5 2.5 7 11.4 0.1 1 2.1
Partial K-Test 0.1 1.7 5.7 1.2 6.2 11.7 0.1 1.2 4
USSIV-Test 1.5 7.2 13.2 6.7 14.2 20.5 1.6 6.9 12.9
Proj SS-Test 0 0.1 0.5 0.2 1.2 2.9 0 0.1 0.4

ζ = 50% Robins-Test 0 0 0.4 0 1.1 3.2 0 0 0.3
Proj AR-Test 0.1 0.6 1.7 1.2 4.2 7.7 0.1 0.5 1.2
Partial K-Test 0.1 1.8 5 1 5.5 10.8 0.1 1.3 4.5
USSIV-Test 2.7 9 15.7 10.1 18.1 24.9 2.2 8.4 14.7
Proj SS-Test 0 0.2 0.6 0.1 0.9 2.6 0 0.1 0.5

ζ = 75% Robins-Test 0 0.1 0.5 0 0.1 2.9 0 0.1 0.5
Proj AR-Test 0.1 0.7 1.9 0.7 3.2 6.5 0 0.5 1.5
Partial K-Test 0.2 2.3 6 1 5.5 11.1 0.2 1.7 4.7

Case III: µβ = 10 and µγ = 1
USSIV-Test 1.2 5.8 11.8 2.3 9 15.4 1 5.9 12.3
Proj SS-Test 0 0.1 0.4 0.1 0.8 2.4 0 0.1 0.3

ζ = 25% Robins-Test 0 0.1 0.3 0 0.5 2.4 0 0 0.2
Proj AR-Test 0.1 1.1 2.5 2.5 7 11.4 0.1 1 2.1
Partial K-Test 0.1 1.4 4.3 1 5.3 10.6 0.1 1.3 4.1
USSIV-Test 1.5 6.4 12.6 3.9 10.3 16.7 1.4 6.4 12.4
Proj SS-Test 0 0.1 0.5 0.1 1.1 2.5 0 0.1 0.4

ζ = 50% Robins-Test 0 0.1 0.4 0 1 3 0 0 0.3
Proj AR-Test 0.1 0.6 1.7 1.2 4.2 7.7 0.1 0.5 1.2
Partial K-Test 0.1 1.7 4.9 0.9 5 10.4 0.1 1.3 4.2
USSIV-Test 1.8 7.5 13.6 5.8 13 19.8 1.7 7.2 13.2
Proj SS-Test 0 0.2 0.6 0.2 1.1 2.7 0 0.1 0.4

ζ = 75% Robins-Test 0 0.1 0.5 0.1 0.9 2.9 0 0.1 0.3
Proj AR-Test 0.1 0.7 1.9 0.7 3.2 6.5 0 0.5 1.5
Partial K-Test 0.2 2.1 5.2 0.8 5 10.1 0.2 1.7 4.6

Table 1: Empirical Size of different tests for H0 : β = β0 are computed based on 10,000 Monte-Carlo
trials. USSIV Score test, Projection from Split-sample Score test (SS) and Robins test combine
observations from both sub-samples. Projection from AR test and partial-K tests are based on
sub-sample one containing n1 = [nζ ] observations. [k = 4, ρXW = 0, n = 100]

aBy Theorem 2, the level of the Robins-test is always lesser than α + ε (= 2ACV by our specification), but is
asymptotically equal to α if the instruments are strong for γ.
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Error Correlations ρuX = 0.5, ρuW = 0.5 ρuX = 0.1, ρuW = 0.99 ρuX = 0.99, ρuW = 0.1
ACV: α (in %) 1 5 10 1 5 10 1 5 10

Case II: µβ = 1 and µγ = 10
USSIV-Test 1.1 5.9 11.6 1 5.9 11.8 1 5.7 11.4
Proj SS-Test 0.1 0.7 2.1 0.1 1.3 3.4 0 0.5 2

ζ = 25% Robins-Test a 0 0.3 1.9 0.1 1.8 5.7 0 0.2 1.6
Proj AR-Test 1.3 4.7 8.4 2.7 7.5 12.2 1.1 4.1 7.2
Partial K-Test 0.7 4.8 9.6 1.2 6.2 11.7 0.3 3.3 7.7
USSIV-Test 1.1 5.9 11.3 1.2 6.1 11.7 1.1 5.6 11.1
Proj SS-Test 0.1 1.1 2.9 0.2 1.4 3.1 0.1 0.9 2.5

ζ = 50% Robins-Test 0.1 1.1 3.9 0.2 2.3 5.9 0 0.8 3.1
Proj AR-Test 0.9 3.6 6.7 1.2 4.3 7.9 0.8 3.1 6.6
Partial K-Test 0.8 5 10.2 1 5.6 11 0.7 4.2 9.3
USSIV-Test 1.7 6.9 12.8 1.4 6.7 12.8 1.7 6.7 12.5
Proj SS-Test 0.1 1.1 2.7 0.1 0.9 2.9 0.2 1.1 2.6

ζ = 75% Robins-Test 0.1 1.2 3.9 0.1 1.4 4.5 0.1 1 3.3
Proj AR-Test 0.7 3.1 5.9 0.8 3.3 6.7 0.6 2.9 5.8
Partial K-Test 0.9 4.9 10.6 0.9 5.4 11 0.8 4.7 9.7

Case IV: µβ = 10 and µγ = 10
USSIV-Test 0.9 6.1 11.6 1 5.9 11.7 0.8 5.8 12
Proj SS-Test 0 0.6 2.1 0.1 1.3 3.5 0 0.4 1.7

ζ = 25% Robins-Test 0 0.3 2.1 0 1.7 5.6 0 0.2 1.6
Proj AR-Test 1.3 4.7 8.4 2.7 7.5 12.2 1.1 4.1 7.2
Partial K-Test 0.5 3.9 8.6 0.9 5.4 10.7 0.3 3.2 7.6
USSIV-Test 1.2 5.7 11 1.2 5.7 11.5 1.3 5.8 11.2
Proj SS-Test 0.2 1.2 2.8 0.2 1.5 3.1 0.1 1.1 2.6

ζ = 50% Robins-Test 0 1.1 3.9 0.2 2.2 5.8 0 0.9 3.4
Proj AR-Test 0.9 3.6 6.7 1.2 4.3 7.9 0.8 3.1 6.6
Partial K-Test 0.8 4.6 9.8 1 5.2 10.3 0.7 4.1 9.3
USSIV-Test 1.3 6.4 12.6 1.4 6.4 12.4 1.5 6.4 12.3
Proj SS-Test 0.2 1 2.8 0.2 1.2 3.1 0.2 1 2.7

ζ = 75% Robins-Test 0.1 1.2 4.1 0.2 1.8 5.2 0.1 1 3.7
Proj AR-Test 0.7 3.1 5.9 0.8 3.3 6.7 0.6 2.9 5.8
Partial K-Test 0.8 4.8 9.8 1 5.1 10.3 0.8 4.7 9.6

Table 2: Empirical Size of different tests for H0 : β = β0 are computed based on 10,000 Monte-Carlo
trials. USSIV Score test, Projection from Split-sample Score test (SS) and Robins test combine
observations from both sub-samples. Projection from AR test and partial-K tests are based on
sub-sample one containing n1 = [nζ ] observations. [k = 4, ρXW = 0, n = 100]

aBy Theorem 2, the level of the Robins-test is always lesser than α + ε (= 2ACV by our specification), but is
asymptotically equal to α if the instruments are strong for γ.
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Figure 1: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 10.
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Figure 2: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 10.
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Figure 3: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 10.
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Figure 4: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 100.
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Figure 5: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 100.
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Figure 6: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 100.
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Figure 7: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 10.
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Figure 8: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 10.
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Figure 9: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 10.
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Figure 10: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 100.
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Figure 11: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 100.
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Figure 12: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 100.
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Figure 13: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 10.

45



−5 0 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

β−β
0

Case 1: µβ = 1, µγ = 1

−5 0 5
0

0.05

0.1

0.15

β−β
0

Case 2: µβ = 1, µγ = 10

−0.5 0 0.5
0

0.1

0.2

0.3

0.4

β−β
0

Case 3: µβ = 10, µγ = 1

USSIV Proj−SS Robins Proj−AR Partial−K 5%

Power Curves when k = 4, n = 100, ρ
uX

 = 0.1, ρ
uW

 = 0.99, ρ
XW

 = 0 and ζ = 0.5

−0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

β−β
0

Case 4: µβ = 10, µγ = 10

Figure 14: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 10.

46



−5 0 5
0

0.1

0.2

0.3

0.4

β−β
0

Case 1: µβ = 1, µγ = 1

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

β−β
0

Case 2: µβ = 1, µγ = 10

−0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

β−β
0

Case 3: µβ = 10, µγ = 1

USSIV Proj−SS Robins Proj−AR Partial−K 5%

Power Curves when k = 4, n = 100, ρ
uX

 = 0.99, ρ
uW

 = 0.1, ρ
XW

 = 0 and ζ = 0.5

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

β−β
0

Case 4: µβ = 10, µγ = 10

Figure 15: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 10.
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Figure 16: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 100.
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Figure 17: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 100.
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Figure 18: Rejection Rates for tests of H0 : β = β0 are computed based on 10,000 Monte-Carlo
Trials. Weak instrument characterized by µ = 1 and strong instrument by µ = 100.
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