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Abstract

The Efficient Method of Moments (EMM) estimator popularized by Gallant and

Tauchen (1996) is an indirect inference estimator based on the simulated auxiliary score

evaluated at the sample estimate of the auxiliary parameters. We study an alternative

estimator that uses the sample auxiliary score evaluated at the simulated binding func-

tion which maps the structural parameters of interest to the auxiliary parameters. We

show that the alternative estimator has the same asymptotic properties as the EMM

estimator but in finite samples behaves more like the distance-based indirect inference

estimator of Gouriéroux, Monfort and Renault (1993).
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1 Introduction

Indirect inference estimators take advantage of a simplified auxiliary model that is easier to

estimate than a proposed structural model. The estimation consists of two stages. First,

an auxiliary statistic is calculated from the observed data. Then an analytical or simulated

mapping of the structural parameters to the auxiliary statistic is used to calibrate an estimate

of the structural parameters. The indirect inference estimators are typically placed into one

of two categories: score-based estimators made popular by Gallant and Tauchen (1996),

or distance-based estimators proposed by Smith (1993) and refined by Gouriéroux, Monfort

and Renault (1993). The simulated score-based estimators have the computational advantage

that the auxiliary parameters are estimated from the observed data only once, whereas the

distance-based estimators must re-estimate the auxiliary parameters from simulated data as

part of the optimization algorithm to estimate the structural parameters. However, many

studies have shown (e.g., Michaelides and Ng, 2000; Ghysels, Khalaf and Vodounou, 2003;

Duffee and Stanton, 2008) that the computational advantage of the simulated score-based

estimators is often offset by poor finite sample properties relative to the distance-based

estimators. In this paper we study an alternative score-based estimator that utilizes the

sample auxiliary score evaluated with the auxiliary parameters estimated from simulated

data. We show that this alternative estimator is asymptotically equivalent to the Gallant

and Tauchen (1996) score-based estimator but has finite sample properties that are very

close to the distance-based estimators.

The paper is structured as follows. In Section 2, we give an overview of indirect inference

estimation, introduce the alternative score-based estimators and derive their asymptotic

properties. In Section 3, we compare the finite sample properties of various indirect inference

estimators for the parameters of a highly persistent Ornstein-Uhlenbeck process via Monte

Carlo. Section 4 concludes. Proofs of all results are given in the Appendix.
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2 Review of Indirect Inference

Indirect inference (II) techniques were introduced into the econometrics literature by Smith

(1993), Gouriéroux, Monfort, and Renault (1993), Bansal, Gallant, Hussey, and Tauchen

(1993, 1995) and Gallant and Tauchen (1996), and are surveyed in Gouriéroux and Monfort

(1996) and Jiang and Turnbull (2004). There are four components present in simulation-

based II: (1) a true structural model whose parameters θ are one’s ultimate interest but

are difficult to directly estimate; (2) simulated observations from the structural model for a

given θ; (3) an auxiliary approximation to the structural model whose parameters µ are easy

to estimate; and (4) a mapping from µ to θ uniquely connecting the parameters of these two

models.

To be more specific, assume that a sample of n observations {yt}t=1,...,n are gener-

ated from a strictly stationary and ergodic probability model Fθ, θ ∈ Rp, with density

p(y−m, . . . , y−1, y0; θ) that is difficult or impossible to evaluate analytically1. Typical ex-

amples are continuous time diffusion models and dynamic stochastic general equilibrium

models. Define an auxiliary model F̃µ in which the parameter µ ∈ Rr, with r ≥ p, is easier

to estimate than θ. The auxiliary estimator of µ is defined as

µ̃n = arg max
µ

Q̃n ({yt}t=1,...,n, µ) . (1)

where Q̃n denotes a sample objective function associated with the model F̃µ. For ease of

exposition, we consider the case in which the auxiliary estimator is the quasi-maximum

likelihood estimator of the model F̃µ, so that Q̃n can be written as

Q̃n ({yt}t=1,...,n, µ) =
1

n−m

n∑
t=m+1

f̃(yt;xt−1, µ) , (2)

where f̃(yt;xt−1, µ) is the log density of yt for the model F̃µ conditioned on xt−1 = {yi}i=t−m,...,t−1,

1For simplicity, we do not consider structural models with additional exogenous variables zt.
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m ∈ N. We define g̃(yt;xt−1, µ) = ∂f̃(yt;xt−1,µ)
∂µ

as the r × 1 auxiliary score vector. For more

general Q̃n, we refer the reader to Gouriéroux and Monfort (1996).

II estimators use the auxiliary model information to obtain estimates of the structural

parameters θ. The link between the auxiliary model parameters and the structural param-

eters is given by the so-called binding function µ(θ), which is the functional solution of the

asymptotic optimization problem

µ(θ) = arg max
µ

EFθ [f̃(yt;xt−1, µ)], (3)

where limn→∞ Q̃n ({yt}t=1,...,n, µ) = EFθ [f̃(yt;xt−1, µ)], f̃(yt;xt−1, µ) denotes the log density

of yt given xt−1 = (yt−1, . . . , yt−m) for the model F̃µ, and EFθ [·] means that the expectation

is taken with respect to Fθ. In order for µ(θ) to define a unique mapping it is assumed that

µ(θ) is one-to-one and that ∂µ(θ)
∂θ′

has full column rank.

II estimators differ in how they use (3) to define an estimating equation. The distance-

based II estimator, originally proposed by Smith (1993) and Gouriéroux, Monfort, and

Renault (1993), finds θ to minimize the (weighted) distance between µ(θ) and µ̃n. The

score-based II estimator, made popular by Gallant and Tauchen (1996), finds θ by solving

EFθ [g̃(yt;xt−1, µ̃n)] = 0, the first order condition associated with (3)2. Typically, the analytic

forms of µ(θ) and EFθ [g̃(y0;x−1, µ)] are not known and simulation-based techniques are used

to compute the two types of II estimators.

For simulation-based II, it is necessary to be able to easily generate simulated observations

from Fθ for a given θ. These simulated observations are typically drawn in two ways. First,

a long pseudo-data series of size S · n is simulated giving

{yt(θ)}t=1,...,Sn, S ≥ 1. (4)

2Gallant and Tauchen (1996) call the score-based II estimator the efficient method of moments (EMM)
estimator. Efficiency in the context of EMM refers to the efficiency of the auxiliary model in approximating
the structural model, and Gallant and Tauchen (1996, 2004) advocated the use of a particular seminonpara-
metric auxiliary model to achieve efficiency.
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Second, S pseudo-data series of size n are simulated giving

{yst (θ)}t=1,...,n, s = 1, . . . , S, S ≥ 1. (5)

Using the simulated observations (4) or (5), the distance-based II estimators are minimum

distance estimators defined as

θ̂Dj
S (Ω̃n) = arg min

θ
JDj
S (θ, Ω̃n) = arg min

θ

(
µ̃n − µ̃j

S(θ)
)′

Ω̃n

(
µ̃n − µ̃j

S(θ)
)
, j = A,L,M, (6)

where Ω̃n is a positive definite and symmetric weight matrix which may depend on the data

through the auxiliary model, and the simulated binding functions are given by

µ̃A
S (θ) = arg max

µ
S−1

S∑
s=1

Q̃n ({yst (θ)}t=1,...,n, µ) , (7)

µ̃L
S(θ) = argmax

µ
Q̃Sn ({yt(θ)}t=1,...,Sn, µ) , (8)

µ̃M
S (θ) = S−1

S∑
s=1

arg max
µ

Q̃n ({yst (θ)}t=1,...,n, µ) . (9)

The superscripts A, L, and M indicate how the binding function is computed from the

simulated data: “A” denotes maximizing an aggregation of S objective functions using (5);

“L” denotes use of long simulations (4) in the objective function; “M” denotes use of the mean

of S estimated binding functions based on (5). The M-type estimator is most commonly

used in practice and is more computationally intensive than the A and L-type estimators,

but exhibits superior finite sample properties in certain circumstances.

Using (4) or (5), the score-based II estimators are one-step GMM estimators defined as

θ̂Sj
S (Σ̃n) = arg min

θ
JSj
S (θ) = arg min

θ
g̃j
S(θ, µ̃n)′Σ̃ng̃

j
S(θ, µ̃n), j = A,L, (10)

where Σ̃n is a positive definite (pd) and symmetric weight matrix which may depend on the

5



data through the auxiliary model, and the simulated scores are given by

g̃A
S (θ, µ̃n) = S−1

S∑
s=1

1

n−m

n∑
t=m+1

g̃(yst (θ);x
s
t−1(θ), µ̃n),

g̃L
S(θ, µ̃n) =

1

Sn−m

Sn∑
t=m+1

g̃(yt(θ);xt−1(θ), µ̃n).

Because (10) fixes the binding function at the sample estimate µ̃n no M-type estimator is

available. The implementation of (10) in Gallant and Tauchen (2004) is based on the L-type

estimator.

Under regularity conditions described in Gouriéroux and Monfort (1996), the distance-

based estimators (6) and score-based estimators (10) are consistent for θ0 (true parameter

vector) and asymptotically normally distributed. The limiting weight matrices that min-

imize the asymptotic variances of these estimators are Ω̃∗ = MµĨ−1Mµ and Σ̃∗ = Ĩ−1,

where Ĩ = limn→∞ varFθ(
√
ng̃n(yn, µ(θ0))), Mµ = EFθ [H̃(yt;xt−1, µ(θ0))], g̃n(yn, µ(θ)) =

1
n−m

∑n
t=m+1 g̃(yt;xt−1, µ(θ)) and H̃(yt;xt−1, µ) = ∂2f̃(yt;xt−1,µ)

∂µ∂µ′
. Using consistent estimates

of these optimal weight matrices, the distance-based and score-based estimators are asymp-

totically equivalent with asymptotic variance matrix given by

V ∗S =

(
1 +

1

S

)(
M ′

θĨ−1Mθ

)−1

=

(
1 +

1

S

)(
∂µ(θ0)′

∂θ′
MµĨ−1Mµ

∂µ(θ0)

∂θ′

)−1

, (11)

where

Mθ =

{
∂

∂θ′
EFθ [g̃(yt;xt−1, µ)]

}∣∣∣∣
µ=µ(θ0)

.

3 Alternative Score-Based II Estimator

Gouriéroux and Monfort (1996, pg. 71) mentioned two alternative II estimators that they

claimed are less efficient than the optimal estimators described in the previous section, and

referred the reader to Smith (1993) for details. The first one is the simulated quasi-maximum
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likelihood (SQML) estimator:

θ̂SQMLj
S = arg max

θ
Q̃n

(
{yt}t=1,...,n, µ̃

j
S(θ)

)
, j = A,L,M. (12)

The second one is an alternative score-based estimator of the form

θ̂Sj2
S (Σ̃n) = arg min

θ
JSj2(θ, Σ̃n) = arg min

θ
g̃j
n(θ)′Σ̃ng̃

j
n(θ), (13)

where

g̃j
n(θ) =

1

n−m

n∑
t=m+1

g̃(yt;xt−1, µ̃
j
S(θ)), j = A,L,M. (14)

In contrast to the score-based estimator (10), the estimator (13) evaluates the auxiliary score

with the sample data and a simulated binding function. In this respect, it is more like the

distance-based II estimators (6). The estimator (13), however, was not explicitly considered

in Smith (1993).

Smith (1993) showed that (12) is consistent and asymptotically normal with asymptotic

variance matrix given by

V SQML
S =

(
1 +

1

S

)[
∂µ(θ0)′

∂θ′
Mµ

∂µ(θ0)

∂θ′

]−1
∂µ(θ0)′

∂θ′
Ĩ ∂µ(θ0)

∂θ′

[
∂µ(θ0)′

∂θ′
Mµ

∂µ(θ0)

∂θ′

]−1

,

which he showed is strictly greater than (in a matrix sense) the asymptotic variance (11) of

the efficient II estimators. He did not derive the asymptotic properties of (13). The following

Proposition gives the asymptotic properties of (13).

Proposition 1 Under the regularity conditions in Gouriéroux and Monfort (1996), the

score-based II estimators θ̂Sj2S (Σ̃n) (j=A,L,M) defined in (13) are consistent and asymptoti-

cally normal, when S is fixed and n→∞ :

√
n(θ̂Sj2S (Σ̃n)− θ0)

d→ N

(
0,

(
1 +

1

S

)
[M ′

θΣMθ]
−1
[
M ′

θΣĨΣMθ

]
[M ′

θΣMθ]
−1

)
. (15)
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The proof is given in Appendix B. We make the following remarks:

1. The asymptotic variance of θ̂Sj2
S (Σ̃n) in (15) is equivalent to the asymptotic variance of

Gallant and Tauchen’s score based estimator θ̂Sj
S (Σ̃n), and is equivalent to (11) when

Σ̃n is a consistent estimate of Σ̃∗ = Ĩ−1. Contrary to the claim in Gouriéroux and

Monfort (1996), the alternative score based II estimator is not less efficient than the

optimal II estimators.

2. Using the result ∂µ(θ0)
∂θ′

= M−1
µ Mθ (see Gouriéroux and Monfort, 1996 pg. 70) , Smith’s

SQML estimator (12) is asymptotically equivalent to θ̂Sj2
S (Σ̃n) when Σ̃n is a consistent

estimator of M−1
µ . Hence, the SQML is efficient only when Ĩ = −Mµ.

4 Finite Sample Comparison of II Estimators

In this section, we use Monte Carlo methods to compare the finite sample performance of

the alternative score-based estimator (13) to the traditional II estimators (6) and (10) using

a simple continuous-time Ornstein-Uhlenbeck (OU) process. Our Monte Carlo design is

motivated by Duffee and Stanton (2008) (hereafter, DS). They compared the finite sample

properties of EMM and II using highly persistent AR(1) models calibrated to interest rate

data and found that EMM is severely biased, has wide confidence intervals, and performs

poorly in coefficient and overidentification tests. The OU process we use is the continuous-

time analogue of the discrete time AR(1) model, and we calibrate our design so that our

results are comparable to those of DS. The analytically tractable OU process also gives us the

opportunity to compute non-simulation-based analogues of the simulation-based estimators,

and to directly compare the performance of the II estimators to the benchmark maximum

likelihood (ML) estimator.
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4.1 Model Setup

Assume that the true data generating process is an OU process of the form

Fθ : y = (θ0 − θ1y)dt+ θ2dW, dW ∼ iid N(0, dt) , (16)

where θ0/θ1 > 0 represents the long run (unconditional) mean, θ1 > 0 captures the speed of

mean reversion, and θ2 > 0 gives the constant volatility of the process. Weekly observations

(∆ = 1/50) of annualized interest rates are generated from its exact solution

yt =
θ0

θ1

(1− e−θ1∆) + e−θ1∆yt−∆ + θ2

√
1− e−2θ1∆

2θ1

εt, εt ∼ iid N(0, 1) , (17)

for the set of true parameters θ = (0, 0.6644, 7.1181)′, which corresponds to a transformation

of the AR(1) parameterization of DS (see Appendix A). The parameters θ0 and θ2 are

assumed to be known by the researcher as previous research, summarized in Phillips and Yu

(2009), has shown that these parameters can be very accurately estimated. They are fixed

at their true values in the structural model, and only θ1 is estimated.

A natural auxiliary model is the crude Euler discretization of the OU process

F̃µ : yt = µ0∆ + (1− µ1∆)yt−∆ + µ2

√
∆ξt−∆, ξt−∆ ∼ iid N(0, 1) , (18)

where all three parameters, µ0, µ1, µ2 are estimated. Thus, θ1 is over-identified (r > p) which

gives us the opportunity to evaluate the performance of the estimators in over-identification

tests.
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For the discretized OU process, the log-likelihood and score vector are given by

f̃n ({yt}t=∆,...,n∆, µ) =
1

n− 1

n∆∑
t=2∆

[
−1

2
ln(2πµ2

2∆)− 1

2

ξ2
t

µ2
2∆

]
, (19)

g̃(yt; yt−∆, µ) =
∂f̃(yt; yt−∆, µ)

∂µ
=


1

µ2
2

ξt

− 1

µ2
2

ξtyt−∆

1

µ2
2

(
ξ2
t

µ2
2∆
− 1

)

 , (20)

where ξt = yt − µ0∆ − (1 − µ1∆)yt−∆. The unconstrained auxiliary estimator µ̃n found by

maximizing (19) is the least squares estimator.

Comparing (17) with (18) shows that µ̃n is a biased estimator of θ, and that the binding

function µ(θ) has the form3

µ0(θ) =
θ0

θ1∆

(
1− e−θ1∆

)
, µ1(θ) =

1

∆

(
1− e−θ1∆

)
, µ2(θ) = θ2

√
1− e−θ1∆

2θ1∆
. (21)

Given (20) and that the expected score vector EFθ [g̃(yt; yt−∆, µ)] has a closed form expression,

non-simulation-based versions of distance-based and score-based II estimators are available.

We denote these estimators IN, SN1 and SN2, respectively.

For the Monte Carlo analysis, n = 1000 observations with ∆ = 1/50 are simulated from

(17) with θ = (0, 0.6644, 7.1181)′ and are treated as the observed sample in each Monte Carlo

run. For the simulations (4) and (5) used to compute the simulation-based II estimators, we

set S = 20 so that the simulation-based estimators have a 95% asymptotic efficiency relative

to the non-simulation-based estimators (see (11)), and use the same random number seed for

all values of θ during the optimizations. When simulating from (17), the stability constraint

θ1 > 0 is imposed and simulations are started from the long run mean of the process θ0/θ1.

When estimating the auxiliary model parameters, the stability constraint µ1 > 0 is imposed.

3The bias associated with estimating the crude Euler approximation was first shown by Lo (1988) and is
called the discretization bias.
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4.2 Objective Functions and Confidence Intervals

Figure 1 illustrates the LR-type statistics for testing H0 : θ1 = θ0
1 as functions of θ0

1 for the II

estimators based on a single representative sample. The widths of 95% confidence intervals

are obtained by inverting the LR statistics. The 95% confidence intervals contain values

of θ0
1 such that the value of the LR statistic lies below the 95% quantile of the chi-square

distribution with 1 degree of freedom.

Table 1 summarizes the point estimates and confidence intervals for each of the estima-

tors. The distance-based (D) II estimates and the alternative score-based (S2) estimates are

very similar, and are much smaller than the Gallant-Tauchen score-based (S1) estimates.

In general, for each estimator, the A-type and L-type simulation-based estimates are close

to the non-simulation based N-type estimate. For the D and S2 estimators, the M-type

estimates are slightly smaller than the other estimates.

Figure 1 shows that the shapes of the LR statistics for the non-simulation-based and

simulation-based estimators are very similar. The LR statistics for the two score-based

estimators, however, have very different shapes. As noted by DS, the shape of LRS1 is

highly asymmetric due to the scaling of some sample moments by the population variance.

It is relatively flat for θ0
1 values above θ̂S1

1 because the population variance approaches zero as

the mean reversion of the process increases. However, it peaks sharply as θ0
1 approaches zero

because the population variance diverges to infinity as the process becomes more persistent.

In contrast, the shapes of the LR functions for the S2 and D estimators are almost identical

and are roughly symmetric in θ0
1. This occurs because they are scaled by the variance of the

observed sample which is constant for any θ0
1.

The S1 confidence interval covers a wide range of θ1 above the point estimate, but only

little of the range below the point estimate, and it does not contain the true value θ1 =

0.6644. While the shape of the S1 criterion function puts a high penalty for θ1 close to

the boundary of stationarity, it causes point estimates above the true value to be rejected

with high probability. The point estimates differ across estimators using the same amount
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of information, and similar to the results reported in DS, LRS1 has its minimum the farthest

away from the true value θ1 = 0.6644. The M-type LR-type statistics are shifted toward

the true value reflecting the different finite sample properties of the M-type estimators in

comparison to the N, L and A-type ones.

4.3 Computational Issues

The S2 estimator can be considered a hybrid estimator consisting of two steps. In the

first step the simulation-based binding function µ̃S(θ) is calculated. In distance-based II

this simulated binding function is directly compared to the auxiliary estimate µ̃. In the S2

estimator the mean score evaluated with µ̃S(θ) is compared to the mean score evaluated with

µ̃, where the latter is equal to zero by construction. Because the score function is evaluated

with the observed data, a fixed input, all the variability of the S2 objective function can be

attributed to the simulated binding function µ̃S(θ), just like in the case of the D estimators’

objective function. Therefore the objective functions of the simulation-based S2 and D

estimators will also look similar. 4

Gallant and Tauchen (2002) criticize distance-based II for its computational inefficiency,

because it potentially involves two nested optimizations: the estimator of the simulated

binding function is embedded within the D estimator. This may lead to numerical instability

if the auxiliary estimator does not have a closed form analytical expression but instead relies

on an optimizer. The inner (binding function) optimization, which is computed within

a tolerance, will cause some jitter, and render the outer (structural) optimization problem

non-smooth. However, if a simple auxiliary model is chosen such that the auxiliary estimator

has a closed form analytical solution, the speed and stability of the D estimator becomes

much improved. Because the S2 estimator also uses the simulated binding function, similar

issues have to be weighed when the auxiliary model for S2 is chosen. Interestingly, Table

2 indicates that the average computation time associated with the SL1 and SA1 estimators

4The shape of the objective function is equivalent to the shape of the LR statistic except for a level shift.
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are actually slightly higher than the L and A-type estimators that use a simulated binding

function. This occurs because of the irregular shapes of the SL1 and SA1 objective functions.

4.4 Bias and RMSE

Figure 2 and Table 3 summarize the empirical distributions of the ML and II estimators of

θ1. The distributions are based on 1000 Monte Carlo simulations. Gouriéroux and Monfort

(1996, pg. 66) note that the score-based and distance-based II estimates should be very close

in a just identified setting. However, Figure 2 shows that the distributions of these estimators

in an over-identified setting can be very different. The S1 estimators are extremely biased

(seven times that of the MLE), a confirmation of DS’s finding. In contrast, the corresponding

S2 and II estimators (N, L and A-type) have a slightly lower bias than the MLE, and their

distributions closely resemble that of the MLE.

While the ML and II estimators are not subject to the discretization bias 5, they are

affected by a finite sample bias (Ball and Torous, 1996; Phillips and Yu, 2009) due to

the highly persistent nature of the adopted parameterization of the OU process. The M-

type estimator has been shown to correct this finite sample bias in a just-identified setting

(Gouriéroux, Renault, and Touzi, 2006; Gouriéroux, Phillips, and Yu, 2008, Phillips and

Yu, 2009), but the results of Table 3 shows this not the case in an over-identified setting.

Whereas the N, A and L-type estimators show a positive bias, the M-type estimator shows

a negative finite sample bias. 6

5MLE is based on the transition density of the continuous time structural model, and the indirect esti-
mators correct the discretization bias of the auxiliary estimator.

6In a just identified setting where the θ0 and θ2 parameters are assumed to be unknown, and are being
estimated along with θ1, the mean estimate, bias and RMSE of θ̂EM2

1 is 0.6813, (0.0169), and [0.3662]

respectively, and the mean estimate, bias and RMSE of θ̂IM1 is 0.6810, (0.0167), and [0.3656] respectively.
These results represent a 90% reduction in bias compared to MLE and confirm the finite sample bias
correcting properties of the M-type estimators in just identified models.
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4.5 Test Statistics

Table 4 shows the empirical rejection rates of nominal 5% overidentification tests and LR-

type coefficient tests of θ1 = θ0
1 based on 1000 Monte Carlo simulations. The tests, especially

the LR-type coefficient tests, based on the S1 estimators are extremely oversized. The

extreme right skewness in the finite sample distributions of the S1 estimators combined with

the asymmetry of the S1 objective functions, causes a high rejection rate of the LR-type

coefficient tests. In contrast, the rejection rates of the other estimators are approximately

equal and closer to the nominal level. Fuleky (2009) shows that the higher rejection rates of

the LR-type tests based the M-type estimators is caused by the over-identification restrictions

in conjunction with the nonlinearity of the binding function in small samples. 7

5 Conclusion

In this paper we study the asymptotic and finite sample properties of an alternative score-

based II estimator that uses the sample auxiliary score evaluated at the simulated binding

function. We show that this estimator is asymptotically equivalent to Gallant and Tauchen’s

simulated score estimator, but in finite samples behaves much more like the distance-based II

estimators. For estimating the mean reversion parameter of a highly persistent OU process,

we show that the alternative score-based estimator does not exhibit the poor finite sample

properties of the simulated score estimator. Our results counter some of the criticisms of the

score-based II estimators raised by Duffee and Stanton (2008).

7In a just identified setting where the θ0 and θ2 parameters are assumed to be unknown, and are being
estimated along with θ1, the empirical size of the simple LR-type test for testing H0 : θ1 = 0.6644 is 0.079
for EM2 and 0.083 for IM respectively. These results indicate that the M-type estimators have improved
inference properties in just identified models.
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6 Appendix A: OU Parameterization

The parameters for the OU structural model (16) are derived from the following AR(1)

parameterization used by DS

yt = θDS0 + θDS1 yt−∆ + θDS2 εt, εt ∼ iid N(0, 1). (22)

DS assumed weekly observations, used ∆ = 1 to represent the observation interval and set

θDS0 = 0, θDS1 = 0.9868, and θDS2 = 1. The AR(1) parameters in (22) can be mapped to the

OU parameters in (16) by inverting the following correspondence between (17) and (22)

θDS0 =
θ0

θ1

(1− e−θ1∆), θDS1 = e−θ1∆, θDS2 = θ2

√
1− e−2θ1∆

2θ1

.

Thus, we obtain the second set of parameters from the transformation: θ1 = −∆−1 log θDS1 =

−50 log 0.9868 = 0.6644, θ0 = θDS0 θ1/(1 − θDS1 ) = 0 · 0.6644/(1 − 0.9868) = 0, θ2 =

θDS2

√
2θ1/(1− (θDS1 )2) = 1

√
2 · 0.6644/(1− 0.98682) = 7.1181. Here, θ1 can be interpreted

as the annualized mean reversion toward the long run mean of zero, and θ2 as the annualized

volatility of the OU process. The value θ1 = 0.6644 implies that the half-life of a shock

to interest rates is approximately one year. We consider a time horizon of 20 years, which

corresponds to 1000 observations.

7 Appendix B: Proof of Proposition 1

The regularity conditions from Gouriéroux and Monfort (1996, Appendix 4A) are:

(A1) f̃n (yn, µ) = 1
n−m

∑n
t=m+1 f̃(yt;xt−1, µ)

p→ f̃E(θ, µ) = EFθ [f̃(yt;xt−1, µ)] uniformly in

(θ, µ) as n→∞.

(A2) f̃E(θ, µ) has a unique maximum with respect to µ : µ(θ) = arg maxµ f̃E(θ, µ).

17



(A3) f̃n (yn, µ) and f̃E(θ, µ) are differentiable with respect to µ, and g̃E(θ, µ) = ∂f̃E(θ,µ)
∂µ

= limn→∞
∂f̃n(yn,µ)

∂µ
.

(A4) The only solution to the asymptotic first order conditions is µ(θ) : g̃E(θ, µ) = 0⇒ µ =

µ(θ).

(A5) The equation µ = µ(θ) admits a unique solution in θ.

(A6) p limn→∞
∂2f̃n(yn,µ(θ))

∂µ∂µ′
= EFθ [H̃(yt;xt−1, µ(θ0))] = Mµ

(A7)
√
ng̃n(yn, µ(θ0)) =

√
n∂f̃n(yn,µ(θ0))

∂µ

d→ N(0, Ĩ) as n→∞.

For ease of exposition, we only give the proof for θ̂SL2
S (Σ̃n) = θ̂L

S which follows closely

the proof from Gouriéroux and Monfort (1996, Appendix 4A). The results for the other

estimators are similar. For consistency, first note that for fixed S and as n→∞

g̃n(yn, µ(θ))
p→ g̃E(θ0, µ(θ)),

µ̃L
S(θ) = arg max

µ

p

f̃Sn (ySn(θ), µ)
p→ arg max

µ
Sf̃E(θ, µ) = µ(θ).

Then θ̂L
S

p→ arg minθ g̃E(θ0, µ(θ))′Σg̃E(θ0, µ(θ)) which, by A4, is uniquely minimized at θ = θ0.

Hence, θ̂L
S

p→ θ0.

For asymptotic normality, the first order condition of the optimization problem in (13)

is

∂g̃n(yn, µ̃
L
S(θ̂L

S))′

∂θ′
Σ̃ng̃n(yn, µ̃

L
S(θ̂L

S)) = 0. (23)

Taking a mean value expansion (MVE) of g̃n(yn, µ̃
L
S(θ̂L

S)) around θ0 and plugging it into (23)

gives

∂g̃n(yn, µ̃
L
S(θ̂L

S))′

∂θ′
Σ̃n

[
g̃n(yn, µ̃

L
S(θ0)) +

∂g̃n(yn, µ̃
L
S(θ̄))

∂µ′
∂µ̃L

S(θ̄))

∂θ′
(θ̂L
S − θ0)

]
= 0 , (24)
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where θ̄ represents the vector of intermediate values. Using the results

∂g̃n(yn, µ̃
L
S(θ̂L

S))′

∂θ′
=
∂µ̃L

S(θ̂L
S))′

∂θ′
∂g̃n(yn, µ̃

L
S(θ̂L

S))′

∂µ′
p−→ ∂µ(θ0)′

∂θ′
∂g̃E(θ0, µ(θ0))′

∂µ′
= M ′

θ ,

∂g̃n(yn, µ̃
L
S(θ̄))

∂µ′
∂µ̃L

S(θ̄))

∂θ′
p−→ ∂g̃E(θ0, µ(θ0))

∂µ′
∂µ(θ0)

∂θ′
= Mθ,

and re-arranging (24) then gives

√
n(θ̂L

S − θ0) = − [M ′
θΣMθ]

−1
M ′

θΣ
√
ng̃n(yn, µ̃

L
S(θ0)) + op(1). (25)

Next, use a MVE of g̃n(yn, µ̃
L
S(θ0)) around µ̃ to give

√
ng̃n(yn, µ̃

L
S(θ0)) =

√
ng̃n(yn, µ̃) +

∂g̃n(yn, µ̄)

∂µ′
√
n(µ̃L

S(θ0)− µ̃) (26)

=
√
ng̃n(yn, µ̃) +Mµ

√
n(µ̃L

S(θ0)− µ̃) + op(1),

and another MVE of g̃n(yn, µ̃) = 0 around µ(θ0) to give

√
ng̃n(yn, µ̃) =

√
ng̃n(yn, µ(θ0)) +

∂g̃n(yn, ¯̄µ)

∂µ′
√
n(µ̃− µ(θ0)) = 0,

so that
√
n(µ̃− µ(θ0)) = −M−1

µ

√
ng̃n(yn, µ(θ0)) + op(1). (27)

In addition, use a MVE of the simulated score g̃Sn(ySn(θ0), µ̃L
S(θ0)) around µ(θ0)

√
ng̃Sn(ySn(θ0), µ̃L

S(θ0)) =
√
ng̃Sn(ySn(θ0), µ(θ0)) +

∂g̃Sn(ySn(θ0), ¯̄µ)

∂µ′
√
n(µ̃L

S(θ0)− µ(θ0)) = 0,
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so that

√
n(µ̃L

S(θ0)− µ(θ0)) = −
[
∂g̃Sn(ySn(θ0), ¯̄µ)

∂µ′

]−1√
ng̃Sn(ySn(θ0), µ(θ0)) (28)

= −S−1M−1
µ

√
n

S∑
s=1

g̃n(ysn(θ0), µ(θ0)) + op(1),

since g̃Sn(ySn(θ0), µ(θ0)) =
∑S

s=1 g̃n(ysn(θ0), µ(θ0)) and so

∂g̃Sn(ySn(θ0), ¯̄µ)

∂µ′
=

S∑
s=1

∂g̃n(ysn(θ0), ¯̄µ)

∂µ′
p→ S ·Mµ.

By subtracting (27) from (28) we get

√
n(µ̃L

S(θ0)− µ̃) = M−1
µ

√
n

[
g̃n(yn, µ(θ0))− S−1

S∑
s=1

g̃n(ysn(θ0), µ(θ0))

]
. (29)

Using (29) and g̃n(yn, µ̃) = 0, (26) can be rewritten as

√
ng̃n(yn, µ̃

L
S(θ0)) =

√
n

[
g̃n(yn, µ(θ0))− S−1

S∑
s=1

g̃n(ysn(θ0), µ(θ0))

]
, (30)

Because yn and ysn(θ0) (s = 1, . . . , S) are independent it follows that

AsyVar[
√
ng̃n(yn, µ̃

L
S(θ0))] =

AsyVar[
√
ng̃n(yn, µ(θ0))] + S−2

S∑
s=1

AsyVar[
√
ng̃n(yn, µ(θ0))] =

(
1 +

1

S

)
I ,

so that
√
ng̃n(yn, µ̃

L
S(θ0))

d→ N

(
0,

(
1 +

1

S

)
I
)
. (31)

Plugging (31) into (25) gives the desired result.
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Estimator θ̂1 lower upper length
SN1 1.6649 1.0015 ∞ ∞
SL1 1.9695 1.3253 ∞ ∞
SA1 1.9551 1.2728 ∞ ∞
SN2 1.0827 0.1421 1.3325 1.1905
SL2 1.035 0.0733 1.3275 1.2542
SA2 1.0275 0.0739 1.3241 1.2502
SM2 0.8246 0.0121 1.2513 1.2391
DN 1.0866 0.1812 1.3268 1.1456
DL 1.0470 0.1215 1.3160 1.1945
DA 1.0394 0.1212 1.3126 1.1914
DM 0.8382 0.0240 1.2387 1.2147

Table 1: Point estimates and asymptotic 95 percent confidence intervals for θ1 = 0.6644 from
a representative simulation of the OU process (16).

SN1 SL1 SA1 SN2 SL2 SA2 SM2 DN DL DA DM
0.02 0.63 0.88 0.03 0.52 0.87 1.12 0.01 0.51 0.85 1.11

Table 2: Average estimation time in seconds based on 1000 Monte Carlo experiments. Esti-
mation was performed in R.2.8 on a Dell Poweredge 1850 Server (3GHz, 2GB RAM).

Estimator Mean Bias RMSE
MLE 0.7723 0.1079 0.3178
SN1 1.3761 0.7117 1.6274
SL1 1.3860 0.7216 1.6871
SA1 1.3910 0.7266 1.6920
SN2 0.7697 0.1053 0.3165
SL2 0.7617 0.0973 0.3178
SA2 0.7615 0.0971 0.3184
SM2 0.5473 -0.1171 0.3355
DN 0.7741 0.1097 0.3193
DL 0.7664 0.1020 0.3208
DA 0.7661 0.1017 0.3214
DM 0.5520 -0.1124 0.3356

Table 3: Finite sample properties of estimators of θ1 = 0.6644 based on 1000 Monte Carlo
simulations.
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Estimator J-test LR test
SN1 0.130 0.379
SL1 0.121 0.363
SA1 0.121 0.354
SN2 0.078 0.051
SL2 0.074 0.053
SA2 0.073 0.052
SM2 0.078 0.129
DN 0.082 0.049
DL 0.070 0.056
DA 0.070 0.054
DM 0.076 0.123

Table 4: Rejection frequencies of nominal 5 percent tests. J-test denotes the test for overi-
dentification restrictions and has an asymptotic chi-square distribution with 2 degrees of
freedom. LR test denotes the LR-type coefficient test of θ1 = 0.6644, and has an asymptotic
chi-square distribution with 1 degree of freedom. Rejection frequencies are based on 1000
Monte Carlo simulations.
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Figure 1: Representative LR-type statistics for testing H0 : θ1 = θ0
1 as functions of θ0

1. The
underlying model is described in Section 4.1. The horizontal grey line, the vertical red line,
and the green dot represent the χ2(1) critical value, the true value of θ1 = 0.6644, and the
structural estimate respectively.
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Figure 2: Distribution of θ1 estimates in the model described in Section 4.1. The boxplot
is augmented with a red line representing the true value of θ1 = 0.6644 and a blue dot
representing the mean of the estimates.
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