
A Comment on Weak Instrument Robust Tests in

GMM and the New Keynesian Phillips Curve

Eric Zivot∗and Saraswata Chaudhuri†

October 27, 2008

1 Introduction

The paper by Kleibergen andMavroeidis (2008a), hereafter KM, is an excellent survey

of the current state of the art in the weak instrument robust econometrics for testing

subsets of parameters in GMM, and provides an important and relevant application

of the econometric theory to the analysis of the new Keynesian Phillips curve. We are

extremely grateful to have the opportunity to comment on this very nice paper. Our

comments will focus on the weak instrument robust tests for subsets of parameters,

and in particular on the projection-based test that KM referred to as the Robins

(2004) test.

We show that KM’s implementation of the Robins test is inefficient, and provide an

efficient implementation that performs nearly as well the MQLR test recommended by
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KM. Our comment proceeds as follows. Section 2 reviews the tests used for inference

on subsets of parameters in GMM, and discusses in detail the implementation of

the Robins test which we call the new method of projection. Section 3 reports the

results of a small simulation study to demonstrate that the new method of projection

performs nearly as well as the tests recommended by KM. Section 4 contains our

concluding remarks.

2 Inference on Subsets of Parameters in GMM

In this section we describe inference on subsets of parameters in the GMM framework.

We follow the notation and assumptions of KM regarding the GMM framework.

Interest centers on a p−dimensional vector of parameters θ identified by a set of

k ≥ p moment conditions

E [ft(θ)] = 0.

Let θ = (α0, β0)0, where α is pα× 1 and β is pβ × 1. The parameters of interest are β,

and α are considered nuisance parameters. The weak-identification robust methods of

inference on θ are based on the (efficient) continuous updating (CU) GMM objective

function

Q(θ) = TfT (θ)
0V̂ff(θ)

−1fT (θ), (1)

where fT (θ) = T−1
PT

t=1 ft(θ), and V̂ff(θ) is a consistent estimator of the k × k di-

mensional covariance matrix Vff(θ) of the vector of sample moments. Let qt(θ) =

vec
³
∂ft(θ)
∂θ0

´
and define f̄t(θ) = ft(θ)−E[ft(θ)] and q̄t(θ) = qt(θ)−E[qt(θ)]. Assump-
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tion 1 of KM states that

1√
T

TX
t=1

⎡⎢⎣ f̄t(θ)

q̄t(θ)

⎤⎥⎦ d→

⎡⎢⎣ ψf(θ)

ψθ(θ)

⎤⎥⎦ ∼ N(0, V (θ)), V (θ) =

⎡⎢⎣ Vff(θ) Vfθ(θ)

Vθf(θ) Vθθ(θ)

⎤⎥⎦ .
The gradient of (1) with respect to θ is given by

OθQ(θ) =
∂Q(θ)

∂θ0
= 2fT (θ)

0V̂ff(θ)
−1D̂T (θ),

where D̂T (θ) =
PT

t=1Dt(θ) and Dt(θ) = deveck
h
qt(θ)− V̂θf(θ)V̂ff(θ)

−1ft(θ)
i
. For

the definition of the devec operator see Chaudhuri (2007).

2.1 Tests for the Full Parameter Vector

Valid tests of the hypothesis H0 : θ = θ0 were developed in Stock and Wright

(2000) and Kleibergen (2005). Stock and Wright’s S-statistic is a generalization

of the Anderson-Rubin statistic (see Anderson and Rubin (1949)) and is given by

S(θ) = Q(θ). Kleibergen’s K-statisic is a score-type statistic based on Q(θ) and may

be expressed as

K(θ) =
1

4
(OθQ(θ))

h
D̂T (θ)

0V̂ff(θ)
−1D̂T (θ)

i−1
(OθQ(θ))

0 . (2)

Under the null H0 : θ = θ0, S(θ0)
A∼ χ2k and K(θ0)

A∼ χ2p.

2.2 Tests for Subsets of Parameters

For testing hypotheses on subsets of parameters of the form H0 : β = β0, subset

versions of the S and K-statistics were also considered by Stock andWright (2000) and

Kleibergen (2005). These statistics are based on the plug-in principle and utilize the
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constrained CU-GMM estimate α̃(β0) = argminαQ(α, β0). Letting θ̃0 = (α̃(β0)0, β00)
0,

the subset S and K statistics are given by S(θ̃0) and K(θ̃0), respectively. Under the

null H0 : β = β0 and under the assumption that α is well identified, Stock and

Wright (2000) and Kleibergen (2005) showed that S(θ̃0)
A∼ χ2k−pα and K(θ̃0)

A∼ χ2pβ .

This result is based on the fact that when α is well identified, α̃(β0) is
√
n consistent

for α under H0 : β = β0. When α is not well identified, α̃(β0) is no longer
√
n

consistent for α and hence the S and K-statistics are not asymptotically chi-square

distributed. However, Theorem 1 of KM showed that irrespective of the identification

of α, the S and the K-statistics are always bounded from above by the χ2k−pα and χ
2
pβ

distributions, respectively.

2.3 Usual Method of Projection

Dufour (1997), Dufour and Jasiak (2001) and Dufour and Taamouti (2005, 2007)

showed that the usual projection approach could always be used to obtain valid infer-

ence for subsets of parameters provided there exists an asymptotically (boundedly)

pivotal statistic for testing the joint hypothesis H0 : θ = θ0. Let R(θ) denote such a

statistic and assume that R(θ) A∼ χ2v. Suitable choices for R(θ) are S(θ), for which

v = k, and K(θ), for which v = p. The usual method of projection rejects H0 : β = β0

at level (at most) ζ if

inf
α∈Θα

R(α, β0) > χ2v(1− ζ),

where Θα denotes the parameter space for α, and χ2v(1−ζ) denotes the 1−ζ quantile

of the chi-square distribution with v degrees of freedom. The asymptotic size of the

projection test cannot exceed ζ irrespective of the identification of α or β or both.

However, the power of the test can be very low if v is large compared to pβ.
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2.4 New Method of Projection

Chaudhuri (2007), Chaudhuri et al. (2008) and Chaudhuri and Zivot (2008) pro-

posed a new method of projection for making inferences on subsets of parameters in

the presence of potentially unidentified nuisance parameters that are based on ideas

presented in Robins (2004). The new method of projection requires (i) a uniform

asymptotic (1−ξ) ·100% confidence set, Cα(1−ξ, β0), for α when the null hypothesis

H0 : β = β0 is true, and (ii) an asymptotically pivotal statistic R(θ). In most cases,

as described in Table 1, R(θ) A∼ χ2v for some v depending upon the choice of Rβ(θ).

Then the new method of projection rejects H0 : β = β0 if

1. either Cα(1− ξ, β0) = ∅

2. or infα0∈Cα(1−ξ,β0) R(α0, β0) > χ2v(1− ζ).

Under the null hypothesis H0 : β = β0, Cα(1 − ξ, β0) asymptotically contains α

with probability at least 1− ξ, and hence it follows from Bonferroni’s inequality that

the asymptotic size of the new projection type test cannot exceed ζ + ξ. The new

method of projection can be expected to be generally less conservative than the usual

method of projection because the infimum for the new method is only computed over

Cα(1− ξ, β0) whereas the infimum is computed over the whole space Θα for the usual

method. Similar projection methods have also been employed by Dufour (1990),

Berger and Boos (1994), and Silvapulle (1996).

To implement the new method of projection in the context of GMM, Cα(1−ξ, β0)

can be constructed by inverting the S or K tests as

CS
α (1−ξ, β0) = {α : S(α, β0) ≤ χ2k(1−ξ)} or CK

α (1−ξ, β0) = {α : K(α, β0) ≤ χ2p(1−ξ)}.

An advantage of using CK
α (1−ξ, β0) is that it will never be empty, and the asymptotic
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properties of the test will only depend on R(θ) when α is well identified. However, it

will also include saddlepoints α∗ where K(α∗, β0) = 0 and these points are associated

with spurious declines in power of the K-statistic. In contrast, the set CS
α (1− ξ, β0)

can be empty and this will occur for values β0 at which the overidentifying restrictions

are rejected (at level ξ). As we show in the next section, this can lead to improved

power properties of the new method of projection.

While the new method of projection can be implemented using any asymptotically

pivotal statisticR(θ), Robins (2004) showed that there are certain advantages of using

an efficient score-type statistic for R(θ). The efficient score for β (given α), in the

terminology of van der Vaart (1998), is the part of the score (gradient of the objective

function with respect to) for β that is orthogonal to the score for α. The efficient

score statistic for β is a quadratic form in the efficient score for β with respect to

an estimator of its asymptotic variance. In the context of GMM, Chaudhuri (2007)

and Chaudhuri and Zivot (2008) decomposed the K-statistic (2) into two orthogonal

statistics: a K-statistic for α (given β known) and an efficient (score) K-statistic for

β

K(θ) = Kα(θ) +Kβ.α(θ),

where

Kα(θ) =
1

4
(∇αQ(θ))

³
D̂Tα(θ)

0V̂ff(θ)
− 1
2 D̂Tα(θ)

´−1
(∇αQ(θ))

0 ,

Kβ.α(θ) =
1

4
(∇β.αQ(θ))

³
D̂Tβ(θ)

0V̂ff(θ)
−1
2N

V̂ff (θ)
− 12 0D̂Tα(θ)

V̂ff(θ)
− 1
2 D̂Tβ(θ)

´−1
(∇β.αQ(θ))

0 ,

and ∇β.αQ(θ) is the estimated efficient score for β defined as

∇β.αQ(θ) = fT (θ)
0V̂ff(θ)

− 1
2N

V̂ff (θ)
− 12 0D̂Tα(θ)

V̂ff(θ)
− 1
2 D̂Tβ(θ).
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Cα(1− ξ, β0) R(α, β) v
CK
α (1− ξ, β0) S(α, β0) k

CK
α (1− ξ, β0) K(α, β0) p

CKα
α (1− ξ, β0) Kβ.α(α, β0) pβ

CS
α (1− ξ, β0) S(α, β0) k

CS
α (1− ξ, β0) K(α, β0) p

CS
α (1− ξ, β0) Kβ.α(α, β0) pβ

Table 1: Confidence sets, test statistics and degrees of freedom for new projection
type tests.

The above expressions use the partition D̂T (θ) =
h
D̂Tα(θ), D̂Tβ(θ)

i
and V̂θf =h

V̂αf(θ)
0, V̂βf(θ)

0
i0
.

It can be shown that under H0 : θ = θ0, Kα(θ0)
A∼ χ2pα and Kβ.α(θ0)

A∼ χ2pβ .

Furthermore, if θ0 belongs to the
√
n-neighborhood of θ, then Kβ.α(θ0) = Kβ.α(θ) +

op(1). This latter property ofKβ.α(θ)makes it ideally suited for use in the newmethod

of projection. Indeed, Chaudhuri (2007) proved that if Cα(1 − ξ, β0) is non-empty

with probability approaching one and if α is well identified then the new method

of projection type test that rejects H0 : β = β0 when infα0∈Cα(1−ξ,β0) Kβ.α(θ0) >

χ2pβ(1 − ζ) is asymptotically equivalent to the size (at most) ζ K-test for β against

local alternatives. This means that the newmethod of projection withR(θ) = Kβ.α(θ)

is size controlled when α is not identified and can be made asymptotically equivalent

to Kleibergen’s K-test when α is well identified.

Table 1 summarizes the possible ways of implementing the new method of pro-

jection type tests for testing H0 : β = β0. KM illustrated the use of the new method

of projection with Cα(1− ξ, β0) = CK
α (1− ξ, β0) and R(θ) = S(α, β0) and concluded

that the Robins test, proposed in Chaudhuri (2007) and Chaudhuri et al. (2008),

does not outperform the usual method of projection based on R(θ) = S(α, β0). How-

ever, this is not what Chaudhuri (2007) and Chaudhuri et al. (2008) refer to as the

Robins test. In the context of GMM, Chaudhuri (2007) and Chaudhuri and Zivot
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(2008) recommend using Cα(1− ξ, β) = CS
α (1− ξ, β) and R(θ) = Kβ.α(θ). The power

of this method is largely driven by the choice of the statistic R(θ). In addition, the

choice R(θ) = Kβ.α(θ) (i.e., the efficient K-statistic) can make this test asymptotically

equivalent the K test when α is well identified. In the next section we show, using

the same simulation experiment as KM, that this latter implementation of the new

method of projection performs comparably to the tests recommended by KM.

3 Simulations

To illustrate the finite sample properties of the new method of projection based on

CS
α (1− ξ, β0) and Kβ.α(α, β0) we utilize the same simulation experiment described in

Section 4 of KM. We are grateful to Frank Kleibergen and Sophocles Mavroeidis for

sharing their Matlab code with us.

The data generating process is

πt = λxt + γfEt[πt+1] + ut,

xt = ρ1xt−1 + ρ2xt−2 + vt,

πt+1 = (α0ρ1 + α1)xt + α0ρ2xt−1 + ηt+1,

where ηt = ut + α0vt. There error terms ηt and vt are jointly normal with unit

variances and correlation ρηv = 0.2. The parameter of interest is γf and λ is the

nuisance parameter. Identification of the structural parameters λ and γf is controlled

by the concentration parameter μ2 which is a complicated nonlinear function of the

model parameters.

KM’s Figure 3 illustrated the power curves for testing H0 : γf = 1/2 against H1 :

γf 6= 1/2 at the 5% level for the subset S, usual method of projection based on S, and
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Figure 1: Power curves of 5% level tests for H0 : γf = 0.5 against H1 : γf 6= 0.5. The
sample size is 1000 and the number of Monte Carlo simulations is 10000.

the new method of projection based on CK
λ (1− ξ, γf = 1/2) and S(λ, γf = 1/2) with

ξ = 0.02 and ζ = 0.03. The figure shows that the power curves of the usual method

of projection and an inefficient application of the new method are indistinguishable,

and are dominated by the subset S statistic.

Figure 1 in this note shows the power curves of the newmethod of projection based

on CS
λ (1 − ξ, γf = 1/2) and Kλ.γf (λ, γf = 1/2) with ξ = 0.005 and ζ = 0.045, 0.05,

along with the recommended tests of KM. The graphs show that new method of

projection actually performs as well as the MQLR and KJ tests recommended by

KM. For the strong identification case, use of CS
λ (1− ξ, γf = 1/2) avoids the spurious

decline in power observed for the KLM statistic.
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4 Conclusion

KM showed that the subset versions of the S, K and MQLR statistics are valid

tests even when the nuisance parameters are unidentified. This is an important

theoretical and practical result. Their simulation results calibrated to a stylized new

Keynesian Phillips curve showed that projection-type tests are too conservative and

are dominated by the subset S, K and MQLR statistics. We show that a version of

the Robins test, which we call the new method of projection, based on an efficient

score type statistic performs nearly as well as the MQLR statistic and provides an

alternative approach to weak instrument robust inference for subsets of parameters

in models estimated by GMM.

A real practical drawback of the weak instrument robust tests is that they are

based on the CU-GMM objective function. The CU-objective function can be ill-

behaved, even for linear models, and finding the global minimum can be difficult.

Moreover, most commercial software implementations of GMM do not support CU-

GMM. Until commonly used software implementations of GMM catch up with the

important theoretical developments surveyed by KM, it is not likely that weak in-

strument robust methods will be widely used in practice.
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