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Factor Model Specification

Factor models for asset returns have the general form

Rit = αi + β1if1t + β2if2t + · · ·+ βKifKt + εit (1)
= αi + β0ift + εit

• Rit is the simple return (real or in excess of the risk-free rate) on asset i
(i = 1, . . . , N) in time period t (t = 1, . . . , T ),

• fkt is the k
th common factor (k = 1, . . . ,K),

• βki is the factor loading or factor beta for asset i on the k
th factor,

• εit is the asset specific factor.



Assumptions

1. The factor realizations, ft, are stationary with unconditional moments

E[ft] = μf
cov(ft) = E[(ft − μf)(f t − μf)

0] = Ωf

2. Asset specific error terms, εit, are uncorrelated with each of the common
factors, fkt,

cov(fkt, εit) = 0, for all k, i and t.

3. Error terms εit are serially uncorrelated and contemporaneously uncorre-
lated across assets

cov(εit, εjs) = σ2i for all i = j and t = s

= 0, otherwise



Cross Section Regression

The multifactor model (1) may be rewritten as a cross-sectional regression
model at time t by stacking the equations for each asset to give

Rt
(N×1)

= α
(N×1)

+ B
(N×K)

ft
(K×1)

+ εt
(N×1)

, t = 1, . . . , T (2)

B
(N×K)

=

⎡⎢⎣ β01...
β0N

⎤⎥⎦ =
⎡⎢⎣ β11 · · · β1K... . . . ...
βN1 · · · βNK

⎤⎥⎦
E[εtε

0
t|ft] = D = diag(σ21, . . . , σ

2
N)

Note: Cross-sectional heteroskedasticity



Time Series Regression

The multifactor model (1) may also be rewritten as a time-series regression
model for asset i by stacking observations for a given asset i to give

Ri
(T×1)

= 1T
(T×1)

αi
(1×1)

+ F
(T×K)

βi
(K×1)

+ εi
(T×1)

, i = 1, . . . , N (3)

F
(T×K)

=

⎡⎢⎣ f 01...
f 0T

⎤⎥⎦ =
⎡⎢⎣ f11 · · · fKt

... . . . ...
f1T · · · fKT

⎤⎥⎦
E[εiε

0
i] = σ2i IT

Note: Time series homoskedasticity



Expected Return (α− β) Decomposition

E[Rit] = αi + β0iE[ft]

• β0iE[ft] = explained expected return due to systematic risk factors

• αi = E[Rit]− β0iE[ft] = unexplained expected return (abnormal return)

Note: Equilibrium asset pricing models impose the restriction αi = 0 (no
abnormal return) for all assets i = 1, . . . , N



Covariance Structure

Using the cross-section regression

Rt
(N×1)

= α
(N×1)

+ B
(N×K)

ft
(K×1)

+ εt
(N×1)

, t = 1, . . . , T

and the assumptions of the multifactor model, the (N ×N) covariance matrix
of asset returns has the form

cov(Rt) = ΩFM = BΩfB
0 +D (4)

Note, (4) implies that

var(Rit) = β0iΩfβi + σ2i

cov(Rit,Rjt) = β0iΩfβj



Portfolio Analysis

Let w = (w1, . . . , wn) be a vector of portfolio weights (wi = fraction of
wealth in asset i). If Rt is the (N × 1) vector of simple returns then

Rp,t = w
0Rt =

NX
i=1

wiRit

Portfolio Factor Model

Rt = α+Bf t + εt⇒
Rp,t = w0α+w0Bf t +w0εt = αp + β0pft + εp,t

αp = w0α, β0p = w
0B, εp,t = w0εt

var(Rp,t) = β0pΩfβp + var(εp,t) = w
0BΩfB

0w+w0Dw



Macroeconomic Factor Models

Rit = αi + β0ift + εit

ft = observed economic/financial time series

Econometric problems:

• Choice of factors

• Estimate factor betas, βi, and residual variances, σ2i , using time series
regression techniques.

• Estimate factor covariance matrix, Ωf , from observed history of factors



Risk Measures

Let Rt be an iid random variable, representing the return on an asset at time
t, with pdf f , cdf F, E[Rt] = μ and var(Rt) = σ2.

The most common risk measures associated with Rt are

1. Return standard deviation: σ = SD(Rt) =
q
var(Rt)

2. Value-at-Risk: V aRα = qα = F−1(α), α ∈ (0.01, 0.10)

3. Expected tail loss: ETLα = E[Rt|Rt ≤ V aRα], α ∈ (0.01, 0.10)

Note: V aRα and ETLα are tail-risk measures.



Risk Measures: Normal Distribution

Rt ∼ iid N(μ, σ2)

Rt = μ+ σ × Z, Z ∼ iid N(0, 1)

Φ = FZ, φ = fZ

Value-at-Risk

V aRN
α = μ+ σ × zα, zα = Φ−1(α)

Expected tail loss

ETLNα = μ− σ
1

α
φ(zα)



Estimation

μ̂ =
1

T

TX
t=1

Rt, σ̂
2 =

1

T − 1

TX
t=1

(Rt − μ̂)2, σ̂ =

q
σ̂2

dV aRN
α = μ̂+ σ̂ × zαdETLNα = μ̂− σ̂

1

α
φ(zα)

Note: Standard errors are rarely reported for dV aRN
α and dETLNα , but are easy

to compute using “delta method” or bootstrap.



Risk Measures: Factor Model and Normal Distribution

Rt = α+ β0ft + εt

ft ∼ iid N(μf ,Ωf), εt ∼ iid N(0, σ2ε), cov(fk,t, εs) = 0 for all k, t, s

Then

E[Rt] = μFM = α+ β0μf
var(Rt) = σ2FM = β0Ωfβ + σ2ε

σFM =
q
β0Ωfβ + σ2ε

V aRN,FM
α = μFM + σFM × zα

ETLN,FM
α = μFM − σFM

1

α
φ(zα)

Note: In practice, α = 0 is typically imposed so that μFM = β0μf .



Tail Risk Measures: Non-Normal Distributions

Stylized fact: The empirical distribution of many asset returns exhibit asym-
metry and fat tails

Some commonly used non-normal distributions for

• Skewed Student’s t (fat-tailed and asymmetric)

• Generalized hyperbolic

• Cornish-Fisher Approximations

• Extreme value theory: Generalized Pareto



Modeling Non-Normal Returns for VaR Calculations

Rt = μ+ σZt,

E[Rt] = μ, var(Rt) = σ2

Zt ∼ iid (0, 1) with CDF FZ

Then

V aRq = F−1(q) = μ+ σ · F−1Z (q)

normal VaR: F−1Z (q) = N(0,1) quantile

Student’s t VaR : F−1Z (q) = Student’s t quantile

Cornish-Fisher (modified) VaR : F−1Z (q) = Cornish-Fisher quantile

EVT VaR : F−1Z (q) = GPD quantile



Tail Risk Measures: Cornish-Fisher Approximation

Idea: Approximate unknown CDF of Z = (R − μ)/σ using 2 term Edge-
worth expansion around normal CDF Φ(·) and invert expansion to get quantile
estimate:

F−1Z,CF (q) = zq +
1

6
(z2q − 1)× skew +

1

24
(z3q − 3zq)× ekurt

− 1

36
(2z3q − 5zq)× skew

zq = Φ−1(q), skew = E[Z3], ekurt = E[Z4]

Note: Very commonly used in industry

Reference: Boudt, Peterson and Croux (2008) “Estimation and Decomposition
of Downside Risk for Portfolios with Nonnormal Returns,” Journal of Risk.



Tail Risk Measures: Non-parametric estimates

Assume Rt is iid but make no distributional assumptions:

{R1, . . . , RT} = observed iid sample

Estimate risk measures using sample statistics (aka historical simulation)

dV aRHS
α = q̂α = empirical α− quantile

dETLHS
α =

1

[Tα]

TX
t=1

Rt · 1 {Rt ≤ q̂α}

1 {Rt ≤ q̂α} = 1 if Rt ≤ q̂α; 0 otherwise



Factor Risk Budgeting

• Additively decompose (slice and dice) individual asset or portfolio return
risk measures into factor contributions

• Allow portfolio manager to know sources of factor risk for allocation and
hedging purposes

• Allow risk manager to evaluate portfolio from factor risk perspective



Factor Risk Decompositions

Assume asset or portfolio return Rt can be explained by a factor model

Rt = α+ β0ft + εt

ft ∼ iid (μf ,Ωf), εt ∼ iid (0, σ2ε), cov(fk,t, εs) = 0 for all k, t, s

Re-write the factor model as

Rt = α+ β0ft + εt = α+ β0ft + σε × zt

= α+ β̃
0
f̃t

β̃ = (β0, σε)0, f̃t = (ft, zt)0, zt =
εt

σε
∼ iid (0, 1)

Then

σ2FM = β̃
0
Ω
f̃
β̃, Ω

f̃
=

Ã
Ωf 0
0 1

!



Linearly Homogenous Risk Functions

Let RM(β̃) denote the risk measures σFM, V aRFM
α and ETLFMα as func-

tions of β̃

Result 1: RM(β̃) is a linearly homogenous function of β̃ for RM = σFM,

V aRFM
α and ETLFMα . That is, RM(c · β̃) =c · RM(β̃) for any constant

c ≥ 0

Example: Consider RM(β̃) = σFM(β̃). Then

σFM(c · β̃) =
³
c · β̃0Ω

f̃
c · β̃

´1/2
= c ·

³
β̃
0
Ω
f̃
β̃
´1/2

= c · σFM(β̃)



Euler’s Theorem and Additive Risk Decompositions

Result 2: Because RM(β̃) is a linearly homogenous function of β̃, by Euler’s
Theorem

RM(β̃) =
k+1X
j=1

β̃j
∂RM(β̃)

∂β̃j

= β̃1
∂RM(β̃)

∂β̃1
+ · · ·+ β̃k+1

∂RM(β̃)

∂β̃k+1

= β1
∂RM(β̃)

∂β1
+ · · ·+ βk

∂RM(β̃)

∂βk
+ σε

∂RM(β̃)

∂σε



Terminology

Factor j marginal contribution to risk

∂RM(β̃)

∂β̃j

Factor j contribution to risk

β̃j
∂RM(β̃)

∂β̃j

Factor j percent contribution to risk

β̃j
∂RM(β̃)

∂β̃j

RM(β̃)



Analytic Results for RM(β̃) = σFM(β̃)

σFM(β̃) =
³
β̃
0
Ω
f̃
β̃
´1/2

∂σFM(β̃)

∂β̃
=

1

σFM(β̃)
Ω
f̃
β̃

Factor j = 1, . . . ,K percent contribution to σFM(β̃)

β1βjcov(f1t, fjt) + · · ·+ β2jvar(fjt) + · · ·+ βKβjcov(fKt, fjt)

σ2FM(β̃)
,

Asset specific factor contribution to risk

σ2ε

σ2FM(β̃)
, j = K + 1



Results for RM(β̃) = V aRFM
α (β̃), ETLFMα (β̃)

Based on arguments in Scaillet (2002), Meucci (2007) showed that

∂V aRFM
α (β̃)

∂β̃j
= E[f̃jt|Rt = V aRFM

α (β̃)], j = 1, . . . ,K + 1

∂ETLFMα (β̃)

∂β̃j
= E[f̃jt|Rt ≤ V aRFM

α (β̃)], j = 1, . . . ,K + 1

Remarks

• Intuitive interpretation as stress loss scenario

• Analytic results are available under normality



Marginal Contributions to Tail Risk: Non-Parametric Estimates

Assume Rt and f̃t are iid but make no distributional assumptions:

{(R1, f̃1), . . . , (RT , f̃T )} = observed iid sample

Estimate marginal contributions to risk using historical simulation

ÊHS[f̃jt|Rt = V aRα] =

1

m

TX
t=1

f̃jt · 1
½ dV aRHS

α − ε ≤ Rt ≤ dV aRHS
α + ε

¾

ÊHS[f̃jt|Rt ≤ V aRα] =
1

[Tα]

TX
t=1

f̃jt · 1
½ dV aRHS

α ≤ Rt

¾
Problem: Not reliable with small samples or with unequal histories for Rt



Portfolio Risk Budgeting

• Additively decompose (slice and dice) portfolio risk measures into asset
contributions

• Allow portfolio manager to know sources of asset risk for allocation and
hedging purposes

• Allow risk manager to evaluate portfolio from asset risk perspective



Portfolio Risk Decompositions

Portfolio return:

Rt = (R1t, . . . , RNt), wt = (w1, . . . , wn)
0

Rp,t = w0Rt =
NX
i=1

wiRit

Let RM(w) denote the risk measures σ, V aRα and ETLα as functions of
the portfolio weights w.

Result 3: RM(w) is a linearly homogenous function of w for RM = σ,

V aRα and ETLα. That is, RM(c ·w) =c ·RM(w) for any constant c ≥ 0



Result 4: Because RM(w) is a linearly homogenous function of w, by Euler’s
Theorem

RM(w) =
NX
i=1

wi
∂RM(w)

∂wi

= w1
∂RM(w)

∂w1
+ · · ·+ wN

∂RM(w)

∂wN



Terminology

Asset i marginal contribution to risk

∂RM(w)

∂wi

Asset i contribution to risk

wi
∂RM(w)

∂wi

Asset i percent contribution to risk

wi
∂RM(w)

∂wi

RM(w)



Analytic Results for RM(w) = σ(w)

Rp,t = w0Rt, var(Rt) = Ω

σ(w) =
³
w0Ωw

´1/2
∂σ(w)

∂w
=

1

σ(w)
Ωw

Note

Ωw =

⎛⎜⎝ cov(R1t, Rp,t)
...

cov(RNt,Rp,t)

⎞⎟⎠ = σ (w)

⎛⎜⎝ β1,p
...

βN,p

⎞⎟⎠
βi,p = cov(Rit,Rp,t)/σ

2 (w)



Results for RM(w) = V aRα(w), ETLα(w)

Gourieroux (2000) et al and Scalliet (2002) showed that

∂V aRα(w)

∂wi
= E[Rit|Rp,t = V aRα(w)], i = 1, . . . , N

∂ETLα(w)

∂wi
= E[Rit|Rp,t ≤ V aRα(w)], i = 1, . . . , N

Remarks

• Intuitive interpretation as stress loss scenario

• Analytic results are available under normality and Cornish-Fisher expansion



Marginal Contributions to Tail Risk: Non-Parametric Estimates

Assume the N × 1 vector of returns Rt is iid but make no distributional as-
sumptions:

{Rt, . . . ,RT} = observed iid sample

Rp,t = w0Rt

Estimate marginal contributions to risk using historical simulation

ÊHS[Rit|Rp,t = V aRα] =

1

m

TX
t=1

Rit · 1
½ dV aRHS

α − ε ≤ Rp,t ≤ dV aRHS
α + ε

¾

ÊHS[Rit|Rp,t ≤ V aRα] =
1

[Tα]

TX
t=1

Rit · 1
½ dV aRHS

α ≤ Rp,t

¾
Problem: Very few observations used for estimates



Marginal Contributions to Tail Risk: Cornish-Fisher Expansion

Boudt, Peterson and Croux (2008) derived analytic expressions for

∂V aRα(w)

∂wi
= E[Rit|Rp,t = V aRα(w)], i = 1, . . . , N

∂ETLα(w)

∂wi
= E[Rit|Rp,t ≤ V aRα(w)], i = 1, . . . , N

based on the Cornish-Fisher quantile expansions for each asset.

• Results depend on asset specific variance, skewness, kurtosis as well as all
pairwise covariances, co-skewnesses and co-kurtosises



Factor Model Monte Carlo

Problem: Short history and incomplete data limits applicability of historical
simulation, and risk budgeting calculations are extremely difficult for non-
normal distributions

Solution: Factor Model Monte Carlo (FMMC)

• Use fitted factor model to simulate pseudo hedge fund return data preserv-
ing empirical characteristics

— Use full history for factors and observed history for asset returns

— Do not assume full parametric distributions for hedge fund returns and
risk factor returns



• Estimate tail risk and related measures non-parametrically from simulated
return data



Unequal History

f1T · · · fKT RiT... ... ... ...
f1,T−Ti+1 · · · f1,T−Ti+1 Ri,T−Ti+1... ... ...

f11 · · · f1K

• Observe full history for factors {f1, . . . , fT}

• Observe partial history for assets (monotone missing data)

{Ri,T−Ti+1, . . . , RiT},
i = 1, . . . , n; t = T − Ti + 1, . . . , T



Simulation Algorithm

• Estimate factor models for each asset using partial history for assets and
risk factors

Rit = α̂i + β̂
0
ift + ε̂it, t = T − Ti + 1, . . . , T

• Simulate B values of the risk factors by re-sampling with replacement from
full history of risk factors {f1, . . . , fT}:

{f∗1 , . . . , f∗B}

• Simulate B values of the factor model residuals from empirical distribution
or fitted non-normal distribution:

{ε̂∗i1, . . . , ε̂∗iB}



• Create pseudo factor model returns from fitted factor model parameters,
simulated factor variables and simulated residuals:

{R∗1, . . . , R∗B}
R∗it = β̂

0
if
∗
t + ε̂∗it, t = 1, . . . , B



Remarks:

1. Algorithm does not assume normality, but relies on linear factor structure
for distribution of returns given factors.

2. Under normality (for risk factors and residuals), FMMC algorithm reduces
to MLE with monotone missing data.

3. Use of full history of factors is key for improved efficiency over truncated
sample analysis

4. Technical justification is detailed in Jiang (2009).



Simulating Factor Realizations: Choices

• Empirical distribution

• Filtered historical simulation

— use local time-varying factor covariance matrices to standardize factors
prior to re-sampling and then re-transform with covariance matrices
after re-sampling

• Multivariate non-normal distributions



Simulating Residuals: Distribution choices

• Empirical

• Normal

• Skewed Student’s t

• Generalized hyperbolic

• Cornish-Fisher



Reverse Optimization, Implied Returns and Tail Risk Budgeting

• Standard portfolio optimization begins with a set of expected returns and
risk forecasts.

• These inputs are fed into an optimization routine, which then produces
the portfolio weights that maximizes some risk-to-reward ratio (typically
subject to some constraints).

• Reverse optimization, by contrast, begins with a set of portfolio weights
and risk forecasts, and then infers what the implied expected returns must
be to satisfy optimality.



Optimized Portfolios

Suppose that the objective is to form a portfolio by maximizing a generalized
expected return-to-risk (Sharpe) ratio:

max
w

μp(w)

RM(w)

μp(w) = w0μ

RM(w) = linearly homogenous risk measure

The F.O.C.’s of the optimization are (i = 1, . . . , n)

0 =
∂

∂wi

Ã
μp(w)

RM(w)

!
=

1

RM(w)

∂μp(w)

∂wi
−

μp(w)

RM(w)2
∂RM(w)

∂wi



Reverse Optimization and Implied Returns

Reverse optimization uses the above optimality condition with fixed portfo-
lio weights to determine the optimal fund expected returns. These optimal
expected returns are called implied returns. The implied returns satisfy

μ
implied
i (w) =

μp(w)

RM(w)
× ∂RM(w)

∂wi

Result: fund i’s implied return is proportional to its marginal contribution to
risk, with the constant of proportionality being the generalized Sharpe ratio of
the portfolio.



How to Use Implied Returns

• For a given generalized portfolio Sharpe ratio, μimpliedi (w) is large if ∂RM(w)
∂wi

is large.

• If the actual or forecast expected return for fund i is less than its implied
return, then one should reduce one’s holdings of that asset

• If the actual or forecast expected return for fund i is greater than its implied
return, then one should increase one’s holdings of that asset
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