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Introduction

• Key problem in financial econometrics: modeling,
estimation and forecasting of conditional return

volatility and correlation.

— Derivatives pricing, risk management, asset al-

location

• Conditional volatility is highly persistent

• Inherent problem: conditional volatility is unob-
servable



• Traditional latent variable models: ARCH-GARCH,
Stochastic volatility (SV) based on squared re-

turns

— difficult estimation

— high frequency data not utilized

— standardized returns not Gaussian

— Imprecise forecasts

— multivariate extensions are difficult



• New approach uses estimates of latent volatility

based on high frequency data (realized variance

measures)

— Volatility is observable

— Traditional time series models are applicable

— High dimensional multivariate modeling is fea-

sible



Construction of Realized Variance Measures

• pi,t = log-price of asset i at time t (aligned to

common clock)

— pt = (p1,t, . . . , pn,t)
0 = n × 1 vector of log

prices

• ∆ = fraction of a trading session associated with

the implied sampling frequency,

• m = 1/∆ = number of sampled observations per

trading session

• T = number of days in the sample ⇒ mT total

observations



Example (FX market): Prices are sampled every 30

minutes and trading takes place 24 hours per day

• m = 48 30-minute intervals per trading day

• ∆ = 1/48 ≈ 0.0208.

Example (Equity market): Prices are sampled every 5

minutes and trading takes place 6.5 hours per day

• m = 78 5-minutes intervals per trading day

• ∆ = 1/78 ≈ 0.0128.



• Intra-day continuously compounded (cc) returns
from time t to t+∆

ri,t+∆ = pi,t+∆ − pi,t, i = 1, . . . , n

rt+∆ = pt+∆ − pt

• Daily returns
ri,t = ri,t−1+∆ + ri,t−1+2∆ + · · ·+ ri,t−1+m∆

rt = rt−1+∆ + rt−1+2∆ + · · ·+ rt−1+m∆

• Realized variance (RV) for asset i on day t

RVi,t =
mX
j=1

r2i,t−1+j∆, t = 1, . . . , T

• Realized volatility (RVOL) for asset i on day t:
RV OLi,t =

q
RVi,t



• Realized log-volatility (RLVOL) :
RLV OLi,t = ln(RV OLi,t)

• The n×n realized covariance (RCOV) matrix on

day t

RCOVt =
mX
j=1

rt−1+∆r
0
t−1+∆, t = 1, . . . , T

— The n×n matrix RCOVt will be positive def-

inite provided n < m

• The realized correlation between asset i and asset
j

RCORi,j,t =
[RCOVt]i,jq

[RCOVt]i,i × [RCOVt]j,j
=

[RCOVt]i,j

RV OLi,t ×RV OLj,t



Non-overlapping RV measures over h days:

RV h
i,t =

hX
j=1

RVi,t, t = h, 2h, . . . , T/h

RCOV h
i,t =

hX
j=1

RCOVt, t = h, 2h, . . . , T/h



Quadratic Return Variation and Realized Variance

Two fundamental questions about RV are:

Q1 What does RV estimate?

Q2 Are RV estimates economically important?



Answers are provided in a number of important pa-

pers:

• Andersen, Bollerslev, Diebold, Labys (ABDL): “The
Distribution of Realized Exchange Rate Volatil-

ity” JASA, 2001

• Andersen, Bollerslev, Diebold, Labys: “Modeling
and Forecasting Realized Volatility” ECTA, 2003

• Barndorff-Nielsen and Shephard (BNS): “Estimat-
ing Quadratic Variation Using Realized Variance”

JAE 2002

• Barndorff-Nielsen and Shephard: “Econometric Anal-
ysis of Realized Volatility and Its Use in Estimat-

ing Stochastic Volatility Models” JRSSB, 2002.



Continuous time arbitrage-free log-price process

• let p(t) denote the univariate log-price process
for a representative asset defined on a complete

probability space (Ω, F, P ), evolving in continu-

ous time over the interval [0, T ].

• Let Ft be the σ−field reflecting information at
time t such that Fs ⊆ Ft for 0 ≤ s ≤ t ≤ T.

Result: If p(t) is in the class of special semi-martingales

then it has the representation

p(t) = p(0) +A(t) +M(t), A(0) =M(0) = 0

where A(t) is a predictable drift component of finite

variation, andM(t) is a local martingale. Note: jumps

are allowed in both A(t) and M(t).



• Let mT be a positive integer indicating the num-

ber of return observation obtained by sampling

m = 1/∆ times per day for T days

• The cc return on asset i over the period [t−∆, t]

is

r(t, t−∆) = p(t)− p(t−∆), t = ∆, 2∆, . . . , T

• The daily cc and cumulative returns are
r(t, t− 1) = p(t)− p(t− 1)

r(t) = p(t)− p(0)



Definition: The quadratic variation (QV) of the return

process at time t is

[r](t) = p lim
m−1X
j=0

{p(sj+1)− p(sj)}2

where 0 = s0 < s1 < · · · < sM = t and the limit is

for the mesh size

max
1≤j<m |sj − sj−1|→ 0 as m→∞

• The QV process measures the realized sample

path variation of the squared return process.

• QV is a unique and invariant ex-post realized volatil-
ity measure that is essentially model free.



The definition of QV implies the following conver-

gence result for semi-martingales:

RVt
p→ [r](t)− [r](t− 1) ≡ QVt, as m→∞

That is, daily RV converges in probability to the daily

increment in QV. This answers the first question Q1.

Remark:

• As noted by ABDL, QVt is related to, but distinct
from, the daily conditional return variance. That

is, in general

QVt 6= var(r(t, t− 1)|Ft−1)



Result (ABDL 2001): If

(i) the price process p(t) is square integrable;

(ii) the mean process A(t) is continuous;

(iii) the daily mean process, {A(s)−A(t−1)}s∈[t−1,t],
conditional on information at time t is indepen-

dent of the return innovation process, {M(u)}u∈[t−1,t],

(iv) the daily mean process, {A(s)−A(t−1)}s∈[t−1,t],
is a predetermined function over [t− 1, t],

then for 0 ≤ t− 1 ≤ t ≤ T

var(r(t, t− 1)|Ft−1) = E[QVt|Ft−1]
That is, the conditional return variance equals the

conditional expectation of the daily QV process.



Note: the ex post value of RVt is an unbiased esti-

mator for the conditional return variance var(r(t, t−
1)|Ft−1) :
E[RVt|Ft−1] = E[QVt|Ft−1] = var(r(t, t− 1)|Ft−1)
Therefore, RVt is economically important which an-

swers the second question Q2.



Remark: The restrictions on the conditional mean pro-

cess allow for realistic price processes.

• price process is allowed to exhibit deterministic
intra-day seasonal variation.

• mean process can be stochastic as long as it re-
mains a function, over the interval [t − 1, t], of
variables in Ft−1.

• jumps are allowed in the return innovation process
M(t)

• leverage effects caused by contemporaneous cor-
relation between return innovations and innova-

tions to the volatility process are allowed.



Results for Itô processes

• p(t) is described by the stochastic differential equa-

tion

dp(t) = µ(t)dt+ σ(t)dW (t)

W (t) = Wiener process

where µ(t) and σ (t) may be random functions.

Note: σ (t) may exhibit jumps, dirurnal effects,

long memory or be nonstationary.

• Daily return

r(t, t− 1) =
Z t

t−1
µ(s)ds+

Z t

t−1
σ(s)dW (s)



• There may be leverage effects. That is, σ(t) may
be correlated with W (t). For example,

dσ(t) = µ̃(t)dt+ σ̃(t)dW̃ (t)

cov(dW (t), dW̃ (t)) 6= 0



• Daily increment to QV

QVt =
Z t

t−1
σ2(s)ds = IVt

where IVt denotes daily integrated variance (IV).

Result: Since RVt
p→ QVt, it follows that

RVt
p→ IVt

Remark: IVt plays a central in option pricing with

stochastic volatility (e.g. Hull and White (1987))



Result (ABDL (2003)): If the mean process, µ(s), and

volatility process, σ(s), are independent of the Wiener

process W (s) over [t− 1, t] then

r(t, t−1)|σ{µ(s), σ(s)}s∈[t−1,t] ∼ N
µZ t

t−1
µ(s)ds, IVt

¶
where σ{µ(s), σ(s)}s∈[t−1,t] denotes the σ−field gen-
erated by (µ(s), σ(s))s∈[t−1,t].



• Since R tt−1 µ(s)ds is generally very small for daily
returns and RVt is a consistent estimator of IVt,

for Itô processes daily returns should follow a nor-

mal mixture distribution with RVt as the mixing

variable.

• If there are jumps in dp (t), then RVt p→ IVt but

returns are no longer conditionally normally dis-

tributed.



Asymptotic Distribution Theory for Realized Variance

• For a diffusion process, the consistency of RVt for
IVt relies on the sampling frequency per day, ∆,

going to zero.

• Convergence result is not attainable in practice as
it is not possible to sample continuously.

— Theory suggests sampling as often as possible

to get the most accurate estimate of IVt.

— Market microstructure frictions eventually dom-

inate the behavior of RV as ∆ → 0, which

implies a practical lower bound on ∆ for ob-

served data.

— For ∆ > 0, RVt will be a noisy estimate of

IVt.



Define the error in RVt for a given ∆ as

ut(∆) = RVt − IVt

or

RVt = IVt + ut(∆)

Result (Meddahi (2002) JAE):

• The mean of ut(∆) is non-zero when the drift
m(t) is non-zero

• ut(∆) is heteroskedastic

• Under leverage effect, cov(IVt, ut(∆)) 6= 0

• corr(IVt, ut(∆)) = O(∆3/2) as ∆→ 0



Result (BNS (2001)): For the Ito diffusion model un-

der the assumption that mean and volatility processes

are jointly independent of W (t),

√
m

ut(∆)√
2 · IQt

=
√
m
(RVt − IVt)√

2 · IQt

d→ N(0, 1)

where

IQt =
Z t

t−1
σ4(s)ds

is the integrated quarticity (IQ).



Remarks:

• RVt converges to IVt at rate
√
m,

• The asymptotic distribution ofRVt is mixed-normal
since IQt is random.

• IQt may be consistently estimated using the fol-

lowing scaled version of realized quarticity (RQ)

m

3
RQt =

m

3

mX
j=1

r4t+∆



• The feasible asymptotic distribution for RVt is
RVt − IVtq
2
3 ·RQt

A∼ N (0, 1)

which result suggests

dSE(RVt) =
vuuut2
3

mX
j=1

r4t+∆



• Using the delta-method
RV OLt −

√
IVtr

2
12 · RQt

RVt

A∼ N (0, 1)

which suggests

dSE(RVt) =
s
2

12
· RQt

RVt



• BNS find that the finite sample distribution of
RVt and RV OLt can be quite far from their re-

spective asymptotic distributions for moderately

sized m.

• BNS show that the asymptotic distribution ofRLV OL2t ,
RLV OL2t − ln(IVt)r

2
3 · RQt

RV 2t

A∼ N (0, 1)

is closer to its finite sample asymptotic distribu-

tion than the asymptotic distributions of RVt and

RV OLt.



• BNS (2004) extend the above asymptotic results
to cover the multivariate case, providing asymp-

totic distributions for RCOVt and RCORi,j,t, as

well as realized regression estimates.

• These limiting distributions are much more com-
plicated than the ones presented above, and the

reader is referred to BNS (2004) for full details

and examples.



Practical Problems in the Construction of RV

• The foremost problem is the choice of sampling

frequency ∆ (or number of observations per day

m).

— Bandi and Russell (2003) propose a data-based

method for choosing ∆ that minimizes the

MSE of the measurement error.

— Simulations and empirical examples suggest

optimal sampling is around 1-3 minutes for

equity returns.



• As discussed in Bai, Russell and Tiao (2000), vari-
ous market microstructure effects (bid/ask bounce,

infrequent trading, calendar effects etc.) induce

serial correlation in the intra-day returns ri,t+∆

which may induce biases in RV measures.

— Filter the intra-day returns using simple MA or

AR models prior to constructing RV measures.


