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Abstract

This paper gives a tour through the empirical analysis of univariate GARCH
models for financial time series with stops along the way to discuss various prac-
tical issues associated with model specification, estimation, diagnostic evaluation
and forecasting.

1 Introduction

There are many very good surveys covering the mathematical and statistical prop-
erties of GARCH models. See, for example, [9], [14], [74], [76], [27] and [83]. There
are also several comprehensive surveys that focus on the forecasting performance
of GARCH models including [78], [77], and [3]. However, there are relatively few
surveys that focus on the practical econometric issues associated with estimating
GARCH models and forecasting volatility. This paper, which draws heavily from
[88], gives a tour through the empirical analysis of univariate GARCH models for
financial time series with stops along the way to discuss various practical issues.
Multivariate GARCH models are discussed in the paper by [80]. The plan of this pa-
per is as follows. Section 2 reviews some stylized facts of asset returns using example
data on Microsoft and S&P 500 index returns. Section 3 reviews the basic univariate
GARCH model. Testing for GARCH effects and estimation of GARCH models are
covered in Sections 4 and 5. Asymmetric and non-Gaussian GARCH models are dis-
cussed in Section 6, and long memory GARCH models are briefly discussed in Section
7. Section 8 discusses volatility forecasting, and final remarks are given Section 91.
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Asset Mean Med Min Max Std. Dev Skew Kurt JB
Daily Returns

MSFT 0.0016 0.0000 -0.3012 0.1957 0.0253 -0.2457 11.66 13693
S&P 500 0.0004 0.0005 -0.2047 0.0909 0.0113 -1.486 32.59 160848

Monthly Returns
MSFT 0.0336 0.0336 -0.3861 0.4384 0.1145 0.1845 4.004 9.922
S&P 500 0.0082 0.0122 -0.2066 0.1250 0.0459 -0.8377 5.186 65.75
Notes: Sample period is 03/14/86 - 06/30/03 giving 4365 daily observations.

Table 1: Summary Statistics for Daily and Monthly Stock Returns.

2 Some Stylized Facts of Asset Returns

Let Pt denote the price of an asset at the end of trading day t. The continuously
compounded or log return is defined as rt = ln(Pt/Pt−1). Figure 1 plots the daily
log returns, squared returns, and absolute value of returns of Microsoft stock and
the S&P 500 index over the period March 14, 1986 through June 30, 2003. There
is no clear discernible pattern of behavior in the log returns, but there is some per-
sistence indicated in the plots of the squared and absolute returns which represent
the volatility of returns. In particular, the plots show evidence of volatility clus-
tering - low values of volatility followed by low values and high values of volatility
followed by high values. This behavior is confirmed in Figure 2 which shows the
sample autocorrelations of the six series. The log returns show no evidence of serial
correlation, but the squared and absolute returns are positively autocorrelated. Also,
the decay rates of the sample autocorrelations of r2t and |rt| appear much slower,
especially for the S&P 500 index, than the exponential rate of a covariance station-
ary autoregressive-moving average (ARMA) process suggesting possible long memory
behavior. Monthly returns, defined as the sum of daily returns over the month, are
illustrated in Figure 3. The monthly returns display much less volatility clustering
than the daily returns.

Table 1 gives some standard summary statistics along with the Jarque-Bera test
for normality. The latter is computed as

JB =
T

6

Ã
[skew

2
+
(dkurt− 3)2

4

!
, (1)

where[skew denotes the sample skewness and dkurt denotes the sample kurtosis. Under
the null that the data are iid normal, JB is asymptotically distributed as chi-square
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Figure 1: Daily returns, squared returns and absolute returns for Microsoft and the
S&P 500 index.

with 2 degrees of freedom. The distribution of daily returns is clearly non-normal
with negative skewness and pronounced excess kurtosis. Part of this non-normality
is caused by some large outliers around the October 1987 stock market crash and
during the bursting of the 2000 tech bubble. However, the distribution of the data
still appears highly non-normal even after the removal of these outliers. Monthly
returns have a distribution that is much closer to the normal than daily returns.

3 The ARCH and GARCH Model

[33] showed that the serial correlation in squared returns, or conditional heteroskedas-
ticity, can be modeled using an autoregressive conditional heteroskedasticity (ARCH)
model of the form

yt = Et−1[yt] + �t, (2)

�t = ztσt, (3)

σ2t = a0 + a1�
2
t−1 + · · ·+ ap�

2
t−p, (4)
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Figure 2: Sample autocorrelations of rt, r2t and |rt| for Microsoft and S&P 500 index.

where Et−1[·] represents expectation conditional on information available at time t−1,
and zt is a sequence of iid random variables with mean zero and unit variance. In the
basic ARCH model zt is assumed to be iid standard normal. The restrictions a0 > 0
and ai ≥ 0 (i = 1, . . . , p) are required for σ2t > 0. The representation (2) - (4) is
convenient for deriving properties of the model as well as for specifying the likelihood
function for estimation. The equation for σ2t can be rewritten as an AR(p) process
for �2t

�2t = a0 + a1�
2
t−1 + · · ·+ ap�

2
t−p + ut, (5)

where ut = �2t − σ2t is a martingale difference sequence (MDS) since Et−1[ut] = 0 and
it is assumed that E(�2t ) < ∞. If a1 + · · · + ap < 1 then �t is covariance stationary,
the persistence of �2t and σ2t is measured by a1+ · · ·+ ap and σ̄2 = var(�t) = E(�2t ) =
a0/(1− a1 − · · ·− ap).

An important extension of the ARCH model proposed by [12] replaces the AR(p)
representation in (4) with an ARMA(p, q) formulation

σ2t = a0 +

pX
i=1

ai�
2
t−i +

qX
j=1

bjσ
2
t−j , (6)

where the coefficients ai (i = 0, · · · , p) and bj (j = 1, · · · , q) are all assumed to be
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Figure 3: Monthly Returns, Squared Returns and Sample Autocorrelations of
Squared Returns for Microsoft and the S&P 500.

positive to ensure that the conditional variance σ2t is always positive.
2 The model in

(6) together with (2)-(3) is known as the generalized ARCH or GARCH(p, q) model.
The GARCH(p, q) model can be shown to be equivalent to a particular ARCH(∞)
model. When q = 0, the GARCH model reduces to the ARCH model. In order for
the GARCH parameters, bj (j = 1, · · · , q), to be identified at least one of the ARCH
coefficients ai (i > 0) must be nonzero. Usually a GARCH(1,1) model with only
three parameters in the conditional variance equation is adequate to obtain a good
model fit for financial time series. Indeed, [49] provided compelling evidence that is
difficult to find a volatility model that outperforms the simple GARCH(1,1).

Just as an ARCH model can be expressed as an AR model of squared residuals, a
GARCH model can be expressed as an ARMA model of squared residuals. Consider
the GARCH(1,1) model

σ2t = a0 + a1�
2
t−1 + b1σ

2
t−1. (7)

Since Et−1(�2t ) = σ2t , (7) can be rewritten as

�2t = a0 + (a1 + b1)�
2
t−1 + ut − b1ut−1, (8)

2Positive coefficients are sufficient but not necessary conditions for the positivity of conditional
variance. See [72] and [23] for more general conditions.
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which is an ARMA(1,1) model with ut = �2t − Et−1(�2t ) being the MDS disturbance
term.

Given the ARMA(1,1) representation of the GARCH(1,1) model, many of its
properties follow easily from those of the corresponding ARMA(1,1) process for �2t .
For example, the persistence of σ2t is captured by a1+ b1 and covariance stationarity
requires that a1 + b1 < 1. The covariance stationary GARCH(1,1) model has an
ARCH(∞) representation with ai = a1b

i−1
1 , and the unconditional variance of �t is

σ̄2 = a0/(1− a1 − b1).
For the general GARCH(p, q) model (6), the squared residuals �t behave like an

ARMA(max(p, q), q) process. Covariance stationarity requires
Pp

i=1 ai+
Pq

j=1 bi < 1
and the unconditional variance of �t is

σ̄2 = var(�t) =
a0

1−
³Pp

i=1 ai +
Pq

j=1 bi

´ . (9)

3.1 Conditional Mean Specification

Depending on the frequency of the data and the type of asset, the conditional mean
Et−1[yt] is typically specified as a constant or possibly a low order autoregressive-
moving average (ARMA) process to capture autocorrelation caused by market mi-
crostructure effects (e.g., bid-ask bounce) or non-trading effects. If extreme or un-
usual market events have happened during sample period, then dummy variables
associated with these events are often added to the conditional mean specification to
remove these effects. Therefore, the typical conditional mean specification is of the
form

Et−1[yt] = c+
rX

i=1

φiyt−i +
sX

j=1

θj�t−j +
LX
l=0

β0lxt−l + �t, (10)

where xt is a k × 1 vector of exogenous explanatory variables.
In financial investment, high risk is often expected to lead to high returns. Al-

though modern capital asset pricing theory does not imply such a simple relationship,
it does suggest that there are some interactions between expected returns and risk as
measured by volatility. Engle, Lilien and Robins (1987) proposed to extend the basic
GARCH model so that the conditional volatility can generate a risk premium which
is part of the expected returns. This extended GARCH model is often referred to
as GARCH-in-the-mean or GARCH-M model. The GARCH-M model extends the
conditional mean equation (10) to include the additional regressor g(σt), which can
be an arbitrary function of conditional volatility σt. The most common specifications
are g(σt) = σ2t , σt, or ln(σ

2
t ).

3.2 Explanatory Variables in the Conditional Variance Equation

Just as exogenous variables may be added to the conditional mean equation, exoge-
nous explanatory variables may also be added to the conditional variance formula (6)
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in a straightforward way giving

σ2t = a0 +

pX
i=1

ai�
2
t−i +

qX
j=1

bjσ
2
t−j +

KX
k=1

δ0kzt−k,

where zt is a m × 1 vector of variables, and δ is a m × 1 vector of positive coeffi-
cients. Variables that have been shown to help predict volatility are trading volume,
macroeconomic news announcements ([58], [43], [17]), implied volatility from option
prices and realized volatility ([82], [11]), overnight returns ([46], [68]), and after hours
realized volatility ([21])

3.3 The GARCH Model and Stylized Facts of Asset Returns

Previously it was shown that the daily returns on Microsoft and the S&P 500 ex-
hibited the “stylized facts” of volatility clustering as well as a non-normal empirical
distribution. Researchers have documented these and many other stylized facts about
the volatility of economic and financial time series. [14] gave a complete account of
these facts. Using the ARMA representation of GARCH models shows that the
GARCH model is capable of explaining many of those stylized facts. The four most
important ones are: volatility clustering, fat tails, volatility mean reversion, and
asymmetry.

To understand volatility clustering, consider the GARCH(1, 1) model in (7). Usu-
ally the GARCH coefficient b1 is found to be around 0.9 for many daily or weekly
financial time series. Given this value of b1, it is obvious that large values of σ2t−1 will
be followed by large values of σ2t , and small values of σ

2
t−1 will be followed by small

values of σ2t . The same reasoning can be obtained from the ARMA representation in
(8), where large/small changes in �2t−1 will be followed by large/small changes in �2t .

It is well known that the distribution of many high frequency financial time series
usually have fatter tails than a normal distribution. That is, extreme values occur
more often than implied by a normal distribution. [12] gave the condition for the
existence of the fourth order moment of a GARCH(1, 1) process. Assuming the
fourth order moment exists, [12] showed that the kurtosis implied by a GARCH(1, 1)
process with normal errors is greater than 3, the kurtosis of a normal distribution.
[51] and [52] extended these results to general GARCH(p, q) models. Thus a GARCH
model with normal errors can replicate some of the fat-tailed behavior observed in
financial time series. A more thorough discussion of extreme value theory for GARCH
is given by [24]. Most often a GARCH model with a non-normal error distribution
is required to fully capture the observed fat-tailed behavior in returns. These models
are reviewed in sub-Section 6.2.

Although financial markets may experience excessive volatility from time to time,
it appears that volatility will eventually settle down to a long run level. Recall, the
unconditional variance of �t for the stationary GARCH(1, 1) model is σ̄2 = a0/(1 −
a1 − b1). To see that the volatility is always pulled toward this long run, the ARMA
representation in (8) may be rewritten in mean-adjusted form as:

(�2t − σ̄2) = (a1 + b1)(�
2
t−1 − σ̄2) + ut − b1ut−1. (11)
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If the above equation is iterated k times, it follows that

(�2t+k − σ̄2) = (a1 + b1)
k(�2t − σ̄2) + ηt+k,

where ηt is a moving average process. Since a1 + b1 < 1 for a covariance stationary
GARCH(1, 1) model, (a1 + b1)

k → 0 as k →∞. Although at time t there may be a
large deviation between �2t and the long run variance, �

2
t+k − σ̄2 will approach zero

“on average” as k gets large; i.e., the volatility “mean reverts” to its long run level
σ̄2. The magnitude of a1 + b1 controls the speed of mean reversion. The so-called
half-life of a volatility shock, defined as ln(0.5)/ ln(a1 + b1), measures the average
time it takes for |�2t − σ̄2| to decrease by one half. Obviously, the closer a1 + b1 is to
one the longer is the half-life of a volatility shock. If a1+ b1 > 1, the GARCH model
is non-stationary and the volatility will eventually explode to infinity as k → ∞.
Similar arguments can be easily constructed for a GARCH(p, q) model.

The standard GARCH(p, q) model with Gaussian errors implies a symmetric dis-
tribution for yt and so cannot account for the observed asymmetry in the distribution
of returns. However, as shown in Section 6, asymmetry can easily be built into the
GARCH model by allowing �t to have an asymmetric distribution or by explicitly
modeling asymmetric behavior in the conditional variance equation (6).

3.4 Temporal Aggregation

Volatility clustering and non-Gaussian behavior in financial returns is typically seen
in weekly, daily or intraday data. The persistence of conditional volatility tends to
increase with the sampling frequency3. However, as shown in [32], for GARCHmodels
there is no simple aggregation principle that links the parameters of the model at
one sampling frequency to the parameters at another frequency. This occurs because
GARCH models imply that the squared residual process follows an ARMA type
process with MDS innovations which is not closed under temporal aggregation. The
practical result is that GARCH models tend to be fit to the frequency at hand. This
strategy, however, may not provide the best out-of-sample volatility forecasts. For
example, [68] showed that a GARCH model fit to S&P 500 daily returns produces
better forecasts of weekly and monthly volatility than GARCH models fit to weekly
or monthly returns, respectively.

4 Testing for ARCH/GARCH effects

The stylized fact of volatility clustering in returns manifests itself as autocorrelation
in squared and absolute returns or in the residuals from the estimated conditional
mean equation (10). The significance of these autocorrelations may be tested using

3The empirical result that aggregated returns exhibit smaller GARCH effects and approach
Gaussian behavior can be explained by the results of [26] who showed that a central limit the-
orem holds for standardized sums of random variables that follow covariance stationary GARCH
processes.
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the Ljung-Box or modified Q-statistic

MQ(p) = T (T + 2)

pX
j=1

ρ̂2j
T − j

, (12)

where ρ̂j denotes the j-lag sample autocorrelation of the squared or absolute returns.
If the data are white noise then theMQ(p) statistic has an asymptotic chi-square dis-
tribution with p degrees of freedom. A significant value for MQ(p) provides evidence
for time varying conditional volatility.

To test for autocorrelation in the raw returns when it is suspected that there are
GARCH effects present, [27] suggested using the following heteroskedasticity robust
version of (12)

MQHC(p) = T (T + 2)

pX
j=1

1

T − j

Ã
σ̂4

σ̂4 + γ̂j

!
ρ̂2j ,

where σ̂4 is a consistent estimate of the squared unconditional variance of returns,
and γ̂j is the sample autocovariance of squared returns.

Since an ARCH model implies an AR model for the squared residuals �2t , [33]
showed that a simple Lagrange multiplier (LM) test for ARCH effects can be con-
structed based on the auxiliary regression (5). Under the null hypothesis that there
are no ARCH effects, a1 = a2 = · · · = ap = 0, the test statistic

LM = T ·R2 (13)

has an asymptotic chi-square distribution with p degrees of freedom, where T is the
sample size and R2 is computed from the regression (5) using estimated residuals.
Even though the LM test is constructed from an ARCH model, [61] show that it
also has power against more general GARCH alternatives and so it can be used as a
general specification test for GARCH effects.

[64], however, argued that the LM test (13) may reject if there is general mis-
specification in the conditional mean equation (10). They showed that such misspec-
ification causes the estimated residuals �̂t to be serially correlated which, in turn,
causes �̂2t to be serially correlated. Therefore, care should be exercised in specifying
the conditional mean equation (10) prior to testing for ARCH effects.

4.1 Testing for ARCH Effects in Daily and Monthly Returns

Table 2 shows values of MQ(p) computed from daily and monthly squared returns
and the LM test for ARCH, for various values of p, for Microsoft and the S&P 500.
There is clear evidence of volatility clustering in the daily returns, but less evidence
for monthly returns especially for the S&P 500.

5 Estimation of GARCH Models

The general GARCH(p, q) model with normal errors is (2), (3) and (6) with zt ∼
iid N(0, 1). For simplicity, assume that Et−1[yt] = c. Given that �t follows Gaussian

9



MQ(p) r2t LM
Asset p 1 5 10 1 5 10

Daily Returns

MSFT
56.81
(0.000)

562.1
(0.000)

206.8
(0.000)

56.76
(0.000)

377.9
(0.000)

416.6
(0.000)

S&P 500
87.59
(0.000)

415.5
(0.000)

456.1
(0.000)

87.52
(0.000)

311.4
(0.000)

329.8
(0.000)

Monthly Returns

MSFT
0.463
(0.496)

17.48
(0.003)

31.59
(0.000)

0.455
(0.496)

16.74
(0.005)

33.34
(0.000)

S&P 500
1.296
(0.255)

2.590
(0.763)

6.344
(0.786)

1.273
(0.259)

2.229
(0.817)

5.931
(0.821)

Notes: p-values are in parentheses.

Table 2: Tests for ARCH Effects in Daily Stock Returns

distribution conditional on past history, the prediction error decomposition of the
log-likelihood function of the GARCH model conditional on initial values is

logL =
TX
t=1

lt = −T
2
log(2π)− 1

2

TX
t=1

log σ2t −
1

2

TX
t=1

�2t
σ2t

, (14)

where lt = −12(log(2π) + log σ2t ) − 1
2
�2t
σ2t
. The conditional loglikelihood (14) is used

in practice since the unconditional distribution of the initial values is not known
in closed form4. As discussed in [69] and [20], there are several practical issues to
consider in the maximization of (14). Starting values for the model parameters c, ai
(i = 0, · · · , p) and bj (j = 1, · · · , q) need to be chosen and an initialization of �2t and
σ2t must be supplied. The sample mean of yt is usually used as the starting value for
c, zero values are often given for the conditional variance parameters other than a0
and a1, and a0 is set equal to the unconditional variance of yt5. For the initial values
of σ2t , a popular choice is

σ2t = �2t =
1

T

TX
s=1

�2s, t ≤ 0,

where the initial values for �s are computed as the residuals from a regression of yt
on a constant.

Once the log-likelihood is initialized, it can be maximized using numerical op-
timization techniques. The most common method is based on a Newton-Raphson
iteration of the form

θ̂n+1 = θ̂n − λnH(θ̂n)
−1s(θ̂n),

4 [29] gave a computationally intensive numerical procedure for approximating the exact log-
likelihood.

5Setting the starting values for all of the ARCH coefficients ai (i = 1, . . . , p) to zero may create
an ill-behaved likelihood and lead to a local minimum since the remaining GARCH parameters are
not identified.
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where θn denotes the vector of estimated model parameters at iteration n, λn is a
scalar step-length parameter, and s(θn) and H(θn) denote the gradient (or score)
vector and Hessian matrix of the log-likelihood at iteration n, respectively. The step
length parameter λn is chosen such that lnL(θn+1) ≥ lnL(θn). For GARCH models,
the BHHH algorithm is often used. This algorithm approximates the Hessian matrix
using only first derivative information

−H(θ) ≈ B(θ) =
TX
t=1

∂lt
∂θ

∂lt
∂θ0

.

In the application of the Newton-Raphson algorithm, analytic or numerical deriva-
tives may be used. [41] provided algorithms for computing analytic derivatives for
GARCH models.

The estimates that maximize the conditional log-likelihood (14) are called the
maximum likelihood (ML) estimates. Under suitable regularity conditions, the ML
estimates are consistent and asymptotically normally distributed and an estimate of
the asymptotic covariance matrix of the ML estimates is constructed from an estimate
of the final Hessian matrix from the optimization algorithm used. Unfortunately,
verification of the appropriate regularity conditions has only been done for a limited
number of simple GARCH models, see [63], [60], [55], [56] and [81]. In practice, it is
generally assumed that the necessary regularity conditions are satisfied.

In GARCH models for which the distribution of zt is symmetric and the parame-
ters of the conditional mean and variance equations are variation free, the information
matrix of the log-likelihood is block diagonal. The implication of this is that the pa-
rameters of the conditional mean equation can be estimated separately from those
of the conditional variance equation without loss of asymptotic efficiency. This can
greatly simplify estimation. An common model for which block diagonality of the
information matrix fails is the GARCH-M model.

5.1 Numerical Accuracy of GARCH Estimates

GARCH estimation is widely available in a number of commercial software packages
(e.g. EVIEWS, GAUSS, MATLAB, Ox, RATS, S-PLUS, TSP) and there are also
a few free open source implementations. [41], [69], and [20] discussed numerical ac-
curacy issues associated with maximizing the GARCH log-likelihood. They found
that starting values, optimization algorithm choice, and use of analytic or numerical
derivatives, and convergence criteria all influence the resulting numerical estimates
of the GARCH parameters. [69] and [20] studied estimation of a GARCH(1,1) model
from a variety of commercial statistical packages using the exchange rate data of [15]
as a benchmark. They found that it is often difficult to compare competing software
since the exact construction of the GARCH likelihood is not always adequately de-
scribed. In general, they found that use of analytic derivatives leads to more accurate
estimation than procedures based on purely numerical evaluations.

In practice, the GARCH log-likelihood function is not always well behaved, es-
pecially in complicated models with many parameters, and reaching a global max-
imum of the log-likelihood function is not guaranteed using standard optimization
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techniques. Also, the positive variance and stationarity constraints are not straight-
forward to implement with common optimization software and are often ignored in
practice. Poor choice of starting values can lead to an ill-behaved log-likelihood and
cause convergence problems. Therefore, it is always a good idea to explore the surface
of the log-likelihood by perturbing the starting values and re-estimating the GARCH
parameters.

In many empirical applications of the GARCH(1,1) model, the estimate of a1
is close to zero and the estimate of b1 is close to unity. This situation is of some
concern since the GARCH parameter b1 becomes unidentified if a1 = 0, and it is
well known that the distribution of ML estimates can become ill-behaved in models
with nearly unidentified parameters. [66] studied the accuracy of ML estimates of
the GARCH parameters a0, a1 and b1 when a1 is close to zero. They found that the
estimated standard error for b1 is spuriously small and that the t-statistics for testing
hypotheses about the true value of b1 are severely size distorted. They also showed
that the concentrated loglikelihood as a function of b1 exhibits multiple maxima. To
guard against spurious inference they recommended comparing estimates from pure
ARCH(p) models, which do not suffer from the identification problem, with estimates
from the GARCH(1,1). If the volatility dynamics from these models are similar then
the spurious inference problem is not likely to be present.

5.2 Quasi-Maximum Likelihood Estimation

Another practical issue associated with GARCH estimation concerns the correct
choice of the error distribution. In particular, the assumption of conditional normality
is not always appropriate. However, as shown by [86] and [16], even when normal-
ity is inappropriately assumed, maximizing the Gaussian log-likelihood (14) results
in quasi-maximum likelihood estimates (QMLEs) that are consistent and asymptot-
ically normally distributed provided the conditional mean and variance functions of
the GARCH model are correctly specified. In addition, [16] derived an asymptotic
covariance matrix for the QMLEs that is robust to conditional non-normality. This
matrix is estimated using

H(θ̂QML)
−1B(θ̂QML)H(θ̂QML)

−1, (15)

where θ̂QML denotes the QMLE of θ, and is often called the “sandwich” estima-
tor. The coefficient standard errors computed from the square roots of the diagonal
elements of (15) are sometimes called “Bollerslev-Wooldridge” standard errors. Of
course, the QMLEs will be less efficient than the true MLEs based on the correct er-
ror distribution. However, if the normality assumption is correct then the sandwich
covariance is asymptotically equivalent to the inverse of the Hessian. As a result, it
is good practice to routinely use the sandwich covariance for inference purposes.

[35] and [16] evaluated the accuracy of the quasi-maximum likelihood estimation
of GARCH(1,1) models. They found that if the distribution of zt in (3) is symmetric,
then QMLE is often close to the MLE. However, if zt has a skewed distribution then
the QMLE can be quite different from the MLE.
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5.3 Model Selection

An important practical problem is the determination of the ARCH order p and the
GARCH order q for a particular series. Since GARCH models can be treated as
ARMA models for squared residuals, traditional model selection criteria such as the
Akaike information criterion (AIC) and the Bayesian information criterion (BIC) can
be used for selecting models. For daily returns, if attention is restricted to pure
ARCH(p) models it is typically found that large values of p are selected by AIC and
BIC. For GARCH(p, q) models, those with p, q ≤ 2 are typically selected by AIC
and BIC. Low order GARCH(p,q) models are generally preferred to a high order
ARCH(p) for reasons of parsimony and better numerical stability of estimation (high
order GARCH(p, q) processes often have many local maxima and minima). For many
applications, it is hard to beat the simple GARCH(1,1) model.

5.4 Evaluation of Estimated GARCH models

After a GARCH model has been fit to the data, the adequacy of the fit can be
evaluated using a number of graphical and statistical diagnostics. If the GARCH
model is correctly specified, then the estimated standardized residuals �̂t/σ̂t should
behave like classical regression residuals; i.e., they should not display serial correla-
tion, conditional heteroskedasticity or any type of nonlinear dependence. In addition,
the distribution of the standardized residuals �̂t/σ̂t should match the specified error
distribution used in the estimation.

Graphically, ARCH effects reflected by serial correlation in �̂2t /σ̂
2
t can be uncovered

by plotting its SACF. The modified Ljung-Box statistic (12) can be used to test the
null of no autocorrelation up to a specific lag, and Engle’s LM statistic (13) can be
used to test the null of no remaining ARCH effects6. If it is assumed that the errors
are Gaussian, then a plot of �̂t/σ̂t against time should have roughly ninety five percent
of its values between ±2; a normal qq-plot of �̂t/σ̂t should look roughly linear7; and
the JB statistic should not be too much larger than six.

5.5 Estimation of GARCH Models for Daily and Monthly Returns

Table 3 gives model selection criteria for a variety of GARCH(p, q) fitted to the daily
returns on Microsoft and the S&P 500. For pure ARCH(p) models, an ARCH(5)
is chosen by all criteria for both series. For GARCH(p, q) models, AIC picks a
GARCH(2,1) for both series and BIC picks a GARCH(1,1) for both series8.

Table 4 gives QMLEs of the GARCH(1,1) model assuming normal errors for the
Microsoft and S&P 500 daily returns. For both series, the estimates of a1 are around

6These tests should be viewed as indicative, since the distribution of the tests are influenced by
the estimation of the GARCH model. For valid LM tests, the partial derivatives of σ2t with respect
to the conditional volatility parameters should be added as additional regressors in the auxiliary
regression (5) based on estimated residuals.

7 If an error distribution other than the Gaussian is assumed, then the qq-plot should be con-
structed using the quantiles of the assumed distribution.

8The low log-likelihood values for the GARCH(2,2) models indicate that a local maximum was
reached.
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(p, q) Asset AIC BIC Likelihood
(1,0) MSFT -19977 -19958 9992

S&P 500 -27337 -27318 13671
(2,0) MSFT -20086 -20060 10047

S&P 500 -27584 -27558 13796
(3,0) MSFT -20175 -20143 10092

S&P 500 -27713 -27681 13861
(4,0) MSFT -20196 -20158 10104

S&P 500 -27883 -27845 13947
(5,0) MSFT -20211 -20166 10113

S&P 500 -27932 -27887 13973
(1,1) MSFT -20290 -20264 10149

S&P 500 -28134 -28109 14071
(1,2) MSFT -20290 -20258 10150

S&P 500 -28135 -28103 14072
(2,1) MSFT -20292 -20260 10151

S&P 500 -28140 -28108 14075
(2,2) MSFT -20288 -20249 10150

S&P 500 -27858 -27820 13935

Table 3: Model Selection Criteria for Estimated GARCH(p,q) Models.

0.09 and the estimates of b1 are around 0.9. Using both ML and QML standard er-
rors, these estimates are statistically different from zero. However, the QML standard
errors are considerably larger than the ML standard errors. The estimated volatility
persistence, a1 + b1, is very high for both series and implies half-lives of shocks to
volatility to Microsoft and the S&P 500 of 15.5 days and 76 days, respectively. The
unconditional standard deviation of returns, σ̄ =

p
a0/(1− a1 − b1), for Microsoft

and the S&P 500 implied by the GARCH(1,1) models are 0.0253 and 0.0138, respec-
tively, and are very close to the sample standard deviations of returns reported in
Table 1.

Estimates of GARCH-M(1,1) models for Microsoft and the S&P 500, where σt
is added as a regressor to the mean equation, show small positive coefficients on σt
and essentially the same estimates for the remaining parameters as the GARCH(1,1)
models.

Figure 4 shows the first differences of returns along with the fitted one-step-
ahead volatilities, σ̂t, computed from the GARCH(1,1) and ARCH(5) models. The
ARCH(5) and GARCH(1,1) models do a good job of capturing the observed volatil-
ity clustering in returns. The GARCH(1,1) volatilities, however, are smoother and
display more persistence than the ARCH(5) volatilities.

Graphical diagnostics from the fitted GARCH(1,1) models are illustrated in Fig-
ure 5. The SACF of �̂2t /σ̂

2
t does not indicate any significant autocorrelation, but

the normal qq-plot of �̂t/σ̂t shows strong departures from normality. The last three
columns of Table 4 give the standard statistical diagnostics of the fitted GARCH
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GARCH Parameters Residual Diagnostics
Asset a0 a1 b1 MQ(12) LM(12) JB

Daily Returns

MSFT
2.80e−5

(3.42e−6)
[1.10e−5]

0.0904
(0.0059)
[0.0245]

0.8658
(0.0102)
[0.0371]

4.787
(0.965)

4.764
(0.965)

1751
(0.000)

S&P 500
1.72e−6

(2.00e−7)
[1.25e−6]

0.0919
(0.0029)
[0.0041]

0.8990
(0.0046)
[0.0436]

5.154
(0.953)

5.082
(0.955)

5067
(0.000)

Monthly Returns

MSFT
0.0006
[0.0006]

0.1004
[0.0614]

0.8525
[0.0869]

8.649
(0.733)

6.643
(0.880)

3.587
(0.167)

S&P 500
3.7e−5

[9.6e−5]
0.0675
[0.0248]

0.9179
[0.0490]

3.594
(0.000)

3.660
(0.988)

72.05
(0.000)

Notes: QML standard errors are in brackets.

Table 4: Estimates of GARCH(1,1) Model with Diagnostics.

models. Consistent with the SACF, the MQ statistic and Engle’s LM statistic do
not indicate remaining ARCH effects. Furthermore, the extremely large JB statistic
confirms nonnormality.

Table 4 also shows estimates of GARCH(1,1) models fit to the monthly returns.
The GARCH(1,1) models fit to the monthly returns are remarkable similar to those
fit to the daily returns. There are, however, some important differences. The monthly
standardized residuals are much closer to the normal distribution, especially for Mi-
crosoft. Also, the GARCH estimates for the S&P 500 reflect some of the character-
istics of spurious GARCH effects as discussed in [66]. In particular, the estimate of
a1 is close to zero, and has a relatively large QML standard error, and the estimate
of b1 is close to one and has a very small standard error.

6 GARCH Model Extensions

In many cases, the basic GARCH conditional variance equation (6) under normality
provides a reasonably good model for analyzing financial time series and estimating
conditional volatility. However, in some cases there are aspects of the model which
can be improved so that it can better capture the characteristics and dynamics of a
particular time series. For example, the empirical analysis in the previous Section
showed that for the daily returns on Microsoft and the S&P 500, the normality
assumption may not be appropriate and there is evidence of nonlinear behavior in
the standardized residuals from the fitted GARCH(1,1) model. This Section discusses
several extensions to the basic GARCH model that make GARCH modeling more
flexible.
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Figure 4: One-step ahead volatilities from fitted ARCH(5) and GARCH(1,1) models
for Microsoft and S&P 500 index.

6.1 Asymmetric Leverage Effects and News Impact

In the basic GARCH model (6), since only squared residuals �2t−i enter the conditional
variance equation, the signs of the residuals or shocks have no effect on conditional
volatility. However, a stylized fact of financial volatility is that bad news (negative
shocks) tends to have a larger impact on volatility than good news (positive shocks).
That is, volatility tends to be higher in a falling market than in a rising market. [10]
attributed this effect to the fact that bad news tends to drive down the stock price,
thus increasing the leverage (i.e., the debt-equity ratio) of the stock and causing the
stock to be more volatile. Based on this conjecture, the asymmetric news impact on
volatility is commonly referred to as the leverage effect.

6.1.1 Testing for Asymmetric Effects on Conditional Volatility

A simple diagnostic for uncovering possible asymmetric leverage effects is the sample
correlation between r2t and rt−1. A negative value of this correlation provides some
evidence for potential leverage effects. Other simple diagnostics, suggested by [39],
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Figure 5: Graphical residual diagnostics from fitted GARCH(1,1) models to Microsoft
and S&P 500 returns.

result from estimating the following test regression

ε̂2t = β0 + β1ŵt−1 + ξt,

where ε̂t is the estimated residual from the conditional mean equation (10), and ŵt−1
is a variable constructed from ε̂t−1 and the sign of ε̂t−1. A significant value of β1
indicates evidence for asymmetric effects on conditional volatility. Let S−t−1 denote
a dummy variable equal to unity when ε̂t−1 is negative, and zero otherwise. Engle
and Ng consider three tests for asymmetry. Setting ŵt−1 = S−t−1 gives the Sign
Bias test; setting ŵt−1 = S−t−1ε̂t−1 gives the Negative Size Bias test; and setting
ŵt−1 = S+t−1ε̂t−1 gives the Positive Size Bias test.

6.1.2 Asymmetric GARCH Models

The leverage effect can be incorporated into a GARCH model in several ways. [71]
proposed the following exponential GARCH (EGARCH) model to allow for leverage
effects

ht = a0 +

pX
i=1

ai
|�t−i|+ γi�t−i

σt−i
+

qX
j=1

bjht−j , (16)
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where ht = log σ2t . Note that when �t−i is positive or there is “good news”, the
total effect of �t−i is (1 + γi)|�t−i|; in contrast, when �t−i is negative or there is “bad
news”, the total effect of �t−i is (1− γi)|�t−i|. Bad news can have a larger impact on
volatility, and the value of γi would be expected to be negative. An advantage of the
EGARCH model over the basic GARCH model is that the conditional variance σ2t is
guaranteed to be positive regardless of the values of the coefficients in (16), because
the logarithm of σ2t instead of σ

2
t itself is modeled. Also, the EGARCH is covariance

stationary provided
Pq

j=1 bj < 1.
Another GARCH variant that is capable of modeling leverage effects is the thresh-

old GARCH (TGARCH) model,9 which has the following form

σ2t = a0 +

pX
i=1

ai�
2
t−i +

pX
i=1

γiSt−i�
2
t−i +

qX
j=1

bjσ
2
t−j , (17)

where

St−i =
½
1 if �t−i < 0
0 if �t−i ≥ 0 .

That is, depending on whether �t−i is above or below the threshold value of zero,
�2t−i has different effects on the conditional variance σ

2
t : when �t−i is positive, the

total effects are given by ai�
2
t−i; when �t−i is negative, the total effects are given by

(ai + γi)�
2
t−i. So one would expect γi to be positive for bad news to have larger

impacts.
[31] extended the basic GARCH model to allow for leverage effects. Their power

GARCH (PGARCH(p, d, q)) model has the form

σdt = a0 +

pX
i=1

ai(|�t−i|+ γi�t−i)
d +

qX
j=1

bjσ
d
t−j , (18)

where d is a positive exponent, and γi denotes the coefficient of leverage effects.
When d = 2, (18) reduces to the basic GARCH model with leverage effects. When
d = 1, the PGARCH model is specified in terms of σt which tends to be less sensitive
to outliers than when d = 2. The exponent d may also be estimated as an additional
parameter which increases the flexibility of the model. [31] showed that the PGARCH
model also includes many other GARCH variants as special cases.

Many other asymmetric GARCH models have been proposed based on smooth
transition and Markov switching models. See [44] and [83] for excellent surveys of
these models.

6.1.3 News Impact Curve

The GARCH, EGARCH, TGARCH and PGARCHmodels are all capable of modeling
leverage effects. To clearly see the impact of leverage effects in these models, [75],
and [39] advocated the use of the so-called news impact curve. They defined the news

9The original TGARCH model proposed by [87] models σt instead of σ2t . The TGARCH model
is also known as the GJR model because [47] proposed essentially the same model.
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GARCH(1, 1) σ2t = A+ a1(|�t−1|+ γ1�t−1)2

A = a0 + b1σ̄
2

σ̄2 = a0/[1− a1(1 + γ21)− b1]

TGARCH(1, 1) σ2t = A+ (a1 + γ1St−1)�2t−1
A = a0 + b1σ̄

2

σ̄2 = a0/[1− (a1 + γ1/2)− b1]

PGARCH(1, 1, 1) σ2t = A+ 2
√
Aa1(|�t−1|+ γ1�t−1)

+a21(|�t−1|+ γ1�t−1)2, A = (a0 + b1σ̄)
2

σ̄2 = a20/[1− a1/
p
2/π − b1]

2

EGARCH(1, 1) σ2t = A exp{a1(|�t−1|+ γ1�t−1)/σ̄}
A = σ̄2b1 exp{a0}

σ̄2 = exp{(a0 + a1
p
2/π)/(1− b1)}

Table 5: News impact curves for asymmetric GARCH processes. σ̄2 denotes the
unconditional variance.

Asset corr(r2t , rt−1) Sign Bias Negative Size Bias Positive Size Bias

Microsoft −0.0315 −0.4417
(0.6587)

−6.816
(0.000)

3.174
(0.001)

S&P 500 −0.098 2.457
(0.014)

−11.185
(0.000)

1.356
(0.175)

Notes: p-values are in parentheses.

Table 6: Tests for Asymmetric GARCH Effects.

impact curve as the functional relationship between conditional variance at time t
and the shock term (error term) at time t−1, holding constant the information dated
t−2 and earlier, and with all lagged conditional variance evaluated at the level of the
unconditional variance. Table 5 summarizes the expressions defining the news impact
curves, which include expressions for the unconditional variances, for the asymmetric
GARCH(1,1) models.

6.1.4 Asymmetric GARCH Models for Daily Returns

Table 6 shows diagnostics and tests for asymmetric effects in the daily returns on
Microsoft and the S&P 500. The correlation between r2t and rt−1 is negative and
fairly small for both series indicating weak evidence for asymmetry. However, the
Size Bias tests clearly indicate asymmetric effects with the Negative Size Bias test
giving the most significant results.

Table 7 gives the estimation results for EGARCH(1,1), TGARCH(1,1) and PGARCH(1,d,1)
models for d = 1, 2. All of the asymmetric models show statistically significant lever-
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Model a0 a1 b1 γ1 BIC
Microsoft

EGARCH
−0.7273
[0.4064]

0.2144
[0.0594]

0.9247
[0.0489]

−0.2417
[0.0758]

-20265

TGARCH
3.01e−5

[1.02e−5]
0.0564
[0.0141]

0.8581
[0.0342]

0.0771
[0.0306]

-20291

PGARCH 2
2.87e−5

[9.27e−6]
0.0853
[0.0206]

0.8672
[0.0313]

−0.2164
[0.0579]

-20290

PGARCH 1
0.0010
[0.0006]

0.0921
[0.0236]

0.8876
[0.0401]

−0.2397
[0.0813]

-20268

S&P 500

EGARCH
−0.2602
[0.3699]

0.0720
[0.0397]

0.9781
[0.0389]

−0.3985
[0.4607]

-28051

TGARCH
1.7e−6

[7.93e−7]
0.0157
[0.0081]

0.9169
[0.0239]

0.1056
0.0357

-28200

PGARCH 2
1.78e−6

[8.74e−7]
0.0578
[0.0165]

0.9138
[0.0253]

−0.4783
[0.0910]

-28202

PGARCH 1
0.0002
[2.56e−6]

0.0723
[0.0003]

0.9251
[8.26e−6]

−0.7290
[0.0020]

-28253

Notes: QML standard errors are in brackets.

Table 7: Estimates of Asymmetric GARCH(1,1) Models.

age effects, and lower BIC values than the symmetric GARCH models. Model selec-
tion criteria indicate that the TGARCH(1,1) is the best fitting model for Microsoft,
and the PGARCH(1,1,1) is the best fitting model for the S&P 500.

Figure 6 shows the estimated news impact curves based on these models. In
this plot, the range of �t is determined by the residuals from the fitted models. The
TGARCH and PGARCH(1,2,1) models have very similar NICs and show much larger
responses to negative shocks than to positive shocks. Since the EGARCH(1,1) and
PGARCH(1,1,1) models are more robust to extreme shocks, impacts of small (large)
shocks for these model are larger (smaller) compared to those from the other models
and the leverage effect is less pronounced.

6.2 Non-Gaussian Error Distributions

In all the examples illustrated so far, a normal error distribution has been exclusively
used. However, given the well known fat tails in financial time series, it may be more
appropriate to use a distribution which has fatter tails than the normal distribution.
The most common fat-tailed error distributions for fitting GARCH models are: the
Student’s t distribution; the double exponential distribution; and the generalized
error distribution.

[13] proposed fitting a GARCH model with a Student’s t distribution for the
standardized residual. If a random variable ut has a Student’s t distribution with ν
degrees of freedom and a scale parameter st, the probability density function (pdf)
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Figure 6: News impact curves from fitted asymmetric GARCH(1,1) models for Mi-
crosoft and S&P 500 index.

of ut is given by

f(ut) =
Γ[(ν + 1)/2]

(πν)1/2Γ(ν/2)

s
−1/2
t

[1 + u2t /(stν)]
(ν+1)/2

,

where Γ(·) is the gamma function. The variance of ut is given by

var(ut) =
stν

ν − 2 , v > 2.

If the error term �t in a GARCH model follows a Student’s t distribution with ν
degrees of freedom and vart−1(�t) = σ2t , the scale parameter st should be chosen to
be

st =
σ2t (ν − 2)

ν
.

Thus the log-likelihood function of a GARCH model with Student’s t distributed
errors can be easily constructed based on the above pdf.

[71] proposed to use the generalized error distribution (GED) to capture the fat
tails usually observed in the distribution of financial time series. If a random variable
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ut has a GED with mean zero and unit variance, the pdf of ut is given by

f(ut) =
ν exp[−(1/2)|ut/λ|ν ]
λ · 2(ν+1)/νΓ(1/ν) ,

where

λ =

"
2−2/νΓ(1/ν)
Γ(3/ν)

#1/2
,

and ν is a positive parameter governing the thickness of the tail behavior of the
distribution. When ν = 2 the above pdf reduces to the standard normal pdf; when
ν < 2, the density has thicker tails than the normal density; when ν > 2, the density
has thinner tails than the normal density.

When the tail thickness parameter ν = 1, the pdf of GED reduces to the pdf of
double exponential distribution:

f(ut) =
1√
2
e−
√
2|ut|.

Based on the above pdf, the log-likelihood function of GARCH models with GED or
double exponential distributed errors can be easily constructed. See to [48] for an
example.

Several other non-Gaussian error distribution have been proposed. [42] introduced
the asymmetric Student’s t distribution to capture both skewness and excess kurtosis
in the standardized residuals. [85] proposed the normal inverse Gaussian distribution.
[45] provided a very flexible seminonparametric innovation distribution based on a
Hermite expansion of a Gaussian density. Their expansion is capable of capturing
general shape departures from Gaussian behavior in the standardized residuals of the
GARCH model.

6.2.1 Non-Gaussian GARCH Models for Daily Returns

Table 8 gives estimates of the GARCH(1,1) and best fitting asymmetric GARCH(1,1)
models using Student’s t innovations for the Microsoft and S&P 500 returns. Model
selection criteria indicated that models using the Student’s t distribution fit better
than the models using the GED distribution. The estimated degrees of freedom for
Microsoft is about 7, and for the S&P 500 about 6. The use of t-distributed errors
clearly improves the fit of the GARCH(1,1) models. Indeed, the BIC values are even
lower than the values for the asymmetric GARCH(1,1) models based on Gaussian
errors (see Table 7). Overall, the asymmetric GARCH(1,1) models with t-distributed
errors are the best fitting models. The qq-plots in Figure 7 shows that the Student’s t
distribution adequately captures the fat-tailed behavior in the standardized residuals
for Microsoft but not for the S&P 500 index.

7 Long Memory GARCH Models

If returns follow a GARCH(p, q) model, then the autocorrelations of the squared and
absolute returns should decay exponentially. However, the SACF of r2t and |rt| for
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Model a0 a1 b1 γ1 v BIC
Microsoft

GARCH
3.39e−5

[1.52e−5]
0.0939
[0.0241]

0.8506
[0.0468]

6.856
[0.7121

-20504

TGARCH
3.44e−5

[1.20e−5]
0.0613
[0.0143]

0.8454
[0.0380]

0.0769
[0.0241]

7.070
[0.7023]

-20511

S&P 500

GARCH
5.41e−7

[2.15e−7]
0.0540
[0.0095]

0.0943
[0.0097]

5.677
[0.5571]

-28463

PGARCH
d = 1

0.0001
[0.0002]

0.0624
[0.0459]

0.9408
[0.0564]

−0.7035
[0.0793]

6.214
[0.6369]

-28540

Notes: QML standard errors are in brackets.

Table 8: Estimates of Non Gaussian GARCH(1,1) Models.

Microsoft and the S&P 500 in Figure 2 appear to decay much more slowly. This is
evidence of so-called long memory behavior. Formally, a stationary process has long
memory or long range dependence if its autocorrelation function behaves like

ρ(k)→ Cρk
2d−1 as k→∞,

where Cρ is a positive constant, and d is a real number between 0 and 1
2 . Thus the

autocorrelation function of a long memory process decays slowly at a hyperbolic rate.
In fact, it decays so slowly that the autocorrelations are not summable:

∞X
k=−∞

ρ(k) =∞.

It is important to note that the scaling property of the autocorrelation function does
not dictate the general behavior of the autocorrelation function. Instead, it only
specifies the asymptotic behavior when k →∞ . What this means is that for a long
memory process, it is not necessary for the autocorrelation to remain significant at
large lags as long as the autocorrelation function decays slowly. [8] gives an example
to illustrate this property.

The following subSections describe testing for long memory and GARCH models
that can capture long memory behavior in volatility. Explicit long memory GARCH
models are discussed in [83].

7.1 Testing for Long Memory

One of the best-known and easiest to use tests for long memory or long range de-
pendence is the rescaled range (R/S) statistic, which was originally proposed by [53],
and later refined by [67] and his coauthors. The R/S statistic is the range of partial
sums of deviations of a time series from its mean, rescaled by its standard deviation.
Specifically, consider a time series yt, for t = 1, · · · , T . The R/S statistic is defined
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Figure 7: QQ-plots of Standardized Residuals from Asymmetric GARCH(1,1) models
with Student’s t errors.

as

QT =
1

sT

⎡⎣ max
1≤k≤T

kX
j=1

(yj − ȳ)− min
1≤k≤T

kX
j=1

(yj − ȳ)

⎤⎦ , (19)

where ȳ = 1/T
PT

i=1 yi and sT =
q
1/T

PT
i=1(yi − ȳ)2. If yt is iid with finite variance,

then
1√
T
QT ⇒ V,

where ⇒ denotes weak convergence and V is the range of a Brownian bridge on the
unit interval. [62] gives selected quantiles of V .

[62] pointed out that the R/S statistic is not robust to short range dependence. In
particular, if yt is autocorrelated (has short memory) then the limiting distribution
of QT/

√
T is V scaled by the square root of the long run variance of yt. To allow for

short range dependence in yt, [62] modified the R/S statistic as follows

Q̃T =
1

σ̂T (q)

⎡⎣ max
1≤k≤T

kX
j=1

(yj − ȳ)− min
1≤k≤T

kX
j=1

(yj − ȳ)

⎤⎦ , (20)
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where the sample standard deviation is replaced by the square root of the Newey-
West ([73]) estimate of the long run variance with bandwidth q.10 [62] showed that if
there is short memory but no long memory in yt, Q̃T also converges to V , the range
of a Brownian bridge. [18] found that (20) is effective for detecting long memory
behavior in asset return volatility.

7.2 Two Component GARCH Model

In the covariance stationary GARCH model the conditional volatility will always
mean revert to its long run level unconditional value. Recall the mean reverting
form of the basic GARCH(1, 1) model in (11). In many empirical applications, the
estimated mean reverting rate â1 + b̂1 is often very close to 1. For example, the
estimated value of a1 + b1 from the GARCH(1,1) model for the S&P 500 index is
0.99 and the half life of a volatility shock implied by this mean reverting rate is
ln(0.5)/ ln(0.956) = 76.5 days. So the fitted GARCH(1,1) model implies that the
conditional volatility is very persistent.

[37] suggested that the high persistence and long memory in volatility may be due
to a time-varying long run volatility level. In particular, they suggested decomposing
conditional variance into two components

σ2t = qt + st, (21)

where qt is a highly persistent long run component, and st is a transitory short run
component. Long memory behavior can often be well approximated by a sum of two
such components. A general form of the two components model that is based on a
modified version of the PGARCH(1, d, 1) is

σdt = qdt + sdt , (22)

qdt = α1|�t−1|d + β1q
d
t−1, (23)

sdt = a0 + α2|�t−1|d + β2s
d
t−1. (24)

Here, the long run component qt follows a highly persistent PGARCH(1, d, 1) model
and the transitory component st follows another PGARCH(1, d, 1)model. For the two
components to be separately identified the parameters should satisfy 1 < (α1+β1) <
(α2 + β2). It can be shown that the reduced form of the two components model is

σdt = a0 + (α1 + α2)|�t−1|d − (α1β2 + α2β1)|�t−2|d
+ (β1 + β2)σ

d
t−1 − β1β2σ

d
t−2,

which is in the form of a constrained PGARCH(2, d, 2) model. However, the two
components model is not fully equivalent to the PGARCH(2, d, 2) model because not
all PGARCH(2, d, 2) models have the component structure. Since the two compo-
nents model is a constrained version of the PGARCH(2, d, 2) model, the estimation
of a two components model is often numerically more stable than the estimation of
an unconstrained PGARCH(2, d, 2) model.

10The long-run variance is the asymptotic variance of
√
T (ȳ − μ).
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Asset Q̃T

r2t |rt|
Microsoft 2.3916 3.4557
S&P 500 2.3982 5.1232

Table 9: Modified R/S Tests for Long Memory.

a0 α1 β1 α2 β2 v BIC
Microsoft

2.86e−6

[1.65e−6]
0.0182
[0.0102]

0.9494
[0.0188]

0.0985
[0.0344]

0.7025
[0.2017]

-20262

1.75e−6

5.11e−7
0.0121
[0.0039]

0.9624
[0.0098]

0.0963
[0.0172]

0.7416
[0.0526]

6.924
[0.6975]

-20501

S&P 500
3.2e−8

[1.14e−8]
0.0059
[0.0013]

0.9848
[0.0000]

0.1014
[0.0221]

0.8076
[0.0001]

−28113
1.06e−8

[1.26e−8]
0.0055
[0.0060]

0.9846
[0.0106]

0.0599
[0.0109]

0.8987
[0.0375]

5.787
[0.5329]

−28457
Notes: QML standard errors are in brackets.

Table 10: Estimates of Two Component GARCH(1,1) Models.

7.3 Integrated GARCH Model

The high persistence often observed in fitted GARCH(1,1) models suggests that
volatility might be nonstationary implying that a1 + b1 = 1, in which case the
GARCH(1,1) model becomes the integrated GARCH(1,1) or IGARCH(1,1) model.
In the IGARCH(1,1) model the unconditional variance is not finite and so the model
does not exhibit volatility mean reversion. However, it can be shown that the model is
strictly stationary provided E[ln(a1z2t +b1)] < 0. If the IGARCH(1,1) model is strictly
stationary then the parameters of the model can still be consistently estimated by
MLE.

[27] argued against the IGARCH specification for modeling highly persistent
volatility processes for two reasons. First, they argue that the observed convergence
toward normality of aggregated returns is inconsistent with the IGARCH model. Sec-
ond, they argue that observed IGARCH behavior may result from misspecification
of the conditional variance function. For example, a two components structure or
ignored structural breaks in the unconditional variance ([58] and [70]) can result in
IGARCH behavior.

7.4 Long Memory GARCH Models for Daily Returns

Table 9 gives Lo’s modified R/S statistic (20) applied to r2t and |rt| for Microsoft
and the S&P 500. The 1% right tailed critical value for the test is 2.098 ([62] Table
5.2) and so the modified R/S statistics are significant at the 1% level for both series
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providing evidence for long memory behavior in volatility.
Table 10 shows estimates of the two component GARCH(1,1) with d = 2, using

Gaussian and Student’s t errors, for the daily returns on Microsoft and the S&P 500.
Notice that the BIC values are smaller than the BIC values for the unconstrained
GARCH(2,2) models given in Table 3, which confirms the better numerical stability
of the two component model. For both series, the two components are present and
satisfy 1 < (α1+β1) < (α2+β2). For Microsoft, the half-lives of the two components
from the Gaussian (Student’s t) models are 21 (26.8) days and 3.1 (3.9) days, re-
spectively. For the S&P 500, the half-lives of the two components from the Gaussian
(Student’s t) models are 75 (69.9) days and 7.3 (16.4) days, respectively.

8 GARCH Model Prediction

An important task of modeling conditional volatility is to generate accurate forecasts
for both the future value of a financial time series as well as its conditional volatility.
Volatility forecasts are used for risk management, option pricing, portfolio allocation,
trading strategies and model evaluation. Since the conditional mean of the general
GARCH model (10) assumes a traditional ARMA form, forecasts of future values
of the underlying time series can be obtained following the traditional approach for
ARMA prediction. However, by also allowing for a time varying conditional variance,
GARCH models can generate accurate forecasts of future volatility, especially over
short horizons. This Section illustrates how to forecast volatility using GARCH
models.

8.1 GARCH and Forecasts for the Conditional Mean

Suppose one is interested in forecasting future values of yT in the standard GARCH
model described by (2), (3) and (6). For simplicity assume that ET [yT+1] = c. Then
the minimum mean squared error h− step ahead forecast of yT+h is just c, which
does not depend on the GARCH parameters, and the corresponding forecast error is

�T+h = yT+h −ET [yT+h].

The conditional variance of this forecast error is then

varT (�T+h) = ET [σ
2
T+h],

which does depend on the GARCH parameters. Therefore, in order to produce
confidence bands for the h−step ahead forecast the h−step ahead volatility forecast
ET [σ

2
T+h] is needed.

8.2 Forecasts from the GARCH(1,1) Model

For simplicity, consider the basic GARCH(1, 1) model (7) where �t = ztσt such that
zt ∼ iid (0, 1) and has a symmetric distribution. Assume the model is to be estimated
over the time period t = 1, 2, · · · , T . The optimal, in terms of mean-squared error,
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forecast of σ2T+k given information at time T is ET [σ
2
T+k] and can be computed using

a simple recursion. For k = 1,

ET [σ
2
T+1] = a0 + a1ET [�

2
T ] + b1ET [σ

2
T ] (25)

= a0 + a1�
2
T + b1σ

2
T ,

where it assumed that �2T and σ2T are known
11. Similarly, for k = 2

ET [σ
2
T+2] = a0 + a1ET [�

2
T+1] + b1ET [σ

2
T+1]

= a0 + (a1 + b1)ET [σ
2
T+1].

since ET [�
2
T+1] = ET [z

2
T+1σ

2
T+1] = ET [σ

2
T+1]. In general, for k ≥ 2

ET [σ
2
T+k] = a0 + (a1 + b1)ET [σ

2
T+k−1]

= a0

k−1X
i=0

(a1 + b1)
i + (a1 + b1)

k−1(a1�2T + b1σ
2
T ). (26)

An alternative representation of the forecasting equation (26) starts with the mean-
adjusted form

σ2T+1 − σ̄2 = a1(�
2
T − σ̄2) + b1(σ

2
T − σ̄2),

where σ̄2 = a0/(1− a1 − b1) is the unconditional variance. Then by recursive substi-
tution

ET [σ
2
T+k]− σ̄2 = (a1 + b1)

k−1(E[σ2T+1]− σ̄2). (27)

Notice that as k → ∞, the volatility forecast in (26) approaches σ̄2 if the GARCH
process is covariance stationary and the speed at which the forecasts approaches σ̄2

is captured by a1 + b1.
The forecasting algorithm (26) produces forecasts for the conditional variance

σ2T+k. The forecast for the conditional volatility, σT+k, is usually defined as the
square root of the forecast for σ2T+k.

The GARCH(1,1) forecasting algorithm (25) is closely related to an exponentially
weighted moving average (EWMA) of past values of �2t . This type of forecast is
commonly used by RiskMetrics ([54]). The EWMA forecast of σ2T+1 has the form

σ2T+1,EWMA = (1− λ)
∞X
s=0

λs�2t−s (28)

for λ ∈ (0, 1). In (28), the weights sum to one, the first weight is 1−λ, and the remain-
ing weights decline exponentially. To relate the EWMA forecast to the GARCH(1,1)
formula (25), (28) may be re-expressed as

σ2T+1,EWMA = (1− λ)�2T + λσ2T,EWMA = �2T + λ(σ2T,EWMA − �2T ),

11 In practice, a0, a1, b1, �T and σ2T are the fitted values computed from the estimated GARCH(1,1)
model instead of the unobserved “true” values.
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which is of the form (25) with a0 = 0, a1 = 1 − λ and b1 = λ. Therefore, the
EWMA forecast is equivalent to the forecast from a restricted IGARCH(1,1) model.
It follows that for any h > 0, σ2T+h,EWMA = σ2T,EWMA. As a result, unlike the
GARCH(1,1) forecast, the EWMA forecast does not exhibit mean reversion to a
long-run unconditional variance.

8.3 Forecasts from Asymmetric GARCH(1,1) Models

To illustrate the asymmetric effects of leverage on forecasting, consider the TGARCH(1,1)
model (17) at time T

σ2T = a0 + a1�
2
T−1 + γ1ST−1�

2
T−1 + b1σ

2
T−1.

Assume that �t has a symmetric distribution about zero. The forecast for T +1 based
on information at time T is

ET [σ
2
T+1] = a0 + a1�

2
T + γ1ST �

2
T + b1σ

2
T ,

where it assumed that �2T , ST and σ
2
T are known. Hence, the TGARCH(1,1) forecast

for T + 1 will be different than the GARCH(1,1) forecast if ST = 1 (�T < 0). The
forecast at T + 2 is

ET [σ
2
T+2] = a0 + a1ET [�

2
T+1] + γ1ET [ST+1�

2
T+1] + b1ET [σ

2
T+1]

= a0 +
³γ1
2
+ a1 + b1

´
ET [σ

2
T+1],

which follows since ET [ST+1�
2
T+1] = ET [ST+1]ET [�

2
T+1] =

1
2ET [σ

2
T+1]. Notice that the

asymmetric impact of leverage is present even if ST = 0. By recursive substitution
for the forecast at T + h is

ET [σ
2
T+h] = a0 +

³γ1
2
+ a1 + b1

´h−1
ET [σ

2
T+1], (29)

which is similar to the GARCH(1,1) forecast (26). The mean reverting form (29) is

ET [σ
2
T+h]− σ̄2 =

³γ1
2
+ a1 + b1

´h−1 ¡
ET [σ

2
T+h]− σ̄2

¢
where σ̄2 = a0/(1− γ1

2 − a1 − b1) is the long run variance.
Forecasting algorithms for σdT+h in the PGARCH(1, d, 1) and for lnσ

2
T+h in the

EGARCH(1,1) follow in a similar manner and the reader is referred to [31], and [71]
for further details.

8.4 Simulation-Based Forecasts

The forecasted volatility can be used together with forecasted series values to generate
confidence intervals of the forecasted series values. In many cases, the forecasted
volatility is of central interest, and confidence intervals for the forecasted volatility can
be obtained as well. However, analytic formulas for confidence intervals of forecasted
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volatility are only known for some special cases (see [6]). In models for which analytic
formulas for confidence intervals are not known, a simulation-based method can be
used to obtain confidence intervals for forecasted volatility from any GARCH that
can be simulated. To obtain volatility forecasts from a fitted GARCH model, simply
simulate σ2T+k from the last observation of the fitted model. This process can be
repeated many times to obtain an “ensemble” of volatility forecasts. The point
forecast of σ2T+k may then be computed by averaging over the simulations, and a
95% confidence interval may be computed using the 2.5% and 97.5% quantiles of the
simulation distribution, respectively.

8.5 Forecasting the Volatility of Multiperiod Returns

In many situations, a GARCH model is fit to daily continuously compounded returns
rt = ln(Pt) − ln(Pt−1), where Pt denotes the closing price on day t. The resulting
GARCH forecasts are for daily volatility at different horizons. For risk management
and option pricing with stochastic volatility, volatility forecasts are needed for multi-
period returns. With continuously compounded returns, the h−day return between
days T and T + h is simply the sum of h single day returns

rT+h(h) =
hX

j=1

rT+j .

Assuming returns are uncorrelated, the conditional variance of the h−period return
is then

varT (rT+h(h)) = σ2T (h) =
hX

j=1

varT (rT+j) = ET [σ
2
T+1] + · · ·+ET [σ

2
T+h]. (30)

If returns have constant variance σ̄2, then σ2T (h) = hσ̄2 and σT (h) =
√
hσ̄. This

is known as the “square root of time” rule as the h−day volatility scales with √h. In
this case, the h−day variance per day, σ2T (h)/h, is constant. If returns are described
by a GARCH model then the square root of time rule does not necessarily apply. To
see this, suppose returns follow a GARCH(1,1) model. Plugging the GARCH(1,1)
model forecasts (27) for ET [σ

2
T+1], . . . , ET [σ

2
T+h] into (30) gives

σ2T (h) = hσ̄2 + (E[σ2T+1]− σ̄2)

∙
1− (a1 + b1)

h

1− (a1 + b1)

¸
For the GARCH(1,1) process the square root of time rule only holds if E[σ2T+1] = σ̄2.
Whether σ2T (h) is larger or smaller than hσ̄2 depends on whether E[σ2T+1] is larger
or smaller than σ̄2.

8.6 Evaluating Volatility Predictions

GARCH models are often judged by their out-of-sample forecasting ability, see [22]
for an overview. This forecasting ability can be measured using traditional forecast
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error metrics as well as with specific economic considerations such as value-at-risk
violations, option pricing accuracy, or portfolio performance. Out-of-sample forecasts
for use in model comparison are typically computed using one of two methods. The
first method produces recursive forecasts. An initial sample using data from t =
1, . . . , T is used to estimate the models, and h−step ahead out-of-sample forecasts are
produced starting at time T. Then the sample is increased by one, the models are re-
estimated, and h−step ahead forecasts are produced starting at T +1. This process is
repeated until no more h−step ahead forecasts can be computed. The second method
produces rolling forecasts. An initial sample using data from t = 1, . . . , T is used to
determine a window width T, to estimate the models, and to form h−step ahead out-
of-sample forecasts starting at time T. Then the window is moved ahead one time
period, the models are re-estimated using data from t = 2, . . . , T + 1, and h−step
ahead out-of-sample forecasts are produced starting at time T + 1. This process is
repeated until no more h−step ahead forecasts can be computed.

8.6.1 Traditional Forecast Evaluation Statistics

Let Ei,T [σ
2
T+h] denote the h−step ahead forecast of σ2T+h at time T from GARCH

model i using either recursive or rolling methods. Define the corresponding forecast
error as ei,T+h|T = Ei,T [σ

2
T+h]− σ2T+h. Common forecast evaluation statistics based

on N out-of-sample forecasts from T = T + 1, . . . , T +N are

MSEi =
1

N

T+NX
j=T+1

e2i,j+h|j ,

MAEi =
1

N

T+NX
j=T+1

¯̄
ei,j+h|j

¯̄
,

MAPEi =
1

N

T+NX
j=T+1

¯̄
ei,j+h|j

¯̄
σj+h

.

The model which produces the smallest values of the forecast evaluation statistics is
judged to be the best model. Of course, the forecast evaluation statistics are random
variables and a formal statistical procedure should be used to determine if one model
exhibits superior predictive performance.

[28] proposed a simple procedure to test the null hypothesis that one model has
superior predictive performance over another model based on traditional forecast
evaluation statistics. Let {e1,j+h|j}T+NT+1 , and {e2,j+h|j}T+NT+1 denote forecast errors
from two different GARCH models. The accuracy of each forecast is measured by
a particular loss function L(ei,T+h|T ), i = 1, 2. Common choices are the squared

error loss function L(ei,T+h|T ) =
¡
ei,T+h|T

¢2 and the absolute error loss function
L(ei,T+h|T ) =

¯̄
ei,T+h|T

¯̄
. The Diebold-Mariano (DM) test is based on the loss differ-

ential
dT+h = L(e1,T+h|T )− L(e2,T+h|T ).
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The null of equal predictive accuracy is H0 : E[dT+h] = 0.The DM test statistic is

S =
d̄¡davar(d̄)¢1/2 , (31)

where d̄ = N−1PT+N
j=T+1 dj+h, and davar(d̄) is a consistent estimate of the asymptotic

variance of
√
Nd̄. [28] recommend using the Newey-West estimate for davar(d̄) because

the sample of loss differentials {dj+h}T+NT+1 are serially correlated for h > 1. Under the
null of equal predictive accuracy, S has an asymptotic standard normal distribution.
Hence, the DM statistic can be used to test if a given forecast evaluation statistic (e.g.
MSE1) for one model is statistically different from the forecast evaluation statistic
for another model (e.g. MSE2).

Forecasts are also often judged using the forecasting regression

σ2T+h = α+ βEi,T [σ
2
T+h] + ei,T+h. (32)

Unbiased forecasts have α = 0 and β = 1, and accurate forecasts have high regression
R2 values. In practice, the forecasting regression suffers from an errors-in-variables
problem when estimated GARCH parameters are used to form Ei,T [σ

2
T+h] and this

creates a downward bias in the estimate of β. As a result, attention is more often
focused on the R2 from (32).

An important practical problem with applying forecast evaluations to volatility
models is that the h−step ahead volatility σ2T+h is not directly observable. Typ-
ically, �2T+h (or just the squared return) is used to proxy σ2T+h since ET [�

2
T+h] =

ET [z
2
T+hσ

2
T+h] = ET [σ

2
T+h]. However, �

2
T+h is a very noisy proxy for σ2T+h since

var(�2T+h) = E[σ4T+h](κ − 1), where κ is the fourth moment of zt, and this causes
problems for the interpretation of the forecast evaluation metrics.

Many empirical papers have evaluated the forecasting accuracy of competing
GARCH models using �2T+h as a proxy for σ

2
T+h. [77] gave a comprehensive sur-

vey. The typical findings are that the forecasting evaluation statistics tend to be
large, the forecasting regressions tend to be slightly biased, and the regression R2

values tend to be very low (typically below 0.1). In general, asymmetric GARCH
models tend to have the lowest forecast evaluation statistics. The overall conclusion,
however, is that GARCH models do not forecast very well.

[2] provided an explanation for the apparent poor forecasting performance of
GARCH models when �2T+h is used as a proxy for σ

2
T+h in (32). For the GARCH(1,1)

model in which zt has finite kurtosis κ, they showed that the population R2 value in
(32) with h = 1 is equal to

R2 =
a21

1− b21 − 2a1b1
,

and is bounded from above by 1/κ. Assuming zt ∼ N(0, 1), this upper bound is 1/3.
With a fat-tailed distribution for zt the upper bound is smaller. Hence, very low R2

values are to be expected even if the true model is a GARCH(1,1). Moreover, [49]
found that the substitution of �2T+h for σ

2
T+h in the evaluation of GARCH models

using the DM statistic (31) can result in inferior models being chosen as the best
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Error pdf GARCH TGARCH PGARCH

MSFT
Gaussian
Student’s t

0.0253
0.0247

0.0257
0.0253

0.0256
0.0250

S&P 500
Gaussian
Student’s t

0.0138
0.0138

0.0122
0.0128

0.0108
0.0111

Table 11: Unconditional Volatilities from Estimated GARCH(1,1) Models.

with probability one. These results indicate that extreme care must be used when
interpreting forecast evaluation statistics and tests based on �2T+h.

If high frequency intraday data are available, then instead of using �2T+h to proxy
σ2T+h [2] suggested using the so-called realized variance

RV m
t+h =

mX
j=1

r2t+h,j ,

where {rT+h,1, . . . , rT+h,m} denote the squared intraday returns at sampling fre-
quency 1/m for day T + h. For example, if prices are sampled every 5 minutes and
trading takes place 24 hours per day then there are m = 288 5-minute intervals per
trading day. Under certain conditions (see [4]), RV m

t+h is a consistent estimate of
σ2T+h as m → ∞. As a result, RV m

t+h is a much less noisy estimate of σ
2
T+h than

�2T+h and so forecast evaluations based on RV m
t+h are expected to be much more ac-

curate than those based on �2T+h. For example, in evaluating GARCH(1,1) forecasts
for the Deutschemark-US daily exchange rate, [2] reported R2 values from (32) of
0.047, 0.331 and 0.479 using �2T+1, RV

24
T+1 and RV 288T+1, respectively.

8.7 Forecasting the Volatility of Microsoft and the S&P 500

Figure 8 shows h−day ahead volatility predictions (h = 1, . . . , 250) from the fitted
GARCH(1,1) models with normal errors for the daily returns on Microsoft and the
S&P 500. The horizontal line in the figures represents the estimated unconditional
standard deviation from the fitted models. At the beginning of the forecast period,
σ̂T < b̄σ for both series and so the forecasts revert upward toward the unconditional
volatility. The speed of volatility mean reversion is clearly shown by the forecast
profiles. The forecasts for Microsoft revert to the unconditional level after about four
months, whereas the forecasts for the S&P 500 take over one year.

Figure 8 shows the volatility forecasts from the asymmetric and long memory
GARCH(1,1) models, and Table 11 gives the unconditional volatility from the esti-
mated models. For Microsoft, the forecasts and unconditional volatilities from the
different models are similar. For the S&P 500, in contrast, the forecasts and uncon-
ditional volatilities differ considerably across the models.
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Predicted Volatility from GARCH(1,1) for Microsoft
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Predicted Volatility from GARCH(1,1) for S&P 500
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Figure 8: Predicted Volatility from GARCH(1,1) Models

9 Final Remarks

This paper surveyed some of the practical issues associated with estimating univariate
GARCH models and forecasting volatility. Some practical issues associated with the
estimation of multivariate GARCH models and forecasting of conditional covariances
are given in [80].
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