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Abstract 

Many empirical studies find a negative correlation between the returns on the nominal spot 

exchange rate and the lagged forward discount. This forward discount anomaly implies that the 

current forward rate is a biased predictor of the future spot rate. A large number of studies in the 

existing literature try to explain this anomaly, and recent work has tried to explain the anomaly as a 

statistical artifact based on (1) the long memory behavior of the forward discount; or (2) the 

existence of structural breaks in the forward discount. In this paper, we evaluate the evidence for 

long memory and structural change in the forward discount. Our approach is as follows. First, we 

nonparametrically estimate the long memory parameter for a number of forward discount series 

without allowing for structural breaks. Second, we test for and estimate a multiple mean break 

model and then adjust for the structural breaks in the forward discount. Finally, we re-estimate the 

long memory parameter on the mean-break adjusted data. To check the robustness of our results, 

we use Monte Carlo simulations to evaluate our procedure to estimate structural breaks in the 

presence of long-memory. We show that allowing for structural breaks drastically reduces the 

persistence of the forward discount. However, after removing the breaks, we still find evidence of 

stationary long memory in all of the forward discount series. Our results have important 

implications for understanding the statistical properties of the forward discount, because we 

confirm not only the presence of long memory behavior in the forward discount but also the 

importance of structural breaks. 
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1. Introduction 
 

 
Many empirical studies find a negative correlation between the returns on the nominal spot 

exchange rate and the lagged forward discount. This forward discount anomaly implies that the 

current forward rate is a biased predictor of the future spot rate. A large number of studies in the 

existing literature try to explain this anomaly. Engel (1996) summarized four explanations: (1) 

existence of a foreign exchange risk premium; (2) a peso problem, (3) irrational expectations; (4) 

international financial market inefficiency from various frictions.  In two detailed studies, Baillie 

and Bollerslev (1994, 2000) focused on the time series properties of the spot rate and forward 

discount as an explanation for the forward discount anomaly. They argued that the forward 

discount anomaly is due to the statistical properties of the data, because the forward discount is a 

fractionally integrated (long memory) process and the rate of return on the spot exchange rate is a 

stationary process which creates an unbalanced test regression. Maynard and Phillips (2001) 

provided similar results as Baillie and Bollerslev. They argued that traditional asymptotic theory 

may not be applicable to test forward rate unbiasedness due to the fractional integration of the 

forward discount and they propose a new limit theory. Their limit theory for the forward rate 

unbiased hypothesis (FRUH) test statistics have nonstandard limiting distributions with long left 

tails, which may explain the forward discount anomaly as a statistical artifact. 

 A criticism against models of long memory is that the long memory property in the data 

may be due to the presence of structural breaks or regime switches. This is called “the spurious 

long memory process.” Several recent works including Granger (1999), Granger and Hyung 

(2004), and Diebold and Inoue (2001), show that structural breaks or regime switching can 

generate spurious long memory behavior in an observed time series.  Indeed, Sakoulis and Zivot 

(2001) find evidence for structural breaks in the mean and variance of the forward discount, and 

argue that these breaks could be caused by events like discrete changes in policy and changes in 
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interest rates due to the business cycle. After correcting for multiple structural breaks in the mean 

of the forward discount, they find the persistence of the forward discount is substantially reduced. 

The focus of Sakoulis and Zivot (2001) is different from the focus herein. Sakoulis and 

Zivot estimate a stationary autoregressive model for the forward discount using a partial structural 

break model to establish the presence of structural breaks in the forward discount without explicitly 

considering the possibility of long-memory behavior. In contrast, in this paper we exclusively focus 

on the long memory properties of the forward discount using a pure structural break. In particular, 

we allow for the joint occurrence of long memory and structural breaks. We complement the 

analysis of Sakoulis and Zivot by critically evaluating the evidence for long memory and structural 

breaks in the forward discount.  

 In practice, the usual method to estimate the long memory parameter ‘d’ characterizing a 

time series is the nonparametric log periodogram regression estimator suggested by Geweke and 

Porter-Hudak (1983). When we estimate the long memory parameter using the log periodogram 

regression, we first difference the data. This estimator is appropriate for stationary long memory 

process with 0.5 0.5d− < < . However, Agiakloglou et al. (1993) show that the estimator is not 

invariant to first differencing, so that there might be bias due to over-differencing of the data. Kim 

and Phillips (1999, 2000) suggest that if we have no prior information about the magnitude of the 

long memory parameter before estimation, we need a more flexible estimation technique and 

inference for both stationary and nonstationary cases. They propose to estimate d using a modified 

log periodogram (MLP) regression estimator that includes the nonstationary range where 0.5d ≥ . 

 There is a large literature on structural break models, but there are only a few recent studies 

that deal with multiple structural breaks, and even fewer dealing with long memory and multiple 
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structural breaks1. In this paper, we assume that the potential structural break dates are unknown 

and we follow Bai and Perron (1998, 2003) and estimate the unknown break dates using the least 

squares principle. We consider a structural change in mean model that allows the errors to be 

serially correlated and heteroskedastic.  

 Our approach is as follows. First, we estimate the long memory parameter for a number of 

forward discount series using the MLP regression without allowing for structural breaks. Second, 

we test for and estimate the multiple mean break model using Bai and Perron's method, and then 

adjust for the structural breaks in the forward discount. Finally, we re-estimate the long memory 

parameter using the MLP regression on the mean-break adjusted data. To our knowledge there is 

no formal statistical theory to justify our approach.  Consequently, we use Monte Carlo simulations 

to evaluate our procedure for detecting multiple structural breaks in the presence of long memory 

and unknown structural breaks. 

 We show that allowing for structural breaks drastically reduces the persistence of the 

forward discount. However, after removing the breaks, we still find evidence of stationary long 

memory behavior in all of the forward discount series. Our results have important implications for 

understanding the statistical properties of the forward discount, because we confirm not only the 

presence of long memory in the forward discount but also the importance of structural breaks. 

 The remainder of this paper is organized as follows. Section 2 provides a brief review of 

the literature relating the forward discount anomaly, long memory and structural breaks. Section 3 

reviews some properties of long memory processes and defines the MLP regression estimator of 

Kim and Phillips.  Section 4 presents the multiple mean break model and reviews Bai and Perron's 

methodology to test for and estimate multiple structural breaks. Section 5 gives the empirical 

results, and Section 6 concludes with the implications of our findings. 

                                                 
1 Sibbertsen (2004) and Banerjee and Urga (2004) survey some of the issues associated with distinguishing 
long memory processes from some simple structural break models. 
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2.  The Forward Discount Anomaly: Long Memory and 
Structural Breaks 

 
 
The uncovered interest rate parity and covered interest parity imply that the current forward rate is 

an unbiased predictor of the future spot rate. Covered interest parity implies  

 *

1
1

t t

t t

F i
S i

+
=

+
, (1) 

where ti denotes the monthly interest rate on one month home country risk free bond, *
ti  denotes the 

monthly interest rate on one month foreign country risk free bond, tS denotes the spot exchange 

rate and tF denotes the monthly forward exchange rate, the price in foreign currency units of the 

dollar deliverable 30 days from t. We can rewrite equation (1) as  

 
*

*1
t t t t

t t

F S i i
S i
− −

=
+

. (2) 

In logs, the relationship is approximately  

 *
t t t tf s i i− = − , (3) 

where log( )t tf F= and log( )t ts S= . 

Assuming rational expectations and risk neutrality, we obtain the uncovered interest parity 

equation  

 
*

1
*

( )
1

t t t t t

t t

E S S i i
S i
+ − −

=
+

, (4) 

which implies foreign exchange market efficiency. In logs, this relationship is approximately  

 ( ) *
1t t t t tE s s i i+ − = − , (5) 
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where ( )tE ⋅ denotes expectation conditional on information available at time t. From equations (3) 

and (5), we find that the forward rate is an unbiased predictor of the future spot exchange rate, 

1( ) .t t tE s f+ =  We call this as the forward rate unbiasedness hypothesis (FRUH). 

 In practice, we test the FRUH using the regression2 

 1 1( )t t t ts f sα β ε+ +∆ = + − + , (6) 

where t tf s− is the forward discount. The null hypothesis that the FRUH holds is α =0, β =1 and 

1( )t tE ε + =0 which implies that 1( )t t tE s f+ = .  However, the typical empirical finding is that FRUH is 

not only rejected but also that estimation of equation (6) provides a significantly negative .β  This 

anomalous empirical finding is often referred to as the “forward discount anomaly”. 

 Several approaches have been taken to explain the forward discount anomaly. As noted 

earlier, Engel (1996) suggests possible explanations and focuses on a time varying rational 

expectations risk premium. In this paper, we focus on the time series properties of the forward 

discount in the same sense as Baillie and Bollerslev (1994, 2000), Maynard and Phillips (2001) and 

Sakoulis and Zivot (2001). 

 Numerous studies show that the spot and forward exchange rates are both I(1) processes so 

that the difference of the spot and forward exchange rates are stationary I(0) variables. Therefore, 

the time series behavior of spot and forward exchange rates implies restrictions on the behavior of 

the forward discount and the rational expectations risk premium, it is exists. 

 To see this, consider the following decomposition for the forward exchange rate due to 

Fama (1984): 

 1 1 1t t t tf s rp u+ + += + + , (7) 

 

                                                 
2 See Engel (1996) and Zivot (2000) for a review. 
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where 1 1,t trp u+ + are next period's rational expectations risk premium and rational expectations 

forecast error term. We can simply rewrite 1 1t t ts s s+ += + ∆  and plug into (7) to get 

 1 1 1t t t t tf s s rp u+ + +− = ∆ + + . (8) 

In (8), the change in the spot exchange rate and the forecast error are stationary. Now, suppose the 

forward discount is I(1). Then 1trp +  will be an I(1) process as well. Evans and Lewis (1995), 

however, argue that a unit root risk premia would be very hard to rationalize since most economic 

models of the risk premium imply it depends on other stationary time series. Nonetheless, Crowder 

(1994) tested for a unit root in a number of monthly forward discount series from 1974 to 1991 and 

failed to reject a unit root using augmented Dickey-Fuller tests. However, it is well known that 

these tests have very low power against the alternative of fractional integration. Additionally, he 

rejected the null that the forward discount is I(0) using the KPSS test of Kwiatowski, Phillips, 

Schmidt and Shin (1992). 

Baillie and Bollerslev (1994) argued that Crowder's results do not necessarily guarantee the 

existence of a unit root in the forward discount. They used the same data as Crowder (1994) and 

compared the autocorrelations among the spot exchange rate, the return on the spot exchange rate, 

and the forward discount. Because there is strong evidence that the spot exchange has a unit root, 

comparing the correlograms provides good intuition about the properties of the forward discount. 

They find the degree of persistence of the forward discount’s autocorrelations is drastically less 

than the counterparts of the spot rate. They also estimated ARFIMA models and reported point 

estimates for d, the order of fractional integration, equal to 0.45, 0.77 and 0.55 for Canada, 

Germany and the UK, respectively.3 The last two cases have the properties of mean reversion with 

infinite variance. These results suggest that we can model the forward discount process as a 

                                                 
3 Cheung (1993) finds evidence of long memory in monthly log exchange rate changes for the German Mark, 
Swiss Franc, French Franc, Japanese Yen over the period 1974 to 1989. 
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fractionally integrated process and the spot rates as I(1); therefore, the risk premium should be 

fractionally integrated.4  

 More recently, Baillie and Bollerslev (2000) suggested that the forward anomaly is not as 

bad as we think. This is at least partly due to statistical properties of the data, such as the very 

persistent autocorrelation in the forward discount. They showed, using Monte Carlo simulations, 

that β̂ in the differences regression (6) will converge very slowly to its true value of unity.  They 

also argued that the slow decay of the autocorrelations of the forward discount exacerbates the 

finite sample bias.5  

Maynard and Phillips (2001) also argued that the forward discount is dominated by a 

nonstationary long memory component. Using Kim and Phillips’ MLP regression, their estimates 

of d based on daily data are quite a bit larger than those of Baillie and Bollerslev (1994), who use 

monthly data. All estimates are in the range 0.882 1d≤ < , which suggest that the forward discounts 

have non-stationary properties. They go on to explain the forward discount anomaly as a statistical 

anomaly due to the nonstandard limit distributions resulting from estimating a regression equation 

with a stationary dependent variable and a nonstationary fractionally integrated regressor. 

The results of Crowder, Baillie and Bollerslev, and Maynard and Phillips, while 

compelling, lack a degree of economic motivation. The usual explanation for long memory 

behavior in economic time series is based on the result that aggregation of independent weakly 

dependent series can produce a strongly dependent series, see Granger (1980) and Lobato and 

Savin (1998).  This aggregation argument is not very compelling for the forward discount since it 

may be interpreted as an interest rate differential. Moreover, Sakoulis and Zivot (2001) have found 

                                                 
4 This implies that spot and forward rates are fractionally cointegrated. However, when the forward discount 
is a fractionally integrated process, Engel (1996) points out that the risk neutral efficient market hypothesis 
must be rejected since the forward discount must have the same order of integration as the change in the spot 
rate. 
5 Baillie and Bollerslev (2000) use a model where there is long memory in the variances of exchange rates. 
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evidence for structural changes in the mean and variance of the forward discount that appear to be 

linked to events like discrete changes in monetary policy and changes in interest rates due to the 

business cycle. 

Our analysis is instead motivated by recent work that explains apparent long memory 

behavior in economic time series as resulting from various types of ignored structural changes. In 

particular, Lobato and Savin (1998), Granger (1999), Bos et. al. (1999), Granger and Hyung 

(2004), Hyung et. al. (2004), Granger and Teräsvirta (1999), and Diebold and Inoue (2001), show 

that long memory behavior can be easily generated from structural breaks or regime switching.  In 

this paper, we study the time series properties of forward discount with and without incorporating 

structural changes using recently developed methods.  As Baillie and Bollerslev (1994) and 

Maynard and Phillips (2001) argue, long memory behavior may help explain the forward discount 

anomaly. However, their empirical results give mixed signals regarding the importance of long 

memory in the forward discount. For example, Baillie and Bollerslev (1994) find stationary long 

memory for Canada but nonstationary long memory for Germany and the U.K. In contrast, 

Maynard and Phillips (2001) find evidence of nonstationary long memory which is quite a bit 

larger than that found by Baillie and Bollerslev. Our focus on the importance of structural changes 

in forward discount provides a potential explanation for these conflicting results.  
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3  A Brief Review of Long Memory Process 

In this section, we review some basic properties of long memory processes, and then 

discuss the nonparametric estimators of the long memory parameter, d, that are used in our 

empirical analysis. 

 
3.1 Definition of Long Memory Process 

 
We can define the long memory property of a time series in several ways. They can be 

based on a time domain or frequency domain model. The key point is that long memory processes 

are defined in terms of restrictions on the second moment, such as, the autocorrelations or the 

spectral density.6  

Consider a covariance stationary process { }tY . In the time domain, { }tY  exhibits long 

memory if its autocorrelations ( )kρ  exhibit slow decay and persistence such that  

 

 ( ) as 
n

k n
k nρ

=−

→∞ →∞∑ . (9) 

 
For a short memory covariance stationary process, the autocorrelation function is geometrically 

bounded  

 
 ( ) , 1,2,kk cr kρ −≤ = … , (10) 

 
where c is a positive constant and 0 1.r< <  Stationary long memory process have autocorrelations 

that satisfy hyperbolic decay such that  

 
 2 1( ) ~ as dk ck nρ − →∞ , (11) 
 
                                                 
6 For more details on the statistical properties of long memory processes, see Beran (1994), Baillie and 
Bollerslev (1994), and Baillie (1996).  
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where 0c ≠  and the long memory parameter has the range 10
2

d< < .  If 0d < , { }tY has 

“intermediate” or “anti-persistent” memory since ( )kρ
∞

−∞

< ∞∑ .  

Long memory in the frequency domain is defined when we evaluate the spectral density 

function at frequencies that tend to zero. Suppose the spectral density function ( )f w has the 

following property  

 
 2( ) ~ as 0df w c w w− +→ . (12) 

 
Then { }tY exhibits long memory where the stationary range of d is the same as in the time domain 

definition above. 

 In the empirical literature, fractionally integrated ARMA (ARFIMA) processes satisfy the 

above conditions. Hosking (1981), Granger and Joyeux (1980), Diebold and Rudebusch (1989), 

Baillie and Bollerslev (1994) provide details on these models. The process { }tY is defined as an 

ARFIMA(p, d, q) process if  

 (1 ) ( ) ( )d
t tL L Y Lφ θ ε− = , (13) 

where ( )zφ  and ( )zθ are autoregressive and moving average polynomials, respectively, with roots 

outside the unit circle and 2~ (0, )t WN εε σ . The fractional differencing lag operator (1 )dL− is 

defined by the binomial expansion 

 0

2 3

( )(1 )
( 1) ( )

( 1) ( 1)( 2)1 ,
2! 3!

k
d

k

k d LL
k d

d d d d ddL L L

∞

=

Γ −
− =

Γ + Γ −
− − −

= − + − +

∑

"
 (14) 
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where ( )Γ • is the gamma function. From equation (14), the coefficient on the differencing lag 

operator provides the rate of declining weight. An ARFIMA process is said to be a stationary 

process when 0.5 0.5d− < < . However, we can divide this area into two parts. First, for 

0 0.5d< < , the process is called stationary long memory. Second, for 0.5 0d− < <  it is called anti-

persistent memory. When 0.5d ≥ , the process is nonstationary but mean reverting with finite 

impulse response weights. When 1d ≥ , the process is nonstationary and non-mean reverting. In 

this paper, our interest is not in estimating all of the parameters of an ARFIMA process but rather 

in estimating the long memory parameter d to evaluate the evidence for long memory in the 

forward discount. 

  
3.2 Nonparametric Estimation of the Long Memory Parameter 

 
There are several nonparametric and semiparametric estimation methods for the long memory 

parameter d of a fractional process. The most common are the log periodogram regression, the re-

scaled range (R/S statistic) and the local Whittle estimator. 

 The most popular method to estimate d is the log periodogram regression estimator 

suggested by Geweke and Porter-Hudak (1983). To describe this estimator, let (1 )t tZ L Y= − . Then 

we can estimate d by examining  

 1(1 ) ( ) ( ) , 1d
t t tL Z L L u d dφ θ ε−− = = = −

� � . (15) 

The spectral density of tZ  is given by  

 
2

2
( ) 1 ( ) 2sin( ) ( )

2

d
diw

z u u
wf w e f w f w

−
−−= − =

�
�

, (16) 
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where ( )uf w  is the spectral density of tu  at frequency w .  After taking logs and adding and 

subtracting [ ]log (0)uf from equation (16), we have the following equation (17), which we evaluate 

at the harmonic ordinates  

 [ ] 2log ( ) log (0) log 4sin log ( ) / (0)
2

j
z j u u j u

w
f w f d f w f

  
   = − +     

  
� , (17) 

GPH propose an estimator of d�  based on the first m periodogram ordinates 1 2 ,, , , mw w w… that is 

( )z jI w , where 1,2, ,j m= … , 

 2log ( ) log 4sin
2

j
z j j

w
I w uα β

  
  = + +   

  
, (18) 

and log ( ) / ( )j z j z ju I w f w =   . From (17) and (18), the GPH estimator d�  is the slope of a least 

squares regression; i.e., regress log ( )z jI w    on a constant and the explanatory variable 

2log 4sin
2

jw 
 
 

in the sample 1,2, ,j m= … giving the estimate ˆ ˆ
GPHd β= − .  GPH show that with a 

proper choice of m, such as ( )m g T T= < which has the properties lim ( ) , lim ( ) 0
T T

g T g T T
→∞ →∞

= ∞ = , 

then ˆ
p

GPHd d→ � .  Furthermore, if 2lim (ln ) ( ) 0
T

T g T
→∞

=  then ˆ
GPHd has the limiting distribution 

 
( )

2

2

1

ˆ ~ ,
6

A

GPH m
jj

d N d
U U

π

=

 
 
 − ∑
� , (19) 

where 2log 4sin
2

j
j

w
U  

=  
 

. GPH prove consistency and asymptotic normality of ˆ
GPHd only for 

0d <� . More recently, Robinson (1990) developed a proof of consistency for 0 0.5d< <  and  

Velasco (1999) provides some asymptotic theory for 0.5 1d< <  under additional restrictions.  
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Agiakloglou et. al.  (1993), argued that the GPH estimator ˆ
GPHd  has serious finite sample 

bias and is very inefficient if tu  in (15) is an AR(1) or MA(1) process, which is relevant in the 

present context since the forward discount is often modeled as a highly persistent AR(1) process. 

They also argued that the GPH estimator is not invariant to first differencing and tests based on it 

may be seriously misleading.  

To avoid these problems, we use the modified log periodogram (MLP) regression due to 

Kim and Phillips (2000) which is applicable for the nonstationary range 0.5d ≥ , and is robust for 

AR(1) and MA(1) errors. Kim and Phillips argued that one usually has no prior information about 

the order of d before estimation, thus it is prudent to cover a wide range of plausible parameter 

values of d. They also showed that there are several advantages to using the MLP regression. In 

particular, it modifies the periodogram ordinates to find the correct form of the data generating 

process for the discrete Fourier transforms (DFT), which is simple and involves no unknown 

parameters. Additionally, consistency of the estimator for d can be obtained under weak conditions 

without assuming a distributional form for the errors and Monte Carlo simulations show that the 

finite sample performance of the MLP is reliable and supports the nonparametric treatment of 

innovations in a data generation process. Finally, the estimation procedure is very easy to 

implement, since it is basically just a least squares regression with a transformed dependent 

variable. 

 The MLP regression to test for long memory when d is in the range 0.5 1d< <  is based on 

the levels of the data and has the form7 

 
 log ( ) 2 log 1 ( )jiw

vx j jI w c d e b w= − − + , (20) 

where  

                                                 
7 They also provide an estimator that is valid when d is in the range1 2d< <  and when 1d = . 
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1

( ; ) 1( ) ( ) log
( )

( ) log ( ) / (0) , log (0).

vx j
j j p d

vx j

j u j u u

I w d
b w a w O

I w j

a w I w f c f

−

 
= + +  

 

 = = 

 

The MLP regression estimator of d is obtained by regressing log ( )vx jI w  on log 1 jiwe−  over 

frequencies { }, 1,2, ,jw j m= …  and is given by 

 
1

2

1 1

1ˆ log
2

m m

MLP j j vx
j j

d x x I
−

= =

   
= −    

   
∑ ∑ , (21) 

where ( ) ( )
1

1log 1 log 1 and log 1 log 1j j
m

iw iwiw iw
j

j

x e e e e
m =

= − − − − = −∑ .  

Kim and Phillips also consider a trimmed version of the modified LP regression that does 

not rely on the data being Gaussian. The trimmed estimator of d has the form  

 21ˆ log ( ) ,
2

m m

MLP j j vx j
j l j l

d x x I w
= =

   
= −    

      
∑ ∑  (22) 

where 1, , 1j l= −…  have been trimmed out of the regression. They showed that 

2
ˆ( ) 0,

24

d

MLPm d d N π 
− →  

 
under mild regularity conditions.  

 A practical problem with the implementation of the MLP regression is the choice of m, the 

number of periodogram ordinates. GPH suggested using m Tα=  with 1
2

α = , where T is the sample 

size. Diebold and Rudebusch (1989) also used this rule in their Monte Carlo simulation results. 

However, Sowell (1992) argued that we should consider the shortest cycle associated with long run 

behavior when we choose m. More recently, Hurvich et al. (1998) showed that the optimal m, 

minimizing the asymptotic mean squared error, is of order 4 / 5( )O T  and proved the asymptotic 

normality of ˆ
GPHd using this rule. Maynard and Phillips (2001) chose 0.75α =  with 3,000 

observations. Kim and Phillips (2000) suggested that 0.7 0.8α< <  is desirable for their estimation 
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method based on simulation experiments, and used 7 /10m T=  and 4 / 5m T=  to analyze the extended 

Nelson-Plosser data. In this paper, we use three different values of 

m; 7 /10 7.5/10 8/10, ,m T m T m T= = = . 



 

  17

4  Multiple Mean Break Model 

 
In this section, we briefly review the methodology of Bai and Perron (1998, 2003) for 

estimation and inference in a simple multiple mean break model that is utilized in our empirical 

analysis. 

Bai (1997a, b) and Bai and Perron (1998, 2003), hereafter BP, consider several methods for the 

estimation of single and multiple structural breaks in dynamic linear regression models. They 

estimate the unknown break points given T observations by the least squares principle, and provide 

general consistency and asymptotic distribution results under fairly weak conditions allowing for 

serial correlation and heteroskedasticity.8  

 We consider the simple structural change in mean model, because structural breaks in the 

mean have a natural interpretation as the direct effect of an economic shock to the forward 

discount/interest rate differential.  The pure structural change model we consider is defined as  

 1,  1, ,t j t j jy c u t T T−= + = + …  (23) 
for 1, , 1j m= +… , 0 10,  ,  and m t t tT T T y f s+= = = − 9. The process is subject to m breaks and jc is 

the mean of the forward discount for each regime. The model allows for general serial correlation 

and heterogeneity of the residuals across segments; see Bai and Perron (1998) for details. We note 

that the Bai-Perron assumptions regarding ut do not explicitly allow long-memory. 

                                                 
8 Hidalgo and Robinson (1996) provide a test for structural change when the break point is known in a long 
memory environment with Gaussian errors. However, we do not know the structural break points and we do 
not assume Gaussian errors. 
9 Our model is different from that used by Sakoulis and Zivot (2001). Sakoulis and Zivot (2001) use 
the partial structural change model as follows  

1 1 1( ) , 1, ,t t j t t t j jf s c f s u t T Tφ − − −− = + − + = + …  
for 0 11, , 1, 0 and .mj m T T T+= + = =…  φ is the AR coefficient of the lagged forward discount, which is not 
subject to structural change. We find similar break dates with the partial break model as Sakoulis and Zivot's 
result. 
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 We can estimate the mean change model as follows. For each m-partition ( )1, mT T…  we 

obtain the least squares estimate jc  by minimizing the sum of squared residuals  

 ( )
1

1 2

1
1 1

( , , )
j

j

Tm

T m t j
j t T

S T T y c
−

+

= = +

= −∑ ∑…  (24) 

giving ( )1ˆ { , }j mc T T…  as the mean estimates associated with the given m-partition that minimizes 

1( , , )T mS T T… .  The estimated break points are defined by 

 ( ) ( )
11 , 1

ˆ ˆ, arg min , ,
mm T T T mT T S T T= …… …  (25) 

 
where the minimization occurs over all possible m-partitions. Using the estimated break points 

( )1̂
ˆ, mT T… we find the regression parameter estimates ( )1̂

ˆˆ { ,j mc T T… .  

 BP show that the break fractions 
ˆˆ i

i
T
T

λ =  converge to their true values 0
iλ  at rate T under 

very general conditions, but that the estimated break dates îT are not consistent. They propose a 

method to construct approximate confidence intervals for the break dates based on a novel 

asymptotic theory that assumes the magnitudes of the breaks (mean shifts in our model) decrease as 

the sample size increases. 

 Let ( )TSupF l be the F statistic of no structural breaks ( 0)l =  versus m=k breaks when the 

break dates are unknown, and let L denote the maximum number of breaks allowed.  BP suggest 

the use of two statistics to determine if structural change has occurred: the double maximum 

statistic, 1max max sup ( )l L TUD F l≤ ≤= ; and the weighted double max statistic 

1max max sup ( )l L l TUD w F l≤ ≤= ⋅ ,  where the weights to the individuals ( )TSupF l  tests are such that 

marginal p-values are equal across values of l. The null hypothesis of both tests is no structural 

breaks against the alternative of an unknown number of breaks given some specific upper bound L. 

They also recommend using the ( 1| )TSupF l l+  test statistics, which test the null of l breaks versus 
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the alternative of l+1 breaks. Critical values for these tests can be found in Bai and Perron (1998, 

2003). 

 BP suggest the following strategy to determine if structural change has occurred, and, if 

structural change has occurred, to determine the number of breaks. First use the UDmax and 

WDmax tests to see if at least one break is present. If there is evidence for structural change, select 

the number of structural breaks using the sequential ( 1| )TSupF l l+ statistics starting with l = 1. 

This procedure may be complemented with selecting the number of breaks by minimizing a 

Bayesian Information Criterion (BIC) or a modified Schwarz' Criterion (LWZ) due to Liu, Wu and 

Zidek (1997). Based on a small set of Monte Carlo experiments, they find the sequential procedure 

to be generally more reliable than the model selection criteria. 
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5 Empirical Results 

 
5.1  Data 

 
We consider the same data as Sakoulis and Zivot (2001), which is monthly exchange rate data in 

terms of US dollars for five G7 countries: Germany, France, Italy, Canada, and Great Britain. All 

rates are end-of-month, average of bid and ask rates, and span the period 1976:1-1999:1. The 

Japanese Yen is not considered since the sample period is different (i.e., from 1978:7 to 1999:1). 

We multiplied the natural log of all rates by 100, so that the differences in rates are in percentages. 

 Table 1 reports summary statistics for the exchange rate series. Except for the Canadian 

Dollar, all forward discounts have right skewed distributions. The Italian Lira and French Franc 

have long right tails compared to the others. Also, the Italian Lira and French Franc's distributions 

are peaked relative to normal in terms of kurtosis. The Jarque-Bera test shows that all forward 

discount rates reject the normal distribution hypothesis.  

 To summarize the time series properties of the forward discount, we first report unit root 

tests of the forward discount for each country in Table 2. We use the ADF-GLS t-statistic of Elliot, 

Rothenberg and Stock (1996), which is more powerful than the ADF t-statistic for highly persistent 

alternatives. We estimate the ADF-GLS test that includes a constant in the test regression. 

Following Ng and Perron (2001), the lag length of the test regression was chosen by the modified 

AIC with a maximum lag of 15. The ADF-GLS unit root test results in Table 2 provide mixed 

results for the order of integration of the forward discount for each country. We fail to reject the 

null hypothesis of a unit root in the forward discount for the German mark, Canadian dollar and 

British Pound. Theses results are similar to the KPSS test results of Crowder (1994).  On the other 

hand, we reject the null hypothesis for the French Franc and Italian Lira.  
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5.2 Estimation of the Long Memory Parameter Before Adjusting for 
Structural Breaks 

 
Table 3 reports ˆ

MLPd  for each series for three different values of the periodogram ordinates m. All 

estimates are greater than 0.5, but less than 1, with reasonably small estimated standard errors. We 

conclude that if we do not consider structural breaks, all forward discounts have non-stationary 

long memory components. However the series have mean reverting properties with infinite 

variance, but finite cumulative impulse response weights. 

 The results for Germany are quite similar to those of Baillie and Bollerslev (1994).10  They 

reported that the German Mark is I(0.77), and our estimates of the order of integration for α = 0.70, 

075, and 0.80 are in the range ˆ (0.618,  0.725)MLPd ∈ . Canada has ˆ (0.619,  0.695)MLPd ∈ , which is 

slightly less than Baillie and Bollerslev's estimate of I(0.45). The UK has a higher value of d than 

other forward discounts, ˆ (0.786,  0.866)MLPd ∈ , and is also greater than those of Baillie and 

Bollerslev's I(0.55). The French Franc has ˆ (0.589,  0.680)MLPd ∈  and the Italian Lira has 

ˆ (0.536,  0.648)MLPd ∈ , which are lower than the estimates for the other countries, and correspond 

with our ADF-GLS unit root test results.  From these results, we find that the UK has the most non-

stationary series whereas Italy has the most stationary. Moreover, the only 95% confidence interval 

for d that includes the non-stationary and non-mean reverting range 1d ≥ is for the UK with 

0.8m T= . 

 
 
 
 
 
 
                                                 
10 They use the monthly forward discount for the Canadian dollar forward discount, the German mark 
forward discount and the U.K pound forward discount from January 1974 to December 1991. 
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5.3 The Number of Breaks in the Forward Discount  

Results for the mean break model based on the BP methodology are reported in Tables 4 and 5.11 

For the German Mark, the UDmax and WDmax tests provide evidence of multiple structural 

breaks. (1)TSupF is not significant but (2)TSupF  through (5)TSupF  are all significant at the 5% 

level. Also, ( 1|1)TSupF l +  is significant at the 1% level when l=4 which suggests 5 breaks. Breaks 

are chosen based on the maximum break statistic that is significant at the 5% level.  The BIC and 

LWZ also choose 5 breaks. Thus, we choose 5 breaks for the German Mark. Note that the fourth 

structural change date has a broad confidence interval but the other break dates are precisely 

estimated.12 In the case of the French Franc, the UDmax, and WDmax tests also indicate the 

presence of multiple breaks. The sequential procedure, BIC and LWZ all suggest 4 breaks. For the 

Italian Lira the UDmax and WDmax tests suggest the presence of multiple structural changes, but 

the ( 1| )TSupF l l+ statistics are not significant 1l ≥ which indicates only 1 break.  In contrast, the 

LWZ suggests 2 breaks and the BIC suggests 4 breaks. Additionally, ( )TSupF l  test does reject the 

null of no breaks versus one, two, three and four. Therefore, we choose 4 breaks for Italian Lira. 

For the Canadian Dollar, the UDmax and WDmax tests are significant at 1% level. (3 | 2)TSupF is 

significant at the 1% level and the BIC and LWZ choose 3 breaks, so we choose 3 breaks for the 

Canadian Dollar. 13 In the case of the British Pound, the UDmax and WDmax tests are significant at 

1% level, (5 | 4)TSupF is significant at the 1% level, the BIC suggests 5 breaks and the LWZ 

suggests 4 breaks. We choose 5 breaks for the British Pound.  

                                                 
11 We allow up to 5 breaks and used a trimming 0.05ε =  which implies that each segment has at least 13 
observations. 
12 Also note that Kanas (1998) finds evidence for up to six breaks in ERM exchange rates. 
13 BP suggest that we don't need to impose similar restrictions of ( )TSupF k  on the number of breaks for 
different values of .ε  
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Similar to Sakoulis and Zivot (2001), most of the structural break dates estimated for each 

country are very similar to the break dates for the rest of the countries. For all the countries, almost 

half of the breaks occur during the beginning of the sample. From Figure 1, we see that during the 

period 1980-83 the forward discounts are very volatile and the behavior is consistent with the 

change in the U.S. Central Bank's policy objective, as well as the subsequent recession of 1981-82. 

 To check the robustness of our estimated structural change dates to the base currency used 

to define the exchange rates, we re-estimate the structural break models for the forward discount 

using the British Pound as the base currency. These results are summarized in Tables 6 through 7 

and Figure 2. We use the same methods to choose the number of structural breaks as described 

above. In general, for most countries the break dates in the forward discount using the British 

pound as the base currency are similar to the breaks found using the U.S. dollar as the base 

currency.14 We choose 4 breaks for the German Mark, and 3 of these break dates are close to break 

dates found using the U.S. dollar as the base currency.  We find 5 break dates for the French Franc, 

and, except the first break date, these breaks are very similar to those found using the U.S. dollar as 

the base currency. We choose 3 break dates for Italian Lira, and these dates are only slightly 

different than those in terms of U.S. dollar.  The number of structural breaks in the Canadian dollar 

is same as the number found using the U.S. dollar. However, as shown in Figure 2, the behavior of 

the forward discount of the Canadian dollar in terms of the British pound is quite different than the 

forward discount in terms of U.S. dollar, and the location of structural break dates are different.  

 

                                                 
14 We estimate the long memory parameter using the MLP regression with and without structural breaks in 
terms of British Pound. The results are available upon request. 
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5.4 Tests for Long Memory Parameter after Adjusting for Structural 
Breaks 

 
Table 8 reports ˆ

MLPd  for each series after adjustment for the estimated structural breaks. That is, 

the table shows estimates of d using the residual series ˆ ˆt t ju y c= − . All estimates of d are lower 

using the residual series. 

 The point estimate for the German Mark falls from ˆ (0.618,0.725)MPLd ∈ to 

ˆ (0.229,0.369)MPLd ∈ . The point estimate for the French Franc also decreases from 

ˆ (0.589,0.680)MPLd ∈  to ˆ (0.295,0.323)MPLd ∈ . The Italian Lira has ˆ (0.356,0.426)MPLd ∈  and the 

UK Pound has ˆ (0.303,0.455)MPLd ∈ . After the adjustment for breaks, all four series now appear to 

have stationary long memory properties since the majority of the 95% confidence intervals  

support 0.5.d ≤  Canada , in contrast, has ˆ (0.450,0.582)MPLd ∈  and the 95% confidence intervals 

indicate more evidence for nonstationary long memory. 

The results in Table 8 are based on estimating the long memory parameter from break 

adjusted data. A natural question is whether the order of the estimation matters15. To address this 

question, we use the pre-break estimate of the long memory parameter d from Table 3 to first filter 

the long memory from the data. We then use the Bai-Perron procedure to estimate multiple breaks 

from the filtered data16.  

The results of this process are reported in Table 9. In general, the UDmax, and WDmax 

tests indicate the presence of multiple breaks for each forward discount. However, the number of 

structural changes is considerably less than in the original (unfiltered) data. For example, the 

UDmax and WDmax statistics for the German Mark suggest the presence of multiple breaks and 

                                                 
15 We thank a referee for posing this question. 
16 We use estimates of d based on 0.70α =  to filter the data, but the results are almost identical for other 
values of α. Next we reapply the BP method allowing up to 5 breaks. 
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(3 | 2)TSupF is significant at the 5% level. On the other hand the BIC and LWZ choose 0 breaks. 

The results for the French Franc and the Italian Lira indicate one break using the sequential 

method. The Canadian Dollar shows significant UDmax and WDmax test statistics at the 1% level. 

Additionally (3 | 2)TSupF is significant at the 5% level. The LWZ suggests 3 breaks and the 

sequential method suggests 1 break. We can choose 3 breaks model in Canadian dollar. The British 

Pound provides a significant (2 |1)TSupF  at the 5% significant level, and the selected number of 

breaks is 1 by sequential and 3 by LWZ.  In conclusion, there is evidence of multiple structural 

changes in the long memory filtered data but the number of structural changes is smaller than in the 

raw data. These results have important implications because when we adjust for long memory, we 

still find structural changes. Those remaining structural changes possibly generate the stationary 

long memory finding in our previous empirical results. 
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5.5 Monte Carlo Evidence 
 

A potential criticism of our results is that the estimated break dates are potentially spurious 

if the data is in fact nonstationary. However, Granger and Hyung (2004) show that for simulated 

nonstationary data after allowing for structural breaks the estimated parameter d only provides 

evidence of possible spurious break points when it is less than zero. Our estimates of d after 

removing structural breaks from the original series are all positive, and all of the 95% confidence 

intervals for d, except one, exclude values of d < 0. The Granger and Hyung simulation results, 

however, are based on a model with only long memory. Our results show a combination of long 

memory and structural changes.  It is not clear if the Granger and Hyung results are applicable to 

our situation. 

To check the robustness of our results, we follow Granger and Hyung and use Monte Carlo 

simulations since there is no developed distribution theory for detecting multiple structural breaks 

in the presence of long memory. We simulated data to mimic the forward discount using parameter 

estimates from the structural break model reported in Table 5.  We use the Canadian, French, and 

German parameter estimates for models with 3, 4 and 5 breaks, respectively. The sample size for 

each simulation is T = 276, which is the same number of observations as the actual data. We 

simulated data in three different settings: short memory with structural breaks ( 0d = ); stationary 

long memory with structural breaks ( 0.3d = ); and non-stationary long memory with structural 

breaks ( 0.7d = ). We report the mean MLP estimates of d and the t-statistics for testing d=0 before 

and after adjusting for breaks. We also compute the empirical frequency of choosing the correct 

number of breaks using the BIC from the Bai-Perron procedure17. All results are based on 10,000 

simulations. 

                                                 
17 For each model, the maximum number of breaks allowed is one greater than the true number of breaks. 
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Tables 10 and 11 summarize the Monte Carlo simulation results. Consistent with the 

results of Granger and Huang (2004), when the data is generated under short memory with 

structural breaks ( 0d = ) we find strong evidence of long memory in the simulated data. The 3 and 

4 break models produce evidence for stationary long memory, whereas the 5 break model gives 

evidence for nonstationary long memory. Using the Bai-Perron procedure with BIC to determine 

the number of structural breaks, the probability of detecting the correct number of structural 

changes is very high: from 94.9% to 99.2%.  After adjusting the data for the estimated breaks, the 

MLP estimates of d clearly support d = 0. 

 The simulation results from the stationary long memory with structural break models (d = 

0.3) are consistent with our empirical findings. Before adjusting for estimated breaks, the MLP 

estimates of d generally indicate nonstationary long memory.  After adjusting for the estimated 

breaks, the MLP estimates of d fall into the stationary long memory range and the hypothesis that 

d=0 is rejected at the 5% level with frequency close to 5%.  Interestingly, the probability of 

detecting the correct number of structural changes using BIC is lower when d=0.3. The simulations 

show that the BIC has a tendency to overestimate the true number of breaks. 18  

 The nonstationary long memory with structural change case (d=0.7) provides interesting 

results. Before adjusting for breaks, the MLP estimates of d uniformly indicate nonstationary long 

memory. Furthermore, after adjusting for breaks, the estimates of d still overwhelmingly support 

nonstationary long-memory. Moreover, the probability of detecting the correct number of structural 

changes is fairly low: from 35.7% to 41.6.  

 

 

 

                                                 
18 These results are sensitive to the calibration of the model. When structural breaks are more pronounced, 
our simulations show that the BIC has a higher probability of detecting correct number of breaks. 
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5.6 Comparison of Autocorrelation Functions 

 
Figures 3 through 7 show each country’s autocorrelations of the spot exchange rate and forward 

discount before and after adjusting for structural breaks for each country.  From the definition of 

long memory, the autocorrelations of a long memory process should lie between the 

autocorrelations of a stationary autoregressive process and a non-stationary process.  

Consider the results for the German Mark. The autocorrelations of the spot exchange rate 

have a typical non-stationary shape. The autocorrelations of the forward discount are slightly less 

than the spot exchange rate, but both have similar paths. The autocorrelations of the forward 

discount after adjusting for the estimated structural breaks exhibit exponential decay more typical 

of stationary data. Now consider the autocorrelations for the French Franc.   The autocorrelations 

of the forward discount show a degree of persistence that is considerably less than those of the spot 

exchange rates. The autocorrelations of the break-adjusted forward discount also exhibit a more 

rapidly decaying pattern, but not as quickly as that of the German Mark. The autocorrelations of 

the forward discounts for the Italian Lira and Canadian dollar are very similar to those for French 

Franc, and the autocorrelations of the break-adjusted forward discount for the British Pound are 

similar to the German Mark. 
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6. Conclusion 

 
In this paper, we have analyzed the long memory properties of the monthly forward discount series 

for five G7 countries with and without allowing for structural breaks in the mean. We used the 

MLP regression to nonparametrically estimate the long memory parameter of a data series, since it 

is preferred to the GPH estimator when the data may have a nonstationary component. Also, we 

used the Bai and Perron method to detect and estimate the number of breaks in the mean. We found 

that multiple breaks in the mean are present and that most break dates are associated with periods 

of high volatility in the beginning of the.  We found that when we allow for structural breaks, the 

forward discounts’ persistence is considerably less than before adjusting for structural breaks. This 

result is consistent with Granger and Hyung (1999)'s and Diebold and Inoue (2001)'s arguments. 

Moreover, Monte Carlo simulations results confirm our empirical findings. However, we may not 

conclude that the long memory properties are totally due to structural breaks since we found 

evidence of long memory in the forward discount after allowing for structural breaks. One 

significant difference is that when we allow for structural breaks, the estimates change from 

implying nonstationary long memory with mean reversion to stationary long memory. From the 

autocorrelations, we found that once these breaks are allowed for, the autocorrelations are 

drastically reduced.  

Our results have implications for forecasting future movements in the forward discount as 

well as interpreting tests of the forward rate unbiasedness hypothesis. The evidence of stationary 

long-memory in the forward discount after the removal of estimated breaks suggests that 

forecasting the forward discount and spot exchange rates may be improved through the use of long-

memory models. Indeed, Bhardwaj and Swanson (2004) show that certain types of long-memory 

models significantly outperform linear alternatives for forecasting many types of macroeconomic 
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and financial variables especially for long-horizons. We plan to investigate the impact of structural 

breaks and long-memory on forecasting performance in future work.  Regarding tests for the 

forward rate unbiasedness hypothesis, our finding lend additional support to the contentions of 

Baillie and Bollerslev (1994, 2000),  Maynard and Phillips (2001) and Sakoulis and Zivot (2001) 

that the forward discount anomaly is, in part, due to the statistical properties of the data. In 

particular, our results indicate that both long-memory and structural breaks should be considered 

together in evaluating the biases that may occur in conducting tests of the forward rate 

unbiasedness hypothesis. We also plan to investigate this issue in future work.  
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Table 1: Summary Statistics 

 German 
Mark 

French 
Franc 

Italian 
Lira 

Canadian 
Dollar 

British 
Pound 

Mean -0.163 0.176 0.500  0.113 0.215 
S.D.  0.279 0.331 0.432  0.162 0.260 
Skewness  0.588 1.203 2.052 -0.208 0.323 
Kurtosis  3.630 7.119 9.027  3.277 4.653 
Jarque-Bera Test 20.520 261.760 611.510  2.875 36.280 
 

 

Table 2: Unit Root Test  

 ADF-GLS Test 

 Test Statistics Lag Length 
German Mark -1.548 9 
French Franc   -2.112* 11 
Italian Lira    -4.412** 11 
Canadian Dollar -1.179 10 
British Pound -1.766 12 
1)*, ** denote significant at the 5% and 1% respectively.  
2) 5%  and 1% critical values are -1.941 and -2.573 respectively. 
3) The ADF-GLS test lag length was selected by the Modified AIC rule with a maximum lag of 15. 
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Table 3: MLP Regression Estimates Before Adjusting for Structural Breaks (/ U.S. Dollar)  

 m Tα=  d̂  S.E. 95% C.I. 
0.70m T=  0.725 0.101 [0.525, 0.924] 
0.75m T=  0.618 0.086 [0.448, 0.789] 

 
German Mark 
 

0.80m T=  0.707 0.074 [0.562, 0.852] 
0.70m T=  0.615 0.101 [0.415, 0.814] 
0.75m T=  0.680 0.086 [0.510, 0.851] 

 
French Franc 

0.80m T=  0.589 0.074 [0.444, 0.734] 
0.70m T=  0.536 0.101 [0.337, 0.736] 
0.75m T=  0.589 0.086 [0.419, 0.760] 

 
Italian Lira 

0.80m T=  0.648 0.074 [0.503, 0.793] 
0.70m T=  0.619 0.101 [0.419, 0.818] 
0.75m T=  0.652 0.086 [0.481, 0.822] 

 
Canadian Dollar 

0.80m T=  0.695 0.074 [0.550, 0.840] 
0.70m T=  0.786 0.101 [0.586, 0.985] 
0.75m T=  0.841 0.086 [0.792, 0.877] 

 
British Pound 

0.80m T=  0.866 0.074 [0.721, 1.011] 
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Table 4: Multiple Structural Change Tests Results (/U.S. Dollar) 

Statistic\Country Germany France Italy Canada U.K. 
Tests 

(1)TSupF  0.536 88.187*** 35.253*** 7.354 8.200* 
(2)TSupF  14.657*** 23.609*** 15.102*** 13.635*** 5.283 
(3)TSupF  10.868*** 24.320*** 11.994*** 22.249*** 7.541 
(4)TSupF  16.223*** 83774*** 12.193*** − 8.216 
(5)TSupF  12.882*** − − − 42.238*** 

maxUD  16.233*** 88.187*** 35.523*** 22.249*** 42.238*** 
maxWD  25.919*** 133.842*** 32.523*** 32.246*** 74.799*** 

(2 |1)TSupF  19.819*** 17.865*** 0.072 58.365*** 2.681 
(3 | 2)TSupF  15.580*** 77.715*** 1.987 47.625*** 12.873** 
(4 | 3)TSupF  17.234*** 67.242*** 3.820 − 32.941*** 
(5 | 4)TSupF  18.235*** − − − 32.941*** 

Number of Changes Selected 
Sequential 0 4 1 0 1 
LWZ 5 4 4 3 5 
BIC 5 4 2 3 5 
1) *,**,*** indicate 10%, 5% and 1% significance respectively. 
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Table 5: Multiple Structural Change Model Estimates (/U.S. Dollar) 

Germany 
1̂c  -0.084(0.026) 

1̂T  1977:08 [1976:02 1978:01] 

2ĉ  -0.412(0.013) 
2̂T  1984:09 [1984:06 1988:12] 

3ĉ  -0.249(0.015) 
3̂T  1989:09 [1988:08 1989:10] 

4ĉ   0.022(0.029) 
4̂T  1991:02 [1977:09 1991:08] 

5ĉ   0.375(0.019) 
5̂T  1994:04 [1994:03 1994:05] 

6ĉ  -0.141(0.016)   
France 

1̂c  0.443(0.046) 
1̂T  1978:02 [1976:10 1978:03] 

2ĉ  -0.104(0.038) 
2̂T  1981:04 [1980:11 1981:12] 

3ĉ  0.682(0.050) 
3̂T  1983:02 [1980:10 1983:11] 

4ĉ  0.211(0.019) 
4̂T  1995:10 [1995:09 1995:11] 

5ĉ  -0.157(0.038)   
Italy 

1̂c  1.597(0.081) 
1̂T  1977:02 [1976:04 1977:07] 

2ĉ  0.474(0.042) 
2̂T  1981:06 [1980:12 1985:10] 

3ĉ  0.930(0.067) 
3̂T  1983:02 [1980:03 1983:07] 

4ĉ  0.434(0.023) 
4̂T   1996:09 [1980:10 1998:07]+ 

5ĉ  0.059(0.058)   
Canada 

1̂c   0.327(0.029) 
1̂T   1977:04 [1976:03 1977:05]+ 

2ĉ   0.085(0.009) 
2̂T  1989:03 [1988:02 1991:01] 

3ĉ   0.292(0.017) 
3̂T  1993:04 [1990:04 1993:08] 

4ĉ  -0.006(0.014)   
U.K. 

1̂c   0.719(0.039) 
1̂T  1977:02 [1976:06 1978:09] 

2ĉ   0.202(0.022) 
2̂T  1980:10 [1978:04 1981:09] 

3ĉ  -0.096(0.021) 
3̂T  1984:09 [1983:11 1986:10] 

4ĉ   0.277(0.019) 
4̂T  1989:06 [1989:04 1991:06] 

5ĉ   0.518(0.023) 
5̂T  1992:10 [1992:05 1992:11] 

6ĉ   0.115(0.017)   
1)  + indicate 90% confidence interval. All other are based on 95% confidence interval. Asymptotic standard 
errors are reported in parentheses. îc is the estimated intercept parameter and îT is the estimated break date.  
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Table 6: Multiple Structural Change Tests Results (/British Pound) 

Statistic\Country Germany France Italy Canada U.S. 
Tests 

(1)TSupF  5.474 4.685 13.063*** 2.671 8.185* 
(2)TSupF  29.530*** 20.920*** 11.993*** 4.613 5.311 
(3)TSupF  21.890*** 26.039*** 30.119*** 9.206* 7.529 
(4)TSupF  29.331*** 20.690** − − 8.205 
(5)TSupF  − 21.133** − − 43.289*** 

maxUD  29.530*** 26.039*** 30.119*** 9.206* 43.289*** 
maxWD  46.860*** 37.739*** 43.651*** 13.343** 74.788*** 

(2 |1)TSupF  19.380*** 20.729*** 3.576 9.889** 2.814 
(3 | 2)TSupF  66.807*** 14.923*** 25.945*** 15.104*** 12.849** 
(4 | 3)TSupF  66.807*** 20.633*** − − 42.817*** 
(5 | 4)TSupF  − 14.923*** − − 42.817*** 

Number of Changes Selected 
Sequential 0 0 1 0 1 
LWZ 4 5 3 3 5 
BIC 4 5 3 3 5 
1) *,**,*** indicate 10%, 5% and 1% significance respectively. 
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Table 7: Multiple Structural Change Model Estimates (/British Pound) 

Germany 
1̂c  -0.622 (0.018) 

1̂T  1980:12 [1979:08 1982:12] 

2ĉ  -0.294 (0.022) 
2̂T  1984:06 [1983:08 1987:03] 

3ĉ  -0.528 (0.015) 
3̂T  1991:03 [1990:08 1991:05] 

4ĉ   0.000 (0.020) 
4̂T  1995:02 [1994:09 1997:01] 

5ĉ  -0.262 (0.021)   
France 

1̂c  -0.149 (0.030) 
1̂T  1981:04 [1980:11 1982:01] 

2ĉ   0.762 (0.052) 
2̂T  1983:02 [1982:10 1984:03] 

3ĉ   0.212 (0.052) 
3̂T  1984:12 [1983:03 1985:04] 

4ĉ  -0.206 (0.026) 
4̂T  1992:04 [1991:06 1995:02] 

5ĉ  -0.115 (0.036) 
5̂T  1995:12 [1995:06 1996:09] 

6ĉ  -0.268 (0.041)   

Italy 
1̂c  0.793 (0.054) 

1̂T  1978:03 [1978:01 1978:08] 

2ĉ  0.083 (0.055) 
2̂T  1980:05 [1979:09 1980:06] 

3ĉ  0.728 (0.040) 
3̂T  1984:06 [1980:01 1985:03] 

4ĉ  0.113 (0.021)   
Canada 

1̂c  -0.223 (0.020) 
1̂T  1980:11 [1978:11 1981:07] 

2ĉ   0.333 (0.033) 
2̂T  1982:10 [1982:10 1985:02] 

3ĉ   0.046 (0.031) 
3̂T  1984:12 [1979:09 1985:06] 

4ĉ  -0.142 (0.011)   
U.K. 

1̂c   -0.719(0.039) 
1̂T  1977:02 [1976:06 1978:09] 

2ĉ   -0.202(0.022) 
2̂T  1980:10 [1978:04 1981:09] 

3ĉ    0.096(0.021) 
3̂T  1984:09 [1983:11 1986:10] 

4ĉ   -0.277(0.019) 
4̂T  1989:06 [1989:04 1991:06] 

5ĉ   -0.518(0.023) 
5̂T  1992:10 [1992:05 1992:11] 

6ĉ   -0.115(0.017)   
1)  + indicate 90% confidence interval. All other are based on 95% confidence interval. Asymptotic standard 
errors are reported in parentheses. îc is the estimated intercept parameter and îT is the estimated break date.  
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Table 8: MLP Regression Estimates After Adjusting for Structural Breaks (/ U.S. Dollar)  

 m Tα=  d̂  S.E. 95% C.I. 
0.70m T=  0.229 0.101 [0.029, 0.429] 
0.75m T=  0.254 0.086 [0.084, 0.425] 

 
German Mark 
 

0.80m T=  0.369 0.074 [0.224, 0.514] 
0.70m T=  0.295 0.101 [0.095, 0.495] 
0.75m T=  0.378 0.086 [0.207, 0.548] 

 
French Franc 

0.80m T=  0.323 0.074 [0.177, 0.468] 
0.70m T=  0.356 0.101 [0.157, 0.556] 
0.75m T=  0.339 0.086 [0.169, 0.510] 

 
Italian Lira 

0.80m T=  0.426 0.074 [0.281, 0.572] 
0.70m T=  0.450 0.101 [0.251, 0.650] 
0.75m T=  0.517 0.086 [0.347, 0.688] 

 
Canadian Dollar 

0.80m T=  0.582 0.074 [0.436, 0.727] 
0.70m T=  0.303 0.101 [0.103, 0.502] 
0.75m T=  0.369 0.086 [0.199, 0.540] 

 
British Pound 

0.80m T=  0.455 0.074 [0.310, 0.600] 

 

 
Table 9: Multiple Structural Change Tests Results (Removing Long Memory) 

 Germany France Italy Canada U.K. 
Tests 

(1)TSupF  2.211 9.328* 12.007** 12.364** 13.497** 
(2)TSupF  8.770** 2.536 8.661* 5.222 11.734*** 
(3)TSupF  34.298*** − 5.996 7.557* 5.897 

maxUD  34.298*** 9.328* 12.007** 12.364** 13.497** 
maxWD  49.709*** 23.186*** 12.007** 12.364** 13.497** 

(2 |1)TSupF  16.906*** 8.551* 5.277 2.646 10.147** 
(3 | 2)TSupF  15.370** − 1.833 13.201** 1.251 

Number of Changes Selected 
Sequential 0 1 1 1 1 
LWZ 0 0 1 3 3 
BIC 0 0 1 0 0 
1) *,**,*** indicate 10%, 5% and 1% significance respectively. 
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Table 10: Monte Carlo Estimates of MLP Regression  

Number of Structural Breaks m Tα=  ˆ
MLPd  SB adjusted ˆ

MLPd  
d = 0.0 

SB=3 0.70m T=  0.488 (4.832) 0.117 (1.158) 
  0.75m T=  0.425 (4.941) 0.099 (1.151) 
 0.80m T=  0.365 (4.932) 0.081 (1.095) 

SB=4  0.70m T=  0.471 (4.663) 0.009 (0.089) 
 0.75m T=  0.419 (4.872) 0.005 (0.058) 
 0.80m T=  0.359 (4.851) 0.081 (1.095) 

SB=5  0.70m T=  0.651 (6.445) 0.050 (0.495) 
 0.75m T=  0.593 (6.895) 0.040 (0.465) 
 0.80m T=  0.518 (7.000) 0.033 (0.446) 

d = 0.3 
SB=3  0.70m T=  0.523 (5.178) 0.307(3.040) 

  0.75m T=  0.496 (5.767) 0.301 (3.500) 
 0.80m T=  0.466 (6.297) 0.295 (3.986) 

SB=4  0.70m T=  0.492 (4.871) 0.181 (1.792) 
 0.75m T=  0.470 (5.465) 0.197 (2.291) 
 0.80m T=  0.445 (6.014) 0.212 (2.865) 

SB=5  0.70m T=  0.645 (6.386) 0.159 (1.574) 
 0.75m T=  0.618 (7.186) 0.179 (2.081) 
 0.80m T=  0.574 (7.757) 0.195 (2.635) 

d = 0.7 
SB=3  0.70m T=  0.705 (6.980) 0.672 (6.653) 

 0.75m T=  0.705 (8.198) 0.670 (7.791) 
 0.80m T=  0.695 (9.392) 0.663 (8.959) 

SB=4  0.70m T=  0.639 (6.327) 0.573 (5.673) 
 0.75m T=  0.649 (7.547) 0.590 (6.860) 
 0.80m T=   0.651 (8.797) 0.600 (8.108) 

SB=5  0.70m T=  0.663 (6.564) 0.484 (4.792) 
 0.75m T=  0.681 (7.919) 0.518 (6.023) 
  0.80m T=  0.678 (9.162) 0.540 (7.297) 

1) Results are averaged based on 1000 simulations with sample size 276. t-statistics for MLP parameter d are 
given in parentheses. SB denotes structural breaks. 



 

  44

 

Table 11: Probability of Selecting Correct Number of Breaks   

SB 0.0d =  0.3d =  0.7d =  
3 94.9 59.5 35.7 
4 95.2 59.7 36.0 
5 99.2 84.4 41.6 

1) Results are based on 1000 simulations using the BIC to select the number of structural breaks (SB). 
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Figure 1: Estimated Break Dates for Forward Discount (/ U.S. Dollar) 
  

-1.5

-1.0

-0.5

0.0

0.5

1.0

78 80 82 84 86 88 90 92 94 96 98

FOGER MEAN

Germany

                              

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

78 80 82 84 86 88 90 92 94 96 98

FOFRA MEAN

France

 
 
 
 

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

78 80 82 84 86 88 90 92 94 96 98

FOITA MEAN

Italy

                              

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

78 80 82 84 86 88 90 92 94 96 98

FOCAN MEAN

Canada

 
 
 
 

-1.0

-0.5

0.0

0.5

1.0

1.5

78 80 82 84 86 88 90 92 94 96 98

FOUK MEAN

UK

 
 
 
 



 

  46

Figure 2: Estimated Break Dates for Forward Discount (/ British Pound) 
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Figure 3:  Autocorrelation Function for German Mark 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14 16 18 20 22 24

SGER FGER MGER

German

 
* SGER: The spot exchange rate for German Mark, FGER: The forward discount for German Mark, and 

MGER : The mean adjusted forward discount for German Mark. 
 
 

 

Figure 4: Autocorrelation Function for French Franc 
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* SFRA: The spot exchange rate for French Franc, FFRA: The forward discount for French Franc, and MGER : 

The mean adjusted forward discount for French Franc. 
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Figure 5: Autocorrelation Function for Italian Lira 
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* SITA: The spot exchange rate for Italian Lira, FITA: The forward discount for Italian Lira, and MITA : The 

mean adjusted forward discount for Italian Lira 
 
 

 
Figure 6: Autocorrelation Function for Canadian Dollar 
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 * SCAN: The spot exchange rate for Canadian Dollar, FCAN: The forward discount for Canadian Dollar, and 

MCAN : The mean adjusted forward discount for Canadian Dollar. 
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Figure 7: Autocorrelation Function for British Pound 
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* SUK: The spot exchange rate for British Pound, FUK: The forward discount for British Pound and MUK: 

The mean adjusted forward discount for British Pound. 
 
 
 
 
 
 
 
 


