Analysis of High Frequency Financial Data: Models,
Methods and Software. Part I: Descriptive Analysis
of High Frequency Financial Data with S-PLUS.

Eric Zivot*

July 4, 2005.

1 Introduction

High-frequency financial data are observations on financial variables taken daily or at
a finer time scale, and are often irregularly spaced over time. Advances in computer
technology and data recording and storage have made these data sets increasingly
accessible to researchers and have driven the data frequency to the ultimate limit
for some financial markets: time stamped transaction-by-transaction or tick-by-tick
data, referred to as ultra-high-frequency data by Engle (2000). For equity markets,
the Trades and Quotes (TAQ) database of the New York Stock Exchange (NYSE)
contains all recorded trades and quotes on NYSE, AMEX, NASDAQ), and the regional
exchanges from 1992 to present. The Berkeley Options Data Base recorded similar
data for options markets from 1976 to 1996. In foreign exchange markets, Olsen
Associates in Switzerland maintains a data base of indicative FX spot quotes for
many major currency pairs published over the Reuters’ network since the mid 1980’s.

These high-frequency financial data sets have been widely used to study various
market microstructure related issues, including price discovery, competition among
related markets, strategic behavior of market participants, and modeling of real-
time market dynamics. Moreover, high-frequency data are also useful for studying
the statistical properties, volatility in particular, of asset returns at lower frequen-
cies. Excellent surveys on the use of high-frequency financial data sets in financial
econometrics are provided by Andersen (2000), Campbell, Lo and MacKinlay (1997),
Dacarogna et. al. (2001), Ghysels (2000), Goodhart and O’Hara (1997), Gouriéroux
and Jasiak (2001), Lyons (2001), Tsay (2001), and Wood (2000).

*Parts of these notes are based on the unpublished paper “Analysis of High Frequency Financial
Data with S-PLUS” by Bingchen Yan and Eric Zivot. Data and S-PLUS scripts are available at
http:\ \faculty.washington.edu\ezivot\ezresearch.htm.

High-frequency financial data possess unique features absent in data measured at
lower frequencies, and analysis of these data poses interesting and unique challenges
to econometric modeling and statistical analysis. First, the number of observations in
high-frequency data sets can be overwhelming. The average daily number of quotes in
the USD/EUR spot market could easily exceed 20,000, and the average daily number
of observations of an actively traded NYSE stock can be even higher. Second, data
are often recorded with errors and need to be cleaned and corrected prior to direct
analysis. For various reasons, high-frequency data may contain erroneous observa-
tions, data gaps and even disordered sequences. Third, transaction-by-transaction
data on trades and quotes are, by nature, irregularly spaced time series with random
daily numbers of observations. Moreover, trades and quotes on multiple assets seldom
occur at the same time, and trading activity varies considerably across assets. Fourth,
high-frequency data typically exhibit periodic (intra-day and intra-week) patterns in
market activity. It is well known that trading activities at the NYSE are more dense
in the beginning and closing of the trading day than in the lunch hours. FX trad-
ing activities also systematically vary as the earth sequentially passes through the
business hours of geographical trading centers. Furthermore, discrete price move-
ments, nonsynchronous trading, and bid-ask bounce may distort inferences based on
standard statistical models.

The above characteristics of high frequency financial data substantially complicate
the process of econometric and statistical analysis, and typical statistics and econo-
metrics software do not contain the tools necessary to properly handle and analyze
high frequency data. S-PLUS, with its rich and flexible object oriented statistical
modeling language and graphical facilities, is ideally suited for the analysis of high
frequency data. This part of the lecture illustrates how to process and descriptively
analyze high-frequency financial data using the S-PLUS statistical modeling language
and the S+FinMetrics module for the analysis of time series data. The goal are (1) to
provide a practical guide to high-frequency financial data analysis, from getting raw
data into the software program, to preparing data for analysis and creating relevant
variables, and to performing basic descriptive and graphical analysis; (2) to illustrate
the basic characteristics of high frequency financial time series, and to motivate the
statistical modeling of high frequency data. Three example data sets are used to
demonstrate the applications of techniques and tools discussed, two from equity mar-
kets (TAQ data) and one from FX markets (Olsen data). The lectures make use of
the S-PLUS library HF developed by Bingchen Yan and Eric Zivot, which contains
a collection of functions specially designed for high-frequency financial data analysis.

The organization of the lecture is as follows. Section 1 gives a brief overview of the
S-PLUS library HF'. Section 3 introduces three example data sets and describes how
to load and process the data for further analysis. Section 4 deals with basic data ma-
nipulations, such as creating various market variables, performing summary statistics,
regularizing unequally spaced data. It also illustrates some empirical characteristics
of high-frequency data using basic descriptive statistics and graphical techniques.

2 Overview of the S-PLUS HF library

The S-PLUS HF library is a collection of S-PLUS functions written by Bingchen Yan
and Eric Zivot!. Table 1 gives a brief summary of the main functions in the library.
The functions make use of the proprietary “timeDate” and “timeSeries” classes in
S-PLUS, version 6.0 and higher, that can be used to characterize irregularly spaced,
intra-day high frequency time series. Functions are included to load data from the
TAQ and Olsen data, to perform data manipulation and descriptive analysis over
specified trading periods, and to construct variables frequently used in the analysis
of high frequency time series.

The following sections illustrate the descriptive analysis of high frequency financial
time series using S-PLUS and the functions in the HF library.

3 Data Processing

3.1 Data Sets

The data sets used in this lecture are trades and quotes data for Microsoft and GE
(05/01/1997-05/15/1997) and USD/EUR spot rate quotes (03/11,/2001-03/17/2001).
The trades and quotes data for Microsoft are saved in the ASCII files “trade_msft.txt”
and “quote_msft.txt”, while similar data for GE are saved in “trade_ge.txt” and
“quote_ge .txt”. These data sets contain standard and complete information from
the TAQ database?. For example, the first six rows of trade_msft.txt are:

cond |ex |symbol |corr |gl27 |price |siz |tdate [tseq [ttim |

IT |IMSFT |0 |0 [121.125 [1500 |01MAY1997 |0 28862 |
IT [IMSFT [0 |0 [121.5625 |500 |O1MAY1997 [0 28944 |
T |MSFT 10 |0 [121.5625 [1000 |O1MAY1997 |0 [29000 |
IT |IMSFT |0 |0 [121.5625 1200 |01MAY1997 |0 [29002 |
IT [MSFT |0 |0 [121.625 [1000 |01MAY1997 |0 131095 |

H 3434

The trades data have 10 columns separated by “|”. The most important columns
are “symbol” for stock symbol (e.g. “GE” or “MSFT”), “price” for transaction prices
(e.g. 110.625), “size” for traded size in number of shares (e.g. 100), “tdate” for date of
the trade (e.g. “01MAY1997”), and “ttime” for time of the trade in seconds since the
midnight of the day (e.g. 34220). The time used in the TAQ database is recorded in

!The library FH was developed by the authors and is available for download at
http:\ \faculty.washington.edu\ezivot\splus.htm. The library was created using S-PLUS 6.2. The
library is currently being updated to incorporate the big data features of S-PLUS 7.0. Wolfgang
Breymann also has an S-PLUS library of functions for the analysis of high frequency foreign exchange
rate data available at http://www.math.ethz.ch/ breymann/.

2For a detailed explanation of the complete fields in the TAQ database, see the online TAQ?2
user’s guide at http://nyse.com/marketinfo/taqdatabase.html.

Function

Description

Data loading

TAQLoad Load TAQ data into timeSeries
OlsenLoad Load Olsen data into timeSeries

Time series and data manipulation
reorderTS Correct ordering of dates in timeSeries
plotByDays Plot timeSeries by days
is.tsBW Determine if timeSeries lie in specified interval
tsBW Extract timeSeries within interval
ExchangeHoursOnly Restrict timeSeries to exchange hours
FxBizWeekOnly Restict dates business week

diff.withinDay
diff.withinWeek
align.withinWeek
align.withinDay
aggregateSeriesHF
SmoothAcrossIntervs

Take difference within 1 day period

Take difference with 1 week period

Align to regular clock within a week

Align to regular clock within a day

Faster version of aggregateSeries

Smooth data in intervals across days or weeks

Variable construction

DurationInInterv
PriceChgInInterv
getSpread
getMidQuote
aggregateTradeTypes
DetermInterp
naDuration

numNAs

TradeDirec

Compute time between trades

Compute price change in interval

Compute bid/ask spread

Compute midquote

Aggregate trade direction indicator over interval
Interpolate across interval

Count number of sequential NA values
Determine of number of NA values

Determine if transaction is buy or sell

Table 1: Summary of S-PLUS HF library functions.

US Eastern time accommodating the daylight saving time. The quotes data have 11
“|” separated columns, the most important of which are “symbol” for stock symbol,
“bid” for bid prices (e.g. 121.5), “bidsiz” for bid size in number of round lots, i.e.
100 share units (e.g. 11), “ofr” for ask prices (e.g. 121.625), “ofrsiz” for ask size in
number of round lots (e.g. 11), “qdate” for date of the quote, and “qtime” for time
of the quote in seconds since midnight of the day.

The USD/EUR quotes data are saved in the ASCII file “eur_usd.txt” and each
record contains 4 or 5 white space separated fields: date, time in GMT, ask quote,
bid quote and quoting institution. For FX quotes data, the date and time are di-
rectly expressed in conventional format, e.g. “04.03.2001 14:41:30” for “dd.mm.yyyy
HH:MM:SS” (European time-date format). For example, the first five rows of eur_usd.txt
are

11.03.2001 01:07:46 0.93370 0.93420 AREX
11.03.2001 01:07:52 0.93360 0.93410 AREX
11.03.2001 01:07:57 0.93340 0.93390 AREX
11.03.2001 01:08:04 0.93370 0.93420 AREX
11.03.2001 05:42:35 0.93300 0.93400 CMBK

3.2 Data Loading

All data sets are in ASCII format and have to be loaded into S-PLUS for further
analysis. The functions TAQLoad() and OlsenLoad() in the HF library take the
TAQ data and Olsen’s FX quote data in their standard formats and save the resulting
data as an S version 4 (SV4) “timeSeries” object. Assuming the data sets are saved in
the directory \C: \HFAnalysis\", the Microsoft trade data are loaded using TAQLoad (
) as follows:

> msftt.ts = TAQLoad(file "C:\\HFAnalysis\\trade_msft.txt",
+ type = "trade", sep = "|", skip = 1)

The function TAQLoad ()takes the path and name of the data file through the argu-
ment file; the argument type specifies if the data is trade or quote; sep specifies
the delimiter/separator between fields used in the data file; skip tells the loading
function how many rows to skip before starting to read in data.

The remaining TAQ data can be loaded similarly: msftq.ts for the Microsoft
quotes data, get.ts for the GE trades data, and geq.ts for the GE quotes data:

> msftq.ts = TAQLoad(file = "C:\\HFAnalysis\\quote_msft.txt",
+ type = "quote", sep = "|", skip = 1)
> get.ts = TAQLoad(file = "C:\\HFAnalysis\\trade_ge.txt",
+ type = "trade", sep = "|", skip = 1)
> geq.ts = TAQLoad(file = "C:\\HFAnalysis\\quote_ge.txt",
+ type = "quote", sep = "|", skip = 1)

5

The first 5 rows of the Microsoft trades data can be viewed by typing

> msftt.ts[1:5,]
Positions Cond Ex Symbol Corr G127 Price Size Seq

5/1/1997 8:01:02 T T MSFT O 0 121.1250 1500 O
5/1/1997 8:02:24 T T MSFT O 0 121.5625 500 0O
5/1/1997 8:03:20 T T MSFT O 0 121.5625 1000 O
5/1/1997 8:03:22 T T MSFT O 0 121.5625 1200 O
5/1/1997 8:38:15 T T MSFT O 0 121.6250 1000 O
The first 5 rows of the Microsoft quotes data are:
> msftq.ts[1:5, 1]

Positions Ex MMID Symbol Bid BidSize Mode Ask AskSize Seq
5/1/1997 8:17:24 T MSFT 121.500 11 12 121.625 11 0
5/1/1997 9:00:44 T MSFT 121.750 10 12 121.625 11 0
5/1/1997 9:07:27 T MSFT 121.750 10 12 121.625 10 0
5/1/1997 9:16:30 T MSFT 121.875 10 12 121.625 10 0
5/1/1997 9:20:29 T MSFT 121.875 10 12 121.625 3 0

Notice that the displayed trades and quotes data only have 9 and 10 columns respec-
tively, rather 10 and 11 columns that appear in the text files. The reason is that the
loading function combines the date and time information in the text file into an SV4
“timeDate” object represented in the “Positions” column.

Any time series in S-PLUS may be represented by an SV4 “timeSeries” object,
which contains two basic parts: time date information and data series information.
These two parts, together with other attributes of the object, are constructed as slots
to the object, the name of which can be viewed using function slotNames(). For
example, the slots of the “timeSeries” object msftt.ts are

> slotNames (msftt.ts)

[1] "data" "positions" "start.position"
[4] "end.position" "future.positions" "units"
[7] "title" "documentation" "attributes"

[10] "fiscal.year.start" "type"

The slots data and positions contain the fundamental data and time date informa-
tion of a “timeSeries” object, and can be accessed by the @ operator or the extractor
functions seriesData() and positions(). For example, the first 5 rows of the
contents of the data slot to msftt.ts are

> msftt.ts@datal[l:5,]

Cond Ex Symbol Corr G127 Price Size Seq
1 T T MSFT 0 0 121.1250 1500 O
2 T T MSFT 0 0 121.5625 500 O

3 T T MSFT 0 0 121.5625 1000 O
4 T T MSFT 0 0 121.5625 1200 O
5 T T MSFT 0 0 121.6250 1000 O

The command seriesData(msftt.ts) [1:5,] gives the same result. To access the
first 5 rows of the positions slot use

> msftt.ts@positions[1:5]

[1] 5/1/1997 8:01:02 5/1/1997 8:02:24
[3] 5/1/1997 8:03:20 5/1/1997 8:03:22
[5] 5/1/1997 8:38:15

or positions(msftt.ts) [1:5,]. Note that these time date records are in US East-
ern time. For full details on the “timeSeries” object, see the online help for
class.timeSeries.

To load the USD/EUR data, use the loading function 01senLoad() as follows:

> eurusd.ts = OlsenLoad(file = "C:\\HFAnalysis\\eur_usd.txt")

The function 01senLoad() takes a file argument for the path and name of the data
file and creates the “timeSeries” object eurusd.ts. The standard format of Olsen’s
data is used as the default specification of the loading function, and the function
automatically transforms European time date format to American time date format.
The first 5 rows of eurusd.ts are

> eurusd.ts[1:5, 1]

Positions Bid Ask Institution
3/11/2001 1:07:46 0.9337 0.9342 AREX
3/11/2001 1:07:52 0.9336 0.9341 AREX
3/11/2001 1:07:57 0.9334 0.9339 AREX
3/11/2001 1:08:04 0.9337 0.9342 AREX
3/11/2001 5:42:35 0.9330 0.9340 CMBK

The time and date of eurusd.ts are in Greenwich Mean Time (GMT), which is
typical for FX data. The contents of a particular column, say the bid quotes, can be
viewed by typing

> eurusd.ts[1:5, "Bid"]
Positions Bid
3/11/2001 1:07:46 0.9337
3/11/2001 1:07:52 0.9336
3/11/2001 1:07:57 0.9334
3/11/2001 1:08:04 0.9337
3/11/2001 5:42:35 0.9330

Notice that S-PLUS allows using row or column names to subscript data. Another
way to subscript data using logical values will be discussed below.

To summarize, using the data loading functions TAQLoad() and OlsenLoad(
) from the HF library, five “timeSeries” objects, msftt.ts, msftq.ts, get.ts, geq.ts,
and eurusd.ts, have been created.

3.3 Data Examination and Cleaning

Raw high-frequency financial data can have a variety of problems. Some of these
problems may result from human input errors, like typing errors leading to data
outliers. Other errors may result from computer system errors, such as transmission
failures leading to data gaps, and database bugs leading to mis-ordered time series
observations. Failure to recognize and account for these data problems may cause
misleading results in subsequent statistical analysis. The HF library offers several
routines to discover and correct these data problems.

Mis-ordered time series refers to the situation in which observations still carry
correct time stamp information but they are not in a strict increasing time order. For
example, one observation has a time stamp of 10:05:34 and the next observation has
a time stamp of 10:05:29. This type of data problem can be prevented by filtering
with the HF library function reorderTS(). For example, to correct any mis-ordered
data in msft.ts, msftq.ts, get.ts, geq.ts, and eurusd.ts use

msftt.ts = reorderTS(msftt.ts)
msftq.ts = reorderTS(msftq.ts)
get.ts = reorderTS(get.ts)
geq.ts = reorderTS(geq.ts)
eurusd.ts = reorderTS(eurusd.ts)

V V V V V

The function reorderTS() takes in a “timeSeries” and outputs a correctly ordered
version of the “timeSeries” based on the re-ordering the positions information of the
“timeSeries”.

For data problems like data outliers and gaps, the most effective diagnostic method
is to plot the data. However, due to the potentially enormous amount of observations
in high-frequency data, plotting all available data may overwhelm the plotting device
and produce an unreadable plot. The HF function plotByDays()separates data
from a high frequency “timeSeries” into daily intervals and produces separate time
plots for each day. This makes it easier to visually inspect the data for problems.
To illustrate, time plots for seven days of Microsoft traded prices and USD/EUR bid
quotes are created using

> par(mfrow = c(3, 3))

> plotByDays(ts = msftt.ts, coltoplot = "Price", days.max = 7)
> par(mfrow = c(3, 3))

> plotByDays(ts = eurusd.ts, coltoplot = 1, days.max = 7)

8

123.0
123.0

160

o (3 o
> I o : g —
- 8:00 12:00 16:00 ” 8:45 12:45 16:30 8:00 12:00 16:00
May 11997 May 21997 May 5 1997
o o o
= | — T I © T —T
N | | s = |
] - o i
[te) o 0 i Q
e SRl IER SR 2 el T o
8:00 12:00 16:00 9:00 13:00 17:00 9:00 13:00 17:00
May'6 1997 May 7 1997 May 8 1997

o b |

118.0
I ——

116.0

Figure 1: Seven days of intra-day price data for Microsoft stock.

and are illustrated in Figures 1 and 2. The required argument ts accepts the “time-
Series” to plot. The coltoplot argument specifies which column(s) of the series
to plot. The argument days.max = 7 limits plots to the first seven days. The de-
fault is to plot the first column of the supplied series for all days with two or more
observations.

In Figure 1, the plotting period is from 05/01/1997, Monday, through 05/09/1997,
Friday, excluding the weekend of 05/03/ 1997 - 05/04/1997. The plots suggest that
the trading activity of Microsoft’s stock was very dense during the sample. In ad-
dition, the diagnostic plots identify a data outlier around 9:00 on 05/05/1997, with
trading price more than 180, significantly higher than surrounding observations and
highly unlikely. Furthermore, the plots reveal that, although the official trading
hours of the NYSE are from 9:30 to 16:00 Eastern Time, data outside this interval
are frequently observed.

The plotting period for the FX quotes in Figure 2 is from 03/11/2001, Sunday,
through 03/17/2001, Saturday, one whole week. These plots appear free from outliers.
This is to be expected since Olsen & Associates pre-processes the raw data using a
sophisticated data cleaning filter (see Dacarogna et. al. (2001)) as the raw data
from the Reuters network is prone to outliers and other data errors. The plots
suggest that the business week in the FX market starts from early Monday, trading

9

0.934
0.928

0.9330

0.926
0.914

0:00 8:8g 12 2089:00 Mar01:99001 0:00 8:8g 13 2089:00 Mar01:99001

0.9310

1:00

0.912
0.900

0.892

0:00 8:189r 14 203§:00 MarQI:E(:)9001 0:00 8:33 15 203§:00 Mar01:99001 0:00 8:33 16 203§:00 Mar01:'99001

0.908 0.916
1
0.896

0.8968

0.8960

7:00 15:30 23:30 23:45
Mar 17 2001

Figure 2: Seven days of intra-day quote data on Eur/$ exchange rate.

in Australia and New Zealand (still Sunday in GMT), and ends with late Friday,
trading in North America (before Friday midnight in GMT) without any interruption
between weekdays. The FX market is generally quiet over the weekend.

Often there is the need to limit the analysis to data within certain time intervals.
For example, observations with time stamps outside the official business hours of the
NYSE, as exemplified by the plots in Figure 1, are typically considered erroneous
and therefore should be excluded. For foreign exchange markets, the plots in Figure
2 show that the weekend period from late Friday to Sunday night is inactive and
data during this period behaves much differently than the active within week period.
For modeling FX data, the convention is to have the business week run from Sunday
22:00 GMT to Friday 22:00 GMT and exclude observations with time stamp outside
of this time range.

The HF library function ExchangeHoursOnly() can impose business hours re-
strictions to data from exchanges with well defined daily opening and closing hours.
For example, to eliminate or filter out the observations of Microsoft trades outside

the NYSE official hours use:

> msftt.ts = ExchangeHoursOnly(ts = msftt.ts,
+ exch.hours = ¢("9:30", "16:00"))

10

123.0

123.0

116 118 120
o

o o
3 3 nh inin
930 1130 1330 1530 9:30 1130 1330 1530
May 1 1997 May 5 1997
o
T 5 T wan
0 -~ ‘l: 1 1l
[ee] — 1 o L
= 1] 5l L | ol
9 2 il b
© | 2 T C 8 1]
930 1130 1330 1530 930 1130 _1330 1530 930 1130 1330 1530
WMay 6 1997 May 7 1997 iay 8 1997

118.0
&

116.0

[
[

9:30 11:30
Ma;

:30 15:30

13
y 9 1997

Figure 3: Seven days of intra-day price data for Microsoft stock restricted to NYSE
exchange hours.

where the argument exch.hours takes a two-element character vector specifying the
opening and closing hours of the exchange. Other data series from the TAQ database
can be filtered in similar fashion. The business hours filtered Microsoft trades prices
(first 7 days) are plotted in Figure 3, for comparison with the plots in Figure 1.
Clearly, the data points earlier than 9:30 and later than 16:00 have been successfully
removed.

For the data from the FX markets, the HF library function FxBizWeekOnly() can
impose business week restrictions in a flexible manner. Assuming that the business
week is periodic, i.e. 5 days, and from Sunday 22:00 GMT to Friday 22:00 GMT, the
weekend observations of the USD/EUR data can be filtered out using

> eurusd.ts = FxBizWeekOnly(ts = eurusd.ts,
+ bizweek.hours = c("22:00", "22:00"))

where the bizweek.hours argument determines the specification of the business week
beginning hour and closing hour. The definition of the business week is quite flexible
and a non-periodic business week specification is also allowed. Figure 4 presents the
plots of business week filtered USD/EUR, bid quotes. Notice that the data points

11

g [¢] §A | o] T
&I S R
S] 2
() @ 3 £
@O o = IR o~
g o od § L g
2 3 °
. @ Oap G| OW GIO@WO
o
@q ax O| Com™|Oo 2
- o gumod o g 11 g
- 0o o 4
3 ° il ° ‘
S
200 23000 99901 0% B0nfF00 008, 000 8Q0.J800 000,
o
o §< 11 8 [N R
& S S] HENF 1N
a 3
© = -
> H ©
3 g 3 1 i
= — O o -
N
S i || L] L
d - |
17T M © S
© S @
o 0 g
2 | THLH S AT ° 3
000 800, ,I600 008, 000 809..,J600 000, 000 OO 1600

Figure 4: Seven days of intra-day quote data on Eur/$ exchange rate restricted to
business week.

earlier than 22:00:00 03/11/2001, Sunday, and later than 22:00:00 03/16,/2001, Fri-
day, have been filtered out and the whole Saturday activity on 03/17/2001 has been
eliminated.

4 Data Manipulation and Characterization

4.1 Construction of Market Variables

This subsection discusses how to construct market variables that are of direct interest
to high-frequency financial data analysis. These variables include price change from
transaction to transaction (or from quote to quote for FX data since transaction data
are rarely available), duration or time span between trades or quotes, and spread
between bid and ask quotes. The HF library offers several functions to conveniently
construct these variables.

12

4.1.1 Price Change

The price change is the amount of price movement from transaction to transaction.
It may be expressed on the same scale as the price level; e.g., the price change of
0.125 from $120.00 to $120.125 is expressed in dollars. Alternatively, due to the fact
that the prices of almost all financial prices move in minimum increments, or tick
sizes, the price change may also be expressed in terms of the number of ticks, where
the tick size may vary from asset to asset and may even change over time for the
same asset. For example, the minimum price movement for USD/EUR is 0.0001 and
is 0.01 for JPY/USD. For stocks traded on the NYSE, the tick size was $1/8 ($0.125)
before June 24, 1997, $1/16 ($0.0626) until January 29, 2001, and afterwards the tick
size of all stocks traded on the NYSE and AMEX became $0.01. The tick size for
the sample TAQ data used in this lecture (5/1-15, 1997) is $1/8.

The price change is computed by differencing the price level data. However, stock
exchanges have well-specified daily business hours and the FX markets effectively
operate on a business week basis. Stoll and Whaley (1990) showed that overnight
stock returns differ substantially from intraday returns. Therefore, it is necessary
to separate the price changes between trading days and over weekends from others
within normal trading intervals when computing price changes. The HF function
PriceChgInInterv() is designed to perform this task, and computes price changes
of high-frequency price data only within the specified trading intervals. The argu-
ments accepted by the function are

> args(PriceChgInInterv)
function(x, ticksize = NULL, interv.type = "daily",
bound.hours = c("9:30", "16:00"))

The function accepts the price level time series through the argument x. The optional
argument ticksize will output the price changes as the number of ticks; otherwise
the price changes are in the same scale as price levels. The argument interv.type
specifies the trading session type, “daily” for exchange markets with daily business
hours, or “weekly” for the FX markets. The bound.hours specifies the daily opening
and closing hours of exchanges or the starting hour of one business week on Sunday
and the closing hour of the business week on Friday.

To illustrate, the price changes in multiples of ticks of MSFT trading prices are
computed using?

> pcTicks.msft = PriceChgInInterv(x = msftt.ts[, "Price"], ticksize = 1/8,
interv.type = "daily", bound.hours = c("9:30", "16:00"))
> pcTicks.msft[1:5]
Positions Price
5/1/1997 9:30:06 1

3show data

13

5/1/1997 9:30:09 -1
5/1/1997 9:30:10

5/1/1997 9:30:14 1
5/1/1997 9:30:14 -1

Similarly, the price changes in multiples of ticks of USD/EUR bid quotes are

> pcTicks.eurusd = PriceChgInInterv(eurusd.ts[, "Bid"], ticksize = 0.0001,
interv.type = "weekly", bound.hours = c("22:00", "22:00"))
> pcTicks.eurusd[1:5]
Positions Bid

3/11/2001 22:01:37 0

3/11/2001 22:09:34 0

3/11/2001 22:09:36 1

3/11/2001 22:11:08 -5

3/11/2001 22:11:10 4

4.1.2 Duration

A basic property of high-frequency financial data is that the transaction times of
trades and quotes are unequally spaced, which implies that the time duration between
transactions is not constant?. Duration can be computed by differencing the times
at which successive trades or quotes occurred. However, like price changes, durations
between trading days and over weekends should not be treated the same way as
durations within the normal business hours. The HF function DurationInInterv()
computes durations between high-frequency observations only within specified trading
intervals, and exclude the durations across trading intervals. The arguments expected
by DurationInInterv are

> args(DurationInInterv)
function(x, units = "seconds", interv.type = "daily",
bound.hours = c("9:30", "16:00"))

The argument x takes a “timeSeries” object or positions of a “timeSeries” object to
compute the durations between successive observations. The units argument spec-
ifies the time units to express the durations. The default is to express durations
in seconds. Other valid choices are "milliseconds” and "minutes”. The argu-
ments interv.type and bound.hours have the same meaning as in the function
PriceChgInInterv().

For example, to compute the durations expressed in seconds between MSFT trades
within the daily trading interval and the NYSE trading hours use

4Easley and O’Hara (1992) proposed a theoretical model in which varying durations carry dif-
ferent information content about price movements. Engle and Russell (1998) modeled the duration
process with an Autoregressive Conditional Duration (ACD) model.

14

> duration.msftt = DurationInInterv(x = msftt.ts, units = "seconds",

interv.type = "daily", bound.hours = c("9:30", "16:00"))
> duration.msftt[1:5,]

Positions Duration.in.seconds

5/1/1997 9:30:06
5/1/1997 9:30:09
5/1/1997 9:30:10
5/1/1997 9:30:14
5/1/1997 9:30:14

[@ IS GV RN

To compute the duration in seconds between USD/EUR quotes with a weekly trading
interval and the business week from Sunday 22:00 to Friday 22:00, GMT, use

> duration.eurusd = DurationInInterv(x = eurusd.ts, units = "seconds",
interv.type = "weekly", bound.hours = c("22:00", "22:00"))
> duration.eurusd[1:5, 1]
Positions Duration.in.seconds
3/11/2001 22:01:37 2
3/11/2001 22:09:34 477
3/11/2001 22:09:36 2
3/11/2001 22:11:08 92
3/11/2001 22:11:10 2

4.1.3 Spread

The bid-ask spread is computed by subtracting bid quotes, the prices at which the
market maker or other traders in the market will be willing to buy assets, from
ask quotes, the prices at which the market maker or other traders in the market
will be willing to sell assets. The determination of bid-ask spread is one of the
most successful areas of the market microstructure research. A rich literature has
developed to explain how inventory controls, asymmetric information, and processing
costs may affect bid-ask spread, as well as the relationship between the spread with
other financial variables like asset return volatility.

Because prices of financial assets move in multiples of ticks, the bid-ask spread
also moves in multiples of ticks. The HF function getSpread() computes the spread
from a time series of ask quotes and a time series of bid quotes, with the option to
express the spread in term of tick size. The arguments expected by getSpread()
are

> args(getSpread)
function(ask, bid, ticksize = NULL)

The arguments ask and bid take time series of ask and bid quotes separately. The
optional argument ticksize specifies the size of the minimum price movement and

15

expresses the spread in multiples of ticks; otherwise, the spread is expressed in the
same units as the bid/ask price.

To compute the spread of MSF'T bid and ask quotes in multiples of ticks with
ticksize $1/8 use

> spread.msft = getSpread(ask = msftq.ts[, "Ask"],

bid = msftq.ts[, "Bid"], ticksize = 1/8)
> spread.msft[1:5,]

Positions Spread

5/1/1997 9:30:14
5/1/1997 9:30:17
5/1/1997 9:30:17
5/1/1997 9:30:21
5/1/1997 9:30:57

e

Similarly, the spread of USD/EUR bid and ask quotes in multiples of ticks with
ticksize 0.0001 may be computed using

> spread.eurusd = getSpread(ask = eurusd.ts[, "Ask"],
bid = eurusd.ts[, "Bid"], ticksize = 0.0001)
> spread.eurusd[1:5,]
Positions Spread

3/11/2001 22:01:35 4

3/11/2001 22:01:37 5

3/11/2001 22:09:34 5

3/11/2001 22:09:36 5

3/11/2001 22:11:08 5

4.1.4 Trade Direction

With high frequency equity data, transaction prices are often observed but the di-
rection of trade is generally not observed®. Although each trade involves a buyer
and a seller, whether the trade is market buyer-initiated or market seller-initiated
has direct impact on price movements and is of particular importance to many mar-
ket microstructure studies. One naive approach to infer trade direction might be to
match the trade price with the contemporaneous quote prices. If the trade occurs
on the bid price, the trade is initiated by a market sell order; if the trade occurs on
the ask price, the trade is initiated by a market buy order. However, Lee and Ready
(1991) showed that equity quotes are often recorded on the Consolidated Tape ahead
of the trade that triggered them, and so they proposed to match trades to quotes
that are set at least five seconds prior to the transaction. Furthermore, the standing

5Since the trade data are rarely available and not covered in the sample data, computing trade
direction is only limited to the equity sample data.

16

orders held by floor brokers on the NYSE often drive transaction prices within the
bid-ask spread. See Lee and Ready (1991) and Hausman, Lo, and MacKinlay (1992)
for further discussion and references therein.

The HF library function tradeDirec() computes trade direction using the al-
gorithm in Hausman, Lo, and MacKinly (1992): classify a trade as a “buy” if the
transaction price is higher than the mid-quote of the prevailing bid-ask quotes (the
most recent quote that is at least five seconds older than the trade); classify as a sell
if the price is lower than the mid-quote; classify as an “indeterminate” trade if the
price equals the mid-quote. The arguments of the function are:

> args(tradeDirec)
function(trade, mq, timelLag = "b5s")

The function accepts a “timeSeries” of transaction prices through the trade argu-
ment, and a “timeSeries” of mid quotes through the mq argument. The timeLag
component specifies the time lag used to match trades with quotes. The default is 5
seconds.

To illustrate the function, consider computing the trade direction of the MSFT
trades. As input to tradeDirec(), the mid-quote of the MSFT quotes can be com-
puted using the HF library function getMidQuote():

> mq.msft = getMidQuote(ask = msftq.ts[,"Ask"],
bid = msftq.ts[, "Bid"])

The trade direction of the MSFT trades is then estimated using:

> trade.direc.msft = tradeDirec(trade = msftt.ts[, "Price"],
mq = mq.msft)
> trade.direc.msft[1:5, 1]
Positions BuySellDirec
5/1/1997 9:30:02
5/1/1997 9:30:06
5/1/1997 9:30:09
5/1/1997 9:30:10
5/1/1997 9:30:14

= O O = O

4.1.5 Realized Volatility

Volatility of asset returns is central to modern finance theory, and is widely used in
asset pricing, portfolio selection, and risk management. Unlike other market variables
like price changes and spread, the volatility is not directly observable and there is no
unique method for estimating it. Model-based volatility measures include GARCH
models, stochastic volatility models, or the volatility implied by options or other

17

derivatives prices. Andersen et. al. (2001) propose an alternative mode-free ap-
proach to estimate ex post realized volatility from squared returns within the volatil-
ity horizon. They prove that as the sampling frequency of returns approaches infinity,
realized volatility measures are asymptotically free of measurement error. For daily
volatility, they use 5-minute returns to construct daily realized volatilities. The 5-
minute horizon is short enough to have the underlying asymptotic work well, but long
enough to mitigate the autocorrelation distortion caused by market microstructure
frictions.

The HF function Genr.RealVol () provides a flexible and convenient tool to com-
pute realized volatilities at different frequencies from high-frequency data. The argu-
ments expected by Genr.RealVol() are

> args(Genr.RealVol)
function(ts, interv.type = "daily", bound.hours = c("9:30", "16:00"),
rv.span, rt.span, how.align = "before")

The ts argument accepts a one-column high-frequency logarithmic price series; NAs
are allowed in the price series, but are effectively purged before further process-
ing; the arguments interv.type and bound.hours have similar interpretations as
in PriceChgInInterv(); rv.span takes value of a timeSpan object specifying the
time span over which realized volatilities are defined, e.g. timeSpan("1d") for daily
realized volatility; rt.span is also a timeSpan parameter specifying the time span
of returns used to compute realized volatility, e.g. timeSpan("5m") for 5-minute
returns; the argument how.align determines how to sample irregularly spaced high-
frequency data at an equally spaced time scale. The default value \before" will
impute the most recent observation within the trading session or the nearest obser-
vation in case of no observation before the sampling position available. For more
options on alignment, see online help for align().

In addition, Genr.RealVol() processes high-frequency data by trading sessions,
and will generate extra 0 returns if a price series is short to full trading sessions.
In other words, for each trading session, Genr.RealVol() first generates a full trad-
ing session of rt.span returns, including artificially generated O returns, and then
computes rv.span realized volatilities. This rule provides the greatest possible ac-
commodation to various types and formats of high-frequency data, but requires users’
discretions on input choices.

To illustrate, the daily realized volatilities (in percentages) of MSFT trade prices
based on 5-minute returns are computed using

> rvDaily.msft = Genr.RealVol(ts = log(msftt.ts[, "Price"])*100,
interv.type = "daily", bound.hours = c("9:30", "16:00"),
rv.span = timeSpan("6h30m"), rt.span = timeSpan("5m"))
> rvDaily.msft[1:5,]
Positions RealizedVol

18

5/1/1997 16:00:00 2.149662
5/2/1997 16:00:00 1.869500
5/5/1997 16:00:00 2.357502
5/6/1997 16:00:00 2.232159
5/7/1997 16:00:00 2.215329

Notice that the effective “day” for MSF'T trading only lasts 6 hours and 30 minutes.
For the Fx data, the mid quote will be used as a substitute for the transaction
price in equity data:

> mq.eurusd = getMidQuote(ask = eurusd.ts[, "Ask"], bid = eurusd.ts[, "Bid"])

To compute daily realized volatilities (in percentage) of USD/EUR based on 5-minute
returns, use

> rvDaily.eurusd = Genr.RealVol(ts = log(mq.eurusd)*100,
interv.type = "weekly", bound.hours = c("22:00", "22:00"),
rv.span = timeSpan("24h"), rt.span = timeSpan("5m"))

> rvDaily.eurusd[1:5,]

Positions RealizedVol

3/12/2001 22:00:00 0.6819636

3/13/2001 22:00:00 0.7758647

3/14/2001 22:00:00 0.9544073

3/15/2001 22:00:00 1.1861121

3/16/2001 22:00:00 1.0198233

A 24-hour day is used to reflect the around-the-clock operation of the Fx markets.

4.2 Statistical Properties of Market Variables

A variety of stylized facts about the statistical properties of high frequency data have
been documented in the literature. See Campbell, Lo and MacKinlay (1997) and
Tsay (2001) for a review and references. Some of the more notable facts are:

1. Price changes of transaction prices and quotes are discrete valued variables, only
taking values of the multiples of tick sizes. In addition, a significant proportion
of observations are without price change and the majority of price changes are
within the range of limited ticks, e.g. +3 ticks.

2. There is tendency for price reversal, or bid-ask bounce in transaction price
changes. When transactions randomly occur at the bid or ask quotes, the price
changes in transaction prices can exhibit reversal which produces a negative
first-order autocorrelation. This negative autocorrelation appears even if the
“true” process for price changes lacks autocorrelation.

19

3. As price and quote changes are discrete, spreads of bid-ask quotes are also
discrete and only take a limited set of values. Furthermore, spreads have been
found, both for equity markets and FX markets, to cluster on some conventional
values.

4. Typically during active trading periods, several trades or quotes may appear to
occur at the “same” time and share the same time stamp. That is, it is possible
that the mostly used commonly time unit, seconds, is not fine enough to capture
the exact trade times during extremely rapid market activity. Consequently,
there may be a significant fraction of transactions with zero durations.

S-PLUS and the S+FinMetrics module offer convenient tools for uncovering these
properties of high frequency data. The following sections illustrate the use of these
tools for uncovering some stylized facts regarding high frequency price changes,
spreads and duration

4.2.1 Price Changes

For summarizing time series data, the S+FinMetrics function summaryStats() com-
putes quantile and moment information. For example,

> summaryStats(pcTicks.msft)
Sample Quantiles:
min 1Q median 3Q max
-40 O 0O 0 42
Sample Moments:
mean std skewness kurtosis
-0.0003604 1.165 0.135 181.2
Number of Observations: 97116
> summaryStats(pcTicks.eurusd)
Sample Quantiles:
min 1Q median 3Q max
-15 -1 0 1 22
Sample Moments:
mean std skewness kurtosis
-0.002788 1.97 0.003182 5.429

Number of Observations: 126987

20

The summary statistics reveal that both price change variables highly concentrate
on 0 and roughly symmetric distributions. However, the high kurtosis values indi-
cate that prices from transaction to transaction may occasionally experience extreme
movements.

Since price changes only take values on a discrete grid, their distributional prop-
erties may be better illustrated through histogram plots. The following commands,
utilizing the S-PLUS function cut(), classify the MSFT price changes into seven
categories: smaller than or equal to -3 ticks, -2 through 2 ticks, and greater than or
equal to 3 ticks, and put the USD/EUR bid quote changes into thirteen categories:
smaller than or equal to -6 ticks, -5 through 5 ticks, and greater than or equal to 6
ticks:

> pcFactor.msft = cut(seriesData(pcTicks.msft), breaks = c(min(pcTicks.msft),
-3:2, max(pcTicks.msft)), include.lowest = T, labels = c("<= -3",
paste(-2:2), ">= 3"), factor.result = T)

> pcFactor.eurusd = cut(seriesData(pcTicks.eurusd),
breaks = c(min(pcTicks.eurusd),-6:5, max(pcTicks.eurusd)),
include.lowest = T, labels = c("<= -6", paste(-5:5), ">= 6"),
factor.result = T)

Next, the S-PLUS function hist.factor() can be used to plot the histograms of
these categorized price changes. The histogram plots of the two price change variables
are shown in Figure 5.

> par(mfrow = c(1, 2))

> hist.factor(pcFactor.msft, prob = T, xlab = "Price Changes.MSFT",
main = "Histogram of MSFT\nTrading Price Changes in Ticks")

> hist.factor(pcFactor.eurusd, prob = T, xlab = "Price Changes.USD/EUR",
main = "Histogram of USD/EUR\nBid Quote Changes in Ticks")

The plots verify the results from the summary statistics. The distributions of two
price change variables are essentially symmetric and centered at zero. For the left
panel on MSFT data, more than 60% of price changes are 0; about 25% price changes
are in 1 tick; around 5% of price changes are in 2 ticks; only 2% of price changes are in
3 ticks or more. In the right panel, USD/EUR bid quote changes are less concentrated
around 0; about 25% of quote changes are 0 and changes in 3 ticks still make up about
10% of total observations. One potential reason is that the tick size of USD/EUR,
0.0001, is much smaller than that of MSFT stock price, 1/8 or 0.125, and the price
is more likely to change with smaller tick size.

The price reversal property or bid-ask bounce in transaction prices can be illus-
trated by computing the sample autocorrelations of the transaction price changes of
the MSFT stock®. The following commands first construct a lead price change series

6Show the autocorrelations

21

Histogram of MSFT Histogram of USD/EUR
Trading Price Changes in Ticks Bid Quote Changes in Ticks

<=3 2 - 0 1 2 >=3 <=65 -4 3-2-10 12 3 4 556

Price Changes.MSFT Price Changes.USD/EUR

Figure 5: Histograms of intra-day price and quote changes.

and a lagged price change series from the original MSFT price change “timeSeries”,
so that the two new series have the same length and the i** trades in the lagged price
change series and in the lead price change series correspond to the i* and i 4+ 1%
trades, respectively, in the original MSF'T price change series:

> pclLag.msft = pc.msft[1: (nrow(pc.msft) - 1), 1]
> pcLead.msft = pc.msft[2:nrow(pc.msft),]

Each newly constructed price change series is then classified into three categories:
“down”, “unchanged”, and “up”, with labels as (“Lead.PC” or “Lag.PC”) “-”, “0”,
and “_"_77.

> pclLagFactor.msft = cut(seriesData(pclag.msft), breaks =
c(min(pcLag.msft), -1:0, max(pcLag.msft)), include.lowest = T,
labels = paste("Lag.PC", c("-", "O", "+")), factor.result = T)

> pcLeadFactor.msft = cut(seriesData(pcLead.msft), breaks =
c(min(pcLead.msft), -1:0, max(pcLead.msft)), include.lowest = T,
labels = paste("Lead.PC", c("-", "O", "+")), factor.result = T)

The S-PLUS table() command may then be used to characterize the relationship
between successive price changes:

22

> table(pcLagFactor.msft, pcLeadFactor.msft)
Lead.PC - Lead.PC 0 Lead.PC +

Lag.PC - 787 8058 8020
Lag.PC O 8449 46869 8077
Lag.PC + 7630 8468 757

The resulting table shows the observation counts of each combination of lead and
lagged price change categories. The table shows that consecutive up or down move-
ments in price changes is highly unlikely; it is roughly equally likely that the price
change will go up or remain unchanged from going down, or vice versa; almost half of
successive price changes remain unchanged. These observations support the previous
findings of price reversal or bid-ask bounce in transaction prices.

4.2.2 Bid/Ask Spread

The distributional properties of spread variables can also be characterized using
summaryStats() and hist.factor():

> summaryStats(spread.msft)

Sample Quantiles:
min 1Q median 3Q max
1 1 1 1 3

Sample Moments:
mean std skewness kurtosis
1.198 0.4024 1.589 3.758

Number of Observations: 20203
> summaryStats(spread.eurusd)
Sample Quantiles:
min 1Q median 3Q max
1 3 4 5 10
Sample Moments:
mean std skewness kurtosis

3.997 1.616 0.282 3.055

Number of Observations: 126988

Unlike price changes, bid-ask spreads are non-negative and have a minimum value
of 1 tick. It seems that the spread of MSFT stock quotes is tighter than that of

23

Histogram of MSFT Histogram of USD/EUR
Spread in Ticks Spread in Ticks

0.8
|

0.3
|

0.6
|

04

0.2

0.0
L
0.0
L

1 2 3 1 2 3 4 5 6 7 8 9 10

Spread.MSFT Spread.USD/EUR

Figure 6: Histograms of intra-day bid-ask spreads.

USD/EUR, although the smaller tick size of USD/EUR quotes should be kept in
mind in comparison. The bid-ask spread is discrete valued and its distribution can
be visualized using a histogram plot. Since the two spread variables are in a narrow
range of values (see min and max values above), no categorization is needed before
calling hist.factor:

> par(mfrow = c(1, 2))

> hist.factor(seriesData(spread.msft), prob = T, xlab = "Spread.MSFT",
main = "Histogram of MSFT\nSpread in Ticks")

> hist.factor(seriesData(spread.eurusd), prob = T, xlab =
"Spread.USD/EUR", main = "Histogram of USD/EUR\nSpread in Ticks")

The resulting histograms are shown in Figure 6.

The left panel suggests that almost all spreads of MSFT quotes are 1 or 2 ticks with
the majority over 80% on 1 tick. In the right panel, the spreads of USD/EUR take
more diverse values. However, the spike at 5 with about 40% of total observation
indicates that the spreads of USD/EUR quotes tend to cluster on this conventional
value, a feature which has been widely documented in the literature.

24

4.2.3 Duration

Next, consider computing summary statistics and empirical distributions of duration
variables:

> summaryStats(duration.msftt)

Sample Quantiles:
min 1Q median 3Q max
0 O 1 3 132

Sample Moments:
mean std skewness kurtosis
2.65 4.372 5.256 61.76

Number of Observations: 97116
> summaryStats(duration.eurusd)

Sample Quantiles:
min 1Q median 3Q max
0 1 1 3 760

Sample Moments:
mean std skewness kurtosis
3.401 10.05 16.82 597.6

Number of Observations: 126987

The summary statistics of durations reveal that, although the majority (up to the
75%th quantile for both duration variables) is within 3 seconds, durations between
trades and quotes sometimes can be very long. In addition, the durations of MSFT
trades are generally shorter than those of USD/EUR quotes, both in terms of mean
and extreme values. This is partially due to the fact that stock exchanges have well
specified trading hours each day, while the FX markets are essentially decentralized,
around the clock markets, and the trading activity during some periods can be quite
low; e.g., the period after the quit of North American trading and before the start of
Asian trading.

Before plotting the histograms of duration variables, durations are first put into
the following 11 categories: 0 through 9 seconds and 10 seconds or more.

> durFactor.msftt = cut(seriesData(duration.msftt), left.include=T,
breaks=c(0:10, max(duration.msftt)), include.lowest =T,
labels = c(paste(0:9), ">= 10"), factor.result=T)

25

Histogram of MSFT Histogram of USD/EUR
Transaction Durations in Seconds Quote Durations in Seconds

0.30
I

0.25
1

0.20
I

0.2
|

0.15
I

0.10

0.1

0.05
I

0o 1 2 3 4 5 6 7 8 9>=10 0O 1 2 3 4 5 6 7 8 9>=10

Duration.MSFT Duration.USD/EUR

Figure 7: Histograms of intra-day durations.

> durFactor.eurusd = cut(seriesData(duration.eurusd), left.include=T,
breaks=c(0:10, max(duration.eurusd)), include.lowest =T,
labels = c(paste(0:9), ">= 10"), factor.result=T)

Categorized duration data are then plotted in histograms and shown in Figure 7.

> par(mfrow = c(1, 2))
> hist.factor(durFactor.msftt, prob = T, xlab = "Duration.MSFT",

main = "Histogram of MSFT\nTransaction Durations in Seconds")
> hist.factor(durFactor.eurusd, prob = T, xlab = "Duration.USD/EUR",
main = "Histogram of USD/EUR\nQuote Durations in Seconds")

The plots clearly indicate that a significant proportion of duration observations (about
30% for MSFT trades and 20% for USD/EUR quotes) is 0 seconds; i.e., multiple trades
or quotes occurring at the same time when the observation frequency is seconds.

4.3 Calendar Patterns in Market Activities

Financial market activities can exhibit periodic calendar patterns. These calendar
patterns have been found in the volatility of asset prices, the transaction volumes,

26

the tick frequency, the duration between ticks, and the spread of bid and ask quotes.
One stylized fact about the trading activities of the NYSE is that all market variables
follow a reserve J-shaped pattern except the duration, whose pattern has an opposite
shape. FX trading activities also follow an intra-day calendar pattern with three
peaks corresponding to the business hours of three geographical trading centers (i.e.
Asian, European, and American). The strength and prevalence of these calendar
patterns in market activities dictate that ignoring or failing to adjust for them may
lead to misleading results in the analysis of high-frequency financial data.

This subsection illustrates the characterization of the calendar patterns in three
market variables: volatility, duration, and tick frequency. The extracted calendar
patterns may be used to adjust market variables before fitting econometric models to
high-frequency financial data.

4.3.1 Calendar Patterns in Volatility

For simplification, the illustration here is limited to the estimation of non-model
based volatility measures’. Specifically, realized volatilities over 5-minute intervals
are computed with the HF function Genr.RealVol().

To compute 5-minute realized volatilities in percentages for the MSFT trade price,
use

> rvbmin.msft = Genr.RealVol(ts = log(msftt.ts[, "Price"])=*100,
interv.type = "daily", bound.hours = c("9:30", "16:00"),
rv.span = timeSpan("5m"), rt.span = timeSpan("im"))
> rvbmin.msft[1:5, 1]
Positions RealizedVol
5/1/1997 9:35:00 0.2512298
5/1/1997 9:40:00 0.6336351

5/1/1997 9:45:00 0.3982507
5/1/1997 9:50:00 0.3595108
5/1/1997 9:55:00 0.5575766

By specifying rt.span = timeSpan("1m"), the realized volatilities are computed
from 1-minute price changes within each 5-minute interval®. The resulting “timeSeries”
object rvbmin.msft contains 78 5-minute realized volatilities for each of 11 trading
days in the sample, 858 observations in total.

One way to identify the periodic calendar pattern in volatility is to examine the
autocorrelations of the volatility measures. If a pattern exists, it should be observed
in the autocorrelations. The S-PLUS functions acf() and acf.plot() can be used

"Examples of model-based volatility measures are GARCH models and stochastic volatility mod-
els.

8Because of the negative autocorrelations in price changes, the 5-minute realized volatilities
estimated this way tend to overestimate the true 5-minute volatility.

27

ACF of 5-min Realized Volatility:
MSFT (lags up to 3 days) 5-min Realized Volatility: MSFT

(averaging across 11 trading days)

1.0

0.8

0.6
I

ACF
26
|

0.4

T T T T T 1 H‘H‘H‘H‘Vwwv‘H‘VV‘VV'VV‘H‘H‘H‘H‘VV‘H‘H‘VV‘H‘H‘H'H‘H‘H‘H‘
0 50 100 150 200 9:45 11:45 13:45 15:45
Lag Eastern

Figure 8: Intra-day seasonalities in squared returns from Microsoft stock.

to compute and plot the autocorrelations of the realized volatilities. The resulting
plot is shown in the left panel of Figure 8.

> acf.plot(acf(rvbmin.msft, lag.max = 234, plot = F), main =
"ACF of 5-min Realized Volatility:\nMSFT (lags up to 3 days)")

The lags are limited to 234, which corresponds to 3 days of 78 intervals each day. A
periodic pattern with periodicity 78 can be observed in the autocorrelation plot.
The calendar pattern itself can be uncovered by smoothing or averaging the volatil-
ity measures across trading days. For example, the volatility measures at 9:35 for 11
trading days will be averaged to get a smoothed measure of volatility at 9:35. The
HF function SmoothAcrossIntervs() can be used to average volatility measures
across trading days. The arguments expected by SmoothAcrossIntervs()are

> args(SmoothAcrossIntervs)
function(ts, n.subinterv, n.interv, FUN)

The ts argument specifies the time series to smooth, containing n.interv trading in-
tervals (e.g., 11 trading days), each with n.subinterv subintervals (e.g. 78 intra-day
subintervals); the FUN parameter specifies which smoothing function to use (usually

28

mean or median, although loess.smooth and supsmu may also be used). NAs are
allowed in the input series and are removed in the function before smoothing. The
output is a smoothed “timeSeries” with the length of n.subinterv. The smoothed
calendar patterns from the 5-minute realized volatilities may then be estimated using

> rvbmin.ave.msft = SmoothAcrossIntervs(ts = rvbmin.msft, n.subinterv = 78,
n.interv = 11, FUN = mean)

> rvbmin.ave.msft@title = "5-min Realized Volatility:
MSFT\n(averaging across 11 trading days)"

Notice that the title slot of the smoothed “timeSeries” result is assigned the
descriptions of the series, which will be used as title in plots. The plotted calendar
pattern is shown in the right panel of Figure 8.

> plot(rvbmin.ave.msft, reference.grid = F,
x.axis.args = list(format.label = c("}H:%02M", "%Z"),
time.of.day.style = "24:00"))

The pattern plot verifies the previous findings that the price volatility of assets
traded on the NYSE exhibit a reverse J-shaped pattern, with the highest volatility
at the market opening, reaching the trough around the lunch hour, and picking up
slightly just before the market closure.

For the FX data, 5-minute realized volatilities of USD/EUR are computed by
applying Genr.RealVol() to the mid quotes with interv.type = "weekly".

> rvbmin.eurusd = Genr.RealVol(ts = log(mqg.eurusd)*100, interv.type = "weekly",
bound.hours = c("22:00", "22:00"), rv.span = timeSpan("5m"),
rt.span = timeSpan("1im"))
> rvbmin.eurusd[1:5,]
Positions RealizedVol
3/11/2001 22:05:00 0.005360062
3/11/2001 22:10:00 0.010719263
3/11/2001 22:15:00 0.030323529
3/11/2001 22:20:00 0.041539013
3/11/2001 22:25:00 0.049462498

The number of 5-minute intervals is 288 for each of 5 trading days, or 1440 in total.
The periodic calendar pattern in volatility may be verified from the autocorrela-
tion plot in the left panel of Figure 9.

> acf.plot(acf(rvbmin.eurusd, lag.max = 864, plot = F),
main = "ACF of 5-min Realized Volatility:\nUSD/EUR (lags up to 3 days)")

The plot suggests a periodic pattern in USD/EUR’s mid quote realized volatility with
the periodicity of 288, the number 5-minute intervals each trading day.
The smoothed calendar pattern can be computed using SmoothAcrossIntervs(

)

29

ACF of 5-min Realized Volatility:
USD/EUR (lags up to3 days) 5-min Realized Volatility: USD/EUR

(averaging across 5 trading days)

1.0

T R

0.8
|

iy

Ll

0.6
Pl

ACF
0.4
|

Ll

[

Liviy

i

iy

0.02 0.03 0.04 0.05 006 0.07 0.08 009 0.10 0.11
L

T T T T T ‘\\\‘\HI\H‘\H‘HWH‘\H‘H\IH\‘HWH‘H\‘Hw\\I\\\‘H\‘H\‘H\‘\H‘H\IH\‘HWH‘\H‘
0 200 400 600 800 22:00 2:00 6:00 10:00 18:00
Lag GMT

Figure 9: Intra-day seasonalities in squared returns from USD/EUR exchange rate.

> rvbmin.ave.eurusd = SmoothAcrossIntervs(ts = rvbmin.eurusd, n.subinterv = 288,
n.interv = 5, FUN = mean)
> rvbmin.ave.eurusd@title = "5-min Realized Volatility:
USD/EUR\n(averaging across 5 trading days)"
> plot(rvbmin.ave.eurusd, reference.grid = F,
x.axis.args = list(format.label = c("}H:%02M", "%Z"),
time.of.day.style = "24:00"))

The plot of the calendar pattern is shown in the right panel of Figure 9.

The plot presents the calendar pattern in the USD/EUR mid quote volatility over
a 24-hour trading day, form 22:00 to 22:00 GMT. The calendar pattern starts with a
minor spike during the Asian trading hours, and then jumps to a highly elevated new
level right after the European trading starts. With the American trading joining in
around 13:00 GMT, the calendar pattern experiences the second major spike, followed
by a drop and pick-up in volatility as European traders go to and come back from
lunch. After European traders slow down around 16:00 GMT, the volatility pattern
drops constantly, back to the low level at the beginning of the day.

30

4.3.2 Calendar Pattern in Duration

With the duration variables constructed in Section 3.1.2, the calendar pattern in du-
rations may be characterized by the mean duration of each 5-minute interval. The HF
function aggregateSeriesHF (), an extension of S-PLUS function aggregateSeries (),
can be used to process data within each aggregation block.

The arguments expected by aggregateSeriesHF() are:

> args(aggregateSeriesHF)
function(ts, interv.type = "daily", bound.hours = c("9:30", "16:00"),
by, k.by, FUN, adj, drop.empty = F, ...)

The ts argument takes the time series to aggregate; the arguments interv.type
and bound.hours are as introduced before; the FUN parameter specifies the function
to be used for data in each aggregation block (typically mean or sum, though user-
written functions are also accepted); the arguments by and k.by define each block
in terms of the time units and the number of such units; the parameter adj takes
value of either 0 or 1 so that the aggregated result for each block will be placed at the
beginning or ending position of the block; setting the logical parameter drop.empty
to F will retain in the output the aggregation blocks within trading sessions but with
no data in the block to aggregate®, which ensures that each trading session has the
same number of observations in the aggregated series. Other supplied parameters
will be passed through to aggregateSeries(). For more details, see the online help
for aggregateSeries().

The function aggregateSeriesHF() extends aggregateSeries() in two ways.
First, aggregateSeriesHF () increases the execution speed by limiting aggregation
blocks to those only within trading sessions. For example, the NYSE trading session
only runs for six and a half hours out of a 24-hour day, and aggregateSeriesHF ()
takes about one-fourth of the time required by aggregateSeries() to process a
data set. Furthermore, similar to Genr.RealVol(), because aggregateSeriesHF ()
processes data by trading sessions, either daily or weekly, it will generate extra ag-
gregation blocks to make up a multiple number of trading sessions in the resulting
aggregated series. For example, if a high-frequency Fx data set starts from Wednes-
day in the first week and ends on Tuesday in the last week, the aggregated series still
starts from the business week starting hour on Sunday in the first week, and ends at
the business week ending hour on Friday in the last week. The newly created blocks,
together with other blocks without raw data, will have values of 0 or NA depending
on the aggregation function used.

The mean duration variables can be created using aggregateSeriesHF() with
mean as the aggregation function.

To compute the 5-minute mean durations for MSF'T trades, use

9The S-PLUS function aggregateSeries() has a bug when drop.empty = F. The HF library
contains a corrected version of the function.

31

> meanDurbmin.msft = aggregateSeriesHF(duration.msftt, interv.type = "daily",
bound.hours = c("9:30", "16:00"), FUN = mean, by = "minutes",
k.by = 5, adj = 1, drop.empty = F, together = T)

> meanDurbmin.msft[1:5,]

Positions Duration.in.seconds

5/1/1997 9:35:00 0.7261614

5/1/1997 9:40:00 1.1434109

5/1/1997 9:45:00 1.5863874

5/1/1997 9:50:00 2.0000000

5/1/1997 9:55:00 1.0340136

The calendar pattern in the duration of the MSFT trades is

> meanDurbmin.ave.msft = SmoothAcrossIntervs(ts = meanDurbmin.msft,
n.subinterv = 78, n.interv = 11,
FUN = mean)
> meanDurbmin.ave.msft@title = "5-min Mean Durations:
+ MSFT\n(averaging across 11 trading days)"

The autocorrelations and the calendar pattern plot of the 5-minute mean durations
of the MSFT trades are shown in Figure 10.

> par(mfrow = c(1, 2))
> acf.plot(acf (meanDurbmin.msft, lag.max = 234, plot = F), main =
"ACF of 5-min Mean Durations:\nMSFT (lags up to 3 days)")
> plot(meanDurbmin.ave.msft, reference.grid = F, x.axis.args =
list(format.label = c("%H:%02M", "%Z"),
time.of.day.style = "24:00"))

The strong periodicity in the autocorrelations plot panel shows the existence of
a calendar pattern in the 5-minute mean duration of the MSFT trades. In the right
panel, durations are quite short with the intense trading in the market opening and
closing periods, and are prolonged during lunch hours. The calendar pattern in
durations closely mimics the reverse of the calendar pattern in the price volatility of
MSEFT.

Similarly, the 5-minute mean duration and the calendar pattern in the duration
of USD/EUR quotes are created below.

> meanDurbmin.eurusd = aggregateSeriesHF(duration.eurusd, interv.type = "weekly",
bound.hours = c("22:00", "22:00"), FUN = mean, by = "minutes",
k.by = 5, adj = 1, drop.empty = F, together = T)
> meanDurbmin.eurusd[1:5,]
Positions Duration.in.seconds

32

ACF of 5-min Mean Durations:
MSFT (lags up to 3 days) 5-min Mean Durations: MSFT

(averaging across 11 trading days)

1.0

0.6

ACF
0.4

0.2

0.0

Il i ML " JUHL il |l o

-0.2
L

T T T T T L “I"M“M“I“V‘I“I"I“I"M“V‘V‘I“V‘I“I“I“I“I‘W“M“I
0 50 100 150 200 9:45 11:45 13:45 15:45
Lag Eastern

Figure 10: Intra-day seasonalities in Microsoft trade durations.

3/11/2001 22:05:00 2.00000

3/11/2001 22:10:00 239.50000

3/11/2001 22:15:00 27.66667

3/11/2001 22:20:00 41.00000

3/11/2001 22:25:00 13.64706

> meanDurbmin.ave.eurusd = SmoothAcrossIntervs(ts = meanDurbmin.eurusd,

n.subinterv = 288, n.interv = 5, FUN = mean)
> meanDurbmin.ave.eurusd@title = "5-min Mean Durations:
USD/EUR\n(averaging across 11 trading days)"

Because the aggregation function mean generates NAs for those blocks with no raw
data to aggregate'® and the option drop.empty = F keeps those aggregation blocks
in the mean duration variable, those NAs have to be removed before computing the
autocorrelations!!. The NAs are flagged using the S-PLUS function is.na()

> na.idx = is.na(seriesData(meanDurbmin.eurusd))

Osum() generates Os for those blocks.

"' The mean durations for MSFT trades happen to be free of NAs.

33

ACF of 5-min Mean Durations:
USD/EUR (|ags up to3 days) 5-min Mean Durations: USD/EUR

(averaging across 11 trading days)

1.0

0.8
|

0.6
|

ACF
0.4
|

Ty

T T T T T V\W\HI\\WHWHWHW\\WH\IHWHWHWHWH\V\\I\\WHWHWHWH\VHIHWHWHWHW
0 200 400 600 800 22:.00 2:00 6:00 10:00 18:00
Lag GMT

Figure 11: Intra-day seasonalities in USD/EUR, quote durations.

The autocorrelations and the calendar pattern in the duration of the USD/EUR
quotes are shown in Figure 11.

> par(mfrow = c(1, 2))

> acf.plot(acf (meanDurbmin.eurusd[!na.idx,], lag.max = 864,
plot = F), main = "ACF of 5-min Mean Durations:\n
USD/EUR (lags up to 3 days)")

> plot(meanDurbmin.ave.eurusd, reference.grid = F,
X.axis.args = list(format.label = c("}H:%02M", "%Z"),
time.of.day.style = "24:00"))

In addition to the periodicity shown in the autocorrelations plot of the mean
duration, the calendar pattern plot shows that the duration of the USD/EUR quotes
are high or the market activities are low in the early trading day. With Asian traders
joining the market, mainly from Tokyo, around 23:00 GMT or 8:00 JST, the mean
duration drops to a low level until the lunch time of Tokyo. Afterwards, the mean
duration returns to the morning active level and is further shortened soon later with
the start of European trading. The rest of the trading day is dominated by the
European and American trading activities and the mean duration remains at its
minimum before it jumps up again in the late trading day.

34

4.3.3 Calendar Pattern in Tick Frequency

Tick frequency may be measured by the number of tick observations in some short
time intervals. The counts of trades can be computed with an auxiliary time series
with the identical time date positions as the original trades series but with the value
of 1 for all observations.

For example, the auxiliary time series for the MSF'T trades can be created using
the S-PLUS constructor function for “timeSeries” timeSeries()

> aux.msft = timeSeries(data.frame(Ticks = rep(1, nrow(msftt.ts))),
pos = msftt.ts@positions)

Then the number of trades in each 5-minute intervals is counted using aggregate-
SeriesHF () with sum as the aggregation function.

> tradesbmin.msft = aggregateSeriesHF(aux.msft, interv.type = "daily",
bound.hours = c("9:30", "16:00"), FUN = sum, by = "minutes",
k.by = 5, adj = 1, drop.empty = F, together = T)

> tradesbmin.msft[1:5,]

Positions Ticks

5/1/1997 9:35:00 410

5/1/1997 9:40:00 258

5/1/1997 9:45:00 191

5/1/1997 9:50:00 149

5/1/1997 9:55:00 294

Averaging the 5-minute trades frequency across trading days gives out the calendar
pattern in tick frequency.

> tradesbmin.ave.msft = SmoothAcrossIntervs(ts = tradesbmin.msft,
n.subinterv = 78, n.interv = 11, FUN = mean)

> tradesbmin.ave.msft@title = "Number of Trades in 5-min Intervs:
MSFT\n(averaging across 11 trading days)"

The autocorrelations of the 5-minute trades frequency and the calendar pattern are
plotted in Figure 12.

> par(mfrow = c(1,2))
> acf.plot(acf(tradesbmin.msft, lag.max = 234, plot = F),
main = "ACF of Number of Trades in 5-min Intervs:\n
MSFT (lags up to 3 days)")
> plot(tradesbmin.ave.msft, reference.grid = F,
x.axis.args = list(format.label = c("}H:%02M", "%Z"),
time.of.day.style = "24:00"))

35

ACF of Number of Trades in 5-min Intervs:
MSFT (|ags up to3 days) Number of Trades in 5-min Intervs: MSFT

(averaging across 11 trading days)

=
-

0.8
|

ACF
0.4

0.2

T W W <

0.0

-0.2
L

T T T T T “I"M“M“I“V‘I“I"I“I"M“V‘V‘I“V‘I“I“I“I“I‘W“M“I
0 50 100 150 200 9:45 11:45 13:45 15:45
Lag Eastern

Figure 12: Intra-day seasonalities in Microsoft trades.

The calendar pattern in the frequency of the MSF'T trades is very close to the
pattern in the volatility of the MSFT transaction prices, a reversed J-shaped pattern.
Right after the market opening, the frequency can reach more than 400 trades in
an interval of 5 minutes or 300 seconds. It explains why there are many 0-second
durations in the high-frequency data.

The calendar pattern in the quote frequency of USD/EUR can be characterized
similarly.

> aux.eurusd = timeSeries(data.frame(Ticks = rep(l, nrow(eurusd.ts))),
pos = eurusd.ts@positions)
> quotesbmin.eurusd = aggregateSeriesHF (aux.eurusd, interv.type = "weekly",
bound.hours = c("22:00", "22:00"), FUN = sum, by = "minutes",
k.by = 5, adj = 1, drop.empty = F, together = T)
> quotesbmin.eurusd[1:5, 1]
Positions Ticks
3/11/2001 22:05:00 2
3/11/2001 22:10:00 2
3/11/2001 22:15:00 9

36

ACF of Number of Quotes in 5-min Intervs:
USD/EUR (|ags up to3 days) Number of Quotes in 5-min Intervs: USD/EUR

(averaging across 11 trading days)

=
-

0.5
P TN AN BRI AR A

Ll

ACF
100 120 140 160 180 200 220

0.0
80
I IR

60
1

-0.5
40
Ll

20
1

T T T T T L V\W\HI\HWWHW\HV\WH\IHWHWHWHVHVHIHWHWHWHWHWH\IHWHWHWHW
0 200 400 600 800 22:.00 2:00 6:00 10:00 18:00
Lag GMT

Figure 13: Intra-day seasonalities in USD/EUR quotes.

3/11/2001 22:20:00 9

3/11/2001 22:25:00 17

> quotesbmin.ave.eurusd = SmoothAcrossIntervs(ts = quotesbmin.eurusd,
n.subinterv = 288, n.interv = 5, FUN = mean)

> quotesbmin.ave.eurusd@title = "Number of Quotes in 5-min Intervs:
USD/EUR\n(averaging across 11 trading days)"

The autocorrelations and the calendar pattern of the quote frequency of USD/EUR
are plotted in Figure 13.

> par(mfrow = c(1,2))
> acf.plot(acf(quotesbmin.eurusd, lag.max = 864, plot = F),
main = "ACF of Number of Quotes in 5-min Intervs:\n
USD/EUR (lags up to 3 days)")
> plot(quotesbmin.ave.eurusd, reference.grid = F,
x.axis.args = list(format.label = c("}H:%02M", "%Z"),
time.of.day.style = "24:00"))

The calendar pattern in the quote frequency is almost a replication of the pattern
of the mid quote volatility.

37

References

1]

2]

[10]

[11]

[12]

[13]
[14]

[15]

Andersen, T. G., 2000, “Some Reflections on Analysis of High-frequency Data”,
Journal of Business and Economic Statistics, 18, 146-153

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H., 2001, “The Dis-
tribution of Realized Stock Return Volatility”, Journal of Financial Economics,
61, 43-76

Campbell, J. Y., Lo, A. W., and MacKinlay, A. C., 1997, The Econometrics of
Financial Markets, Princeton University Press, New Jersey.

Dacarogna, M. M., Gencay, R., Miiller, U. A., Olsen, R. B., and Pictet, O. V.,
2001, An Introduction to High-Frequency Finance, Academic Press

Easley, D., and O’Hara, M, 1992, “Time and the Process of Security Price Ad-
justment,” Journal of Finance, 47, 577-605

Engle, R. F., and Russell, J. R., 1998, “Autoregressive Conditional Duration: A
New Model for Irregularly Spaced Transaction Data”, Econometrica, 66, 1127-
1162

Engle, R. F., 2000, “The Econometrics of Ultra High Frequency Data”, Fcono-
metrica, 68, 1-22

Ghysels, E., 2000, “Some Econometric Recipes for High-Frequency Data Cook-
ing”, Journal of Business and Economic Statistics, 18, 154-163

Goodhart, C.A.E., and O’Hara, M, 1997, “High Frequency Data in Financial
Markets: Issues and Applications”, Journal of Empirical Finance, 4, 73-114

Gouriéroux, C., and Jasiak, J., 2001, Financial Econometrics: Problems, Models,
and Methods, Princeton University Press, New Jersey

Hausman, J. A., Lo, A. W., and MacKinlay, A. C., 1992, “An Ordered Probit
Analysis of Transaction Stock Prices”, Journal of Financial Economics, 31, 319-
379

Lee, and Ready, 1991, “Inferring Trade Direction from Intraday Data,” Journal
of Finance, 46, 733-746.

Lyons, R., 2001, The Microstructure Approach to Fxchange Rates, MIT Press

Stoll, H., and Whaley, R., 1990, “Stock Market Structure and Volatility,” Review
of Financial Studies, 3, 37-71

Tsay, R. S., 2001, Analysis of Financial Time Series, John Wiley & Sons, Inc

38

[16] Wood, R. A., 2000, “Market Microstructure Research Databases: History and
Projections”, Journal of Business and Economic Statistics, 18, 140-145

39

