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Introduction

Factor models for asset returns are used to

• Decompose risk and return into explanable and unexplainable components

• Generate estimates of abnormal return

• Describe the covariance structure of returns

• Predict returns in specified stress scenarios

• Provide a framework for portfolio risk analysis



Three Types of Factor Models

1. Macroeconomic factor model

(a) Factors are observable economic and financial time series

2. Fundamental factor model

(a) Factors are created from observerable asset characteristics

3. Statistical factor model

(a) Factors are unobservable and extracted from asset returns

Factor Model Specification

The three types of multifactor models for asset returns have the general form

Rit = αi + β1if1t + β2if2t + · · ·+ βKifKt + εit (1)

= αi + β0ift + εit

• Rit is the simple return (real or in excess of the risk-free rate) on asset i

(i = 1, . . . , N) in time period t (t = 1, . . . , T ),

• fkt is the k
th common factor (k = 1, . . . ,K),

• βki is the factor loading or factor beta for asset i on the k
th factor,

• εit is the asset specific factor.



Assumptions

1. The factor realizations, ft, are stationary with unconditional moments

E[ft] = μf
cov(ft) = E[(ft − μf)(f t − μf)

0] = Ωf

2. Asset specific error terms, εit, are uncorrelated with each of the common

factors, fkt,

cov(fkt, εit) = 0, for all k, i and t.

3. Error terms εit are serially uncorrelated and contemporaneously uncorre-

lated across assets

cov(εit, εjs) = σ2i for all i = j and t = s

= 0, otherwise

Notation

Vectors with a subscript t represent the cross-section of all assets

Rt
(N×1)

=

⎛⎜⎝ R1t
...

RNt

⎞⎟⎠ , t = 1, . . . , T

Vectors with a subscript i represent the time series of a given asset

Ri
(T×1)

=

⎛⎜⎝ Ri1
...

RiT

⎞⎟⎠ , i = 1, . . . , N

Matrix of all assets over all time periods (columns = assets, rows = time period)

R
(T×N)

=

⎛⎜⎝ R11 · · · RN1
... . . . ...

R1T · · · RNT

⎞⎟⎠



Cross Section Regression

The multifactor model (1) may be rewritten as a cross-sectional regression

model at time t by stacking the equations for each asset to give

Rt
(N×1)

= α
(N×1)

+ B
(N×K)

ft
(K×1)

+ εt
(N×1)

, t = 1, . . . , T (2)

B
(N×K)

=

⎡⎢⎣ β01
...

β0N

⎤⎥⎦ =
⎡⎢⎣ β11 · · · β1K

... . . . ...

βN1 · · · βNK

⎤⎥⎦
E[εtε

0
t|ft] = D = diag(σ21, . . . , σ

2
N)

Note: Cross-sectional heteroskedasticity

Time Series Regression

The multifactor model (1) may also be rewritten as a time-series regression

model for asset i by stacking observations for a given asset i to give

Ri
(T×1)

= 1T
(T×1)

αi
(1×1)

+ F
(T×K)

βi
(K×1)

+ εi
(T×1)

, i = 1, . . . , N (3)

F
(T×K)

=

⎡⎢⎣ f 01...
f 0T

⎤⎥⎦ =
⎡⎢⎣ f11 · · · fKt

... . . . ...

f1T · · · fKT

⎤⎥⎦
E[εiε

0
i] = σ2i IT

Note: Time series homoskedasticity



Multivariate Regression

Collecting data from i = 1, . . . , N allows the model (3) to be expressed as the

multivariate regression

[R1, . . . ,RN ] = 1T [α1, . . . , αN ] + F[β1, . . . ,βN ] + [ε1, . . . , εN ]

or

R
(T×N)

= 1T
(T×1)

α0
(1×T )

+ F
(T×K)

B0
(K×N)

+ E
(T×N)

= XΓ0 +E

X
(T×(K+1))

= [1T
... F], Γ0

((K+1)×N)
=

"
α0
B0

#
,

Alternatively, collecting data from t = 1, . . . , T allows the model (2) to be

expressed as the multivariate regression

[R1, . . . ,RT ] = [α, . . . ,α] +B[f1, . . . , fT ] + [ε1, . . . , εT ]

or

R0
(N×T )

= α
(N×1)

10T
(1×T )

+ B
(N×K)

F0
(K×T )

+ E0
(N×T )

= ΓX0 + E0

X0
((K+1)×T )

=

"
10T
F0

#
, Γ
(N×(K+1))

= [α ... B],



Expected Return (α− β) Decomposition

E[Rit] = αi + β0iE[ft]

• β0iE[ft] = explained expected return due to systematic risk factors

• αi = E[Rit]− β0iE[ft] = unexplained expected return (abnormal return)

Note: Equilibrium asset pricing models impose the restriction αi = 0 (no

abnormal return) for all assets i = 1, . . . , N

Covariance Structure

Using the cross-section regression

Rt
(N×1)

= α
(N×1)

+ B
(N×K)

ft
(K×1)

+ εt
(N×1)

, t = 1, . . . , T

and the assumptions of the multifactor model, the (N ×N) covariance matrix

of asset returns has the form

cov(Rt) = ΩFM = BΩfB
0 +D (4)

Note, (4) implies that

var(Rit) = β0iΩfβi + σ2i

cov(Rit,Rjt) = β0iΩfβj



Portfolio Analysis

Let w = (w1, . . . , wn) be a vector of portfolio weights (wi = fraction of

wealth in asset i). If Rt is the (N × 1) vector of simple returns then

Rp,t = w
0Rt =

NX
i=1

wiRit

Portfolio Factor Model

Rt = α+Bf t + εt⇒
Rp,t = w0α+w0Bf t +w0εt = αp + β0pft + εp,t

αp = w0α, β0p = w0B, εp,t = w0εt
var(Rp,t) = β0pΩfβp + var(εp,t) = w

0BΩfB
0w+w0Dw

Active and Static Portfolios

• Active portfolios have weights that change over time due to active asset
allocation decisions

• Static portfolios have weights that are fixed over time (e.g. equally weighted
portfolio)

• Factor models can be used to analyze the risk of both active and static
portfolios



Macroeconomic Factor Models

Rit = αi + β0ift + εit

ft = observed economic/financial time series

Econometric problems:

• Choice of factors

• Estimate factor betas, βi, and residual variances, σ2i , using time series
regression techniques.

• Estimate factor covariance matrix, Ωf , from observed history of factors

Shape’s Single Factor Model

Sharpe’s single factor model is a macroeconomic factor model with a single

market factor:

Rit = αi + βiRMt + εit, i = 1, . . . , N ; t = 1, . . . , T (5)

where RMt denotes the return or excess return (relative to the risk-free rate)

on a market index (typically a value weighted index like the S&P 500 index) in

time period t.

Risk-adusted expected return and abnormal return

E[Rit] = βiE[RMt]

αi = E[Rit]− βiE[RMt]



Covariance matrix of assets

ΩFM = σ2Mββ0 +D (6)

where

σ2M = var(RMt)

β = (β1, . . . , βN)
0

D = diag(σ21, . . . , σ
2
N),

σ2i = var(εit)

Estimation

Because RMt is observable, the parameters βi and σ2i of the single factor

model (5) for each asset can be estimated using time series regression (i.e.,

ordinary least squares) giving

Ri = bαi1T +RM
bβi + bεi, i = 1, . . . , Nbβi = dcov(Rit,RMt)/dvar(RMt) = σ̂iM/σ̂2Mbαi = R̄i − β̂iR̄Mbσ2i =

1

T − 2bε0ibεi
The estimated single factor model covariance matrix is

bΩFM = bσ2M bβ bβ0 +cD



Remarks

1. Computational efficiency may be obtained by using multivariate regression.

The coefficients αi and βi and the residual variances σ
2
i may be computed

in one step in the multivariate regression model

R = XΓ0 +E

The multivariate OLS estimator of Γ0 is
bΓ0 = (X0X)−1X0R0.

The estimate of the residual covariance matrix is

bΣ =
1

T − 2
bE0 bE

where Ê = R−XΓ̂0 is the multivariate least squares residual matrix. The
diagonal elements of bΣ are the diagonal elements of cD.

2. The R2 from the time series regression is a measure of the proportion of

“market” risk, and 1−R2 is a measure of asset specific risk. Additionally,bσi is a measure of the typical size of asset specific risk. Given the variance
decomposition

var(Rit) = β2i var(RMt) + var(εit) = β2i σ
2
M + σ2i

R2 can be estimated using

R2 =
β̂
2
i σ̂
2
Mdvar(Rit)

3. Robust regression techniques can be used to estimate βi and σ
2
i . Also, a

robust estimate of σ2M could be computed.



4. The single factor covariance matrix (6) is constant over time. This may

not be a good assumption. There are several ways to allow (6) to vary

over time. In general, βi, σ
2
i and σ

2
M can be time varying. That is,

βi = βit, σ
2
i = σ2it, σ

2
M = σ2Mt.

To capture time varying betas, rolling regression or Kalman filter techniques

could be used. To capture conditional heteroskedasticity, GARCH models

may be used for σ2it and σ
2
Mt. One may also use exponential weights in

computing estimates of βit, σ
2
it and σ2Mt. A time varying factor model

covariance matrix is

bΩFM,t = bσ2Mt
bβtbβ0t +cDt,

General Multi-factor Model

Model specifies K observable macro-variables

Rit = αi + β0ift + εit

• Chen, Roll and Ross (1986) provides a description of commonly used
macroeconomic factors for equity. Lo (2008) discusses hedge funds.

• Sometimes the macroeconomic factors are standardized to have mean zero
and a common scale.

• The factors must be stationary (not trending).

• Sometimes the factors are made orthogonal.



Estimation

Because the factor realizations are observable, the parameter matrices B and

D of the model may be estimated using time series regression:

Ri = bαi1T + Fbβi + bεi = Xγ̂ + bεi, i = 1, . . . , N
X = [1T

... F], γ̂ = (α̂i, β̂
0
i)
0 = (X0X)−1X0Ribσ2i =

1

T −K − 1bε0ibεi
The covariance matrix of the factor realizations may be estimated using the

time series sample covariance matrix

bΩf =
1

T − 1
TX
t=1

(ft − f)(ft − f)0, f =
1

T

TX
t=1

ft

The estimated multifactor model covariance matrix is thenbΩFM = bB bΩf
bB0 +cD (7)

Remarks

1. As with the single factor model, robust regression may be used to compute

βi and σ2i . A robust covariance matrix estimator may also be used to

compute and estimate of Ωf .

2. ΩFM can be made time varying by allowing βi,Ωf and σ
2
i (i = 1, . . . , N)

to be time varying



Example: Estimation of Single Index Model in R using investment data from

Berndt (1991).

Fundamental Factor Models

Fundamental factor models use observable asset specific characteristics (fun-

damentals) like industry classification, market capitalization, style classification

(value, growth) etc. to determine the common risk factors.

• Factor betas are constructed from observable asset characteristics (i.e., B
is known)

• Factor realizations, ft, are estimated/constructed for each t given B

• In practice, fundamental factor models are estimated in two ways.



BARRA Approach

• This approach was pioneered by Bar Rosenberg, founder of BARRA Inc.,
and is discussed at length in Grinold and Kahn (2000), Conner et al (2010),

and Cariño et al (2010).

• In this approach, the observable asset specific fundamentals (or some trans-
formation of them) are treated as the factor betas, βi, which are time

invariant.

• The factor realizations at time t, ft, are unobservable. The econometric
problem is then to estimate the factor realizations at time t given the factor

betas. This is done by running T cross-section regressions.

Fama-French Approach

• This approach was introduced by Eugene Fama and Kenneth French (1992).

• For a given observed asset specific characteristic, e.g. size, they determined
factor realizations using a two step process. First they sorted the cross-

section of assets based on the values of the asset specific characteristic.

Then they formed a hedge portfolio which is long in the top quintile of the

sorted assets and short in the bottom quintile of the sorted assets. The

observed return on this hedge portfolio at time t is the observed factor

realization for the asset specific characteristic. This process is repeated for

each asset specific characteristic.

• Given the observed factor realizations for t = 1, . . . , T, the factor betas

for each asset are estimated using N time series regressions.



BARRA-type Single Factor Model

Consider a single factor model in the form of a cross-sectional regression at

time t

Rt
(N×1)

= β
(N×1)

ft
(1×1)

+ εt
(N×1)

, t = 1, . . . , T

• β is an N×1 vector of observed values of an asset specific attribute (e.g.,
market capitalization, industry classification, style classification)

• ft is an unobserved factor realization.

• var(ft) = σ2f ; cov(ft, εit) = 0, for all i, t; var(εit) = σ2i , i = 1, . . . , N.

Estimation

For each time period t = 1, . . . T, the vector of factor betas, β, is treated as

data and the factor realization ft, is the parameter to be estimated. Since the

error term εt is heteroskedastic, efficient estimation of ft is done by weighted

least squares (WLS) (assuming the asset specific variances σ2i are known)

f̂t,wls = (β0D−1β)−1β0D−1Rt, t = 1, . . . , T (8)

D = diag(σ21, . . . , σ
2
N)

Note 1: σ2i can be consistently estimated and a feasible WLS estimate can be

computed

f̂t,fwls = (β0D̂−1β)−1β0D̂−1Rt, t = 1, . . . , T

D̂ = diag(σ̂21, . . . , σ̂
2
N)

Note 2: Other weights besides σ̂2i could be used



Factor Mimicking Portfolio

The WLS estimate of ft in (8) has an interesting interpretation as the return

on a portfolio h = (h1, . . . , hN)
0 that solves

min
h

1

2
h0Dh subject to h0β = 1

The portfolio h minimizes asset return residual variance subject to having unit

exposure to the attribute β and is given by

h0 = (β0D−1β)−1β0D−1

The estimated factor realization is then the portfolio return

f̂t,wls = h
0Rt

When the portfolio h is normalized such that
PN
i hi = 1, it is referred to as a

factor mimicking portfolio.

BARRA-type Industry Factor Model

Consider a stylized BARRA-type industry factor model with K mutually ex-

clusive industries. The factor sensitivities βik in (1) for each asset are time

invariant and of the form

βik = 1 if asset i is in industry k

= 0, otherwise

and fkt represents the factor realization for the k
th industry in time period t.

• The factor betas are dummy variables indicating whether a given asset is
in a particular industry.

• The estimated value of fkt will be equal to the weighted average excess
return in time period t of the firms operating in industry k.



Industry Factor Model Regression

The industry factor model with K industries is summarized as

Rit = βi1f1t + · · ·+ βiKfKt + εit, i = 1, . . . , N ; t = 1, . . . , T

var(εit) = σ2i , i = 1, . . . , N

cov(εit, fjt) = 0, j = 1, . . . ,K; i = 1, . . . , N

cov(fit, fjt) = σ
f
ij, i, j = 1, . . . ,K

where

βik = 1 if asset i is in industry k (k = 1, . . . ,K)

= 0, otherwise

It is assumed that there are Nk firms in the kth industry such
PK
k=1Nk = N .

Estimation of Industry Factor Model Factors

Consider the cross-section regression at time t

Rt = β1f1t + · · ·+ βKfKt + εt,

= Bf t + εt

E[εtε
0
t] = D, cov(ft) = Ωf

Since the industries are mutually exclusive it follows that

β0jβk = Nk for j = k, 0 otherwise

An unbiased but inefficient estimate of the factor realizations ft can be obtained

by OLS:

bft,OLS = (B0B)−1B0Rt =

⎛⎜⎝ bf1t,OLS
...bfKt,OLS

⎞⎟⎠ =
⎛⎜⎜⎜⎝

1
N1

PN1
i=1R

1
it

...
1
NK

PNK
i=1R

K
it

⎞⎟⎟⎟⎠



Estimation of Factor Realization Covariance Matrix

Given (bf1,OLS, . . . , bfT,OLS), the covariance matrix of the industry factors may
be computed as the time series sample covariance

bΩF
OLS =

1

T − 1
TX
t=1

(bft,OLS − fOLS)(bft,OLS − fOLS)0,
fOLS =

1

T

TX
t=1

bft,OLS

Estimation of Residual Variances

The residual variances, var(εit) = σ2i , can be estimated from the time series

of residuals from the T cross-section regressions as follows. Let bεt,OLS, t =
1, . . . , T , denote the (N × 1) vector of OLS residuals, and let bεit,OLS denote
the ith row of bεt,OLS. Then σ2i may be estimated using

bσ2i,OLS =
1

T − 1
TX
t=1

(bεit,OLS − εi,OLS)
2, i = 1, . . . , N

εi,OLS =
1

T

TX
t=1

bεit,OLS



Estimation of Industry Factor Model Asset Return Covariance Matrix

The covariance matrix of the N assets is estimated using

bΩOLS = B bΩF
OLSB

0 +cDOLS
where cDOLS is a diagonal matrix with bσ2i,OLS along the diagonal.

Weighted Least Squares Estimation

• The OLS estimation of the factor realizations ft is inefficient due to the
cross-sectional heteroskedasticity in the asset returns.

• The estimates of the residual variances may be used as weights for weighted
least squares (feasible GLS) estimation:bft,GLS = (B0cD−1OLSB)−1B0cD−1OLSRt, t = 1, . . . , T

bΩF
GLS =

1

T − 1
TX
t=1

(bft,GLS − fGLS)(bft,GLS − fGLS)0
bσ2i,GLS =

1

T − 1
TX
t=1

(bεit,GLS − εi,GLS)
2, i = 1, . . . , N

bΩGLS = B bΩF
GLSB

0 +cDGLS



Statistical Factor Models for Returns

• In statistical factor models, the factor realizations ft in (1) are not directly
observable and must be extracted from the observable returns Rt using

statistical methods. The primary methods are factor analysis and principal

components analysis.

• Traditional factor analysis and principal component analysis are usually
applied to extract the factor realizations if the number of time series ob-

servations, T , is greater than the number of assets, N .

• If N > T , then the sample covariance matrix of returns becomes singular

which complicates traditional factor and principal components analysis. In

this case, the method of asymptotic principal component analysis is more

appropriate.

Sample Covariance Matrices

Traditional factor and principal component analysis is based on the (N ×N)

sample covariance matrix

bΩN
(N×N)

=
1

T
R0R

where R is the (N × T ) matrix of observed returns.

Asymptotic principal component analysis is based on the (T × T ) covariance

matrix bΩT
(T×T )

=
1

N
RR0.



Factor Analysis

Traditional factor analysis assumes a time invariant orthogonal factor structure

Rt
(N×1)

= μ
(N×1)

+ B
(N×K)

ft
(K×1)

+ εt
(N×1)

(9)

cov(ft, εs) = 0, for all t, s

E[ft] = E[εt] = 0

var(ft) = IK

var(εt) = D

where D is a diagonal matrix with σ2i along the diagonal. Then, the return

covariance matrix, Ω, may be decomposed as

Ω = BB0+D

Hence, the K common factors ft account for all of the cross covariances of

asset returns.

Variance Decomposition

For a given asset i, the return variance variance may be expressed as

var(Rit) =
KX
j=1

β2ij + σ2i

• variance portion due to common factors, PK
j=1 β

2
ij, is called the commu-

nality,

• variance portion due to specific factors, σ2i , is called the uniqueness.



Non-Uniqueness of Factors and Loadings

The orthogonal factor model (9) does not uniquely identify the common factors

ft and factor loadingsB since for any orthogonal matrixH such thatH0= H−1

Rt = μ+BHH0ft + εt

= μ+B∗f∗t + εt

where B∗= BH, f∗t = H0ft and var(f∗t ) = IK.

Because the factors and factor loadings are only identified up to an orthogonal

transformation (rotation of coordinates), the interpretation of the factors may

not be apparent until suitable rotation is chosen.

Estimation

Estimation using factor analysis consists of three steps:

• Estimation of the factor loading matrix B and the residual covariance

matrix D.

• Construction of the factor realizations ft.

• Rotation of coordinate system to enhance interpretation



Maximum Likelihood Estimation of B and D

Maximum likelihood estimation of B andD is performed under the assumption

that returns are jointly normally distributed and temporally iid.

Given estimates bB and cD, an empirical version of the factor model (2) may be
constructed as

Rt − bμ = bBft + bεt (10)

where bμ is the sample mean vector of Rt. The error terms in (10) are het-

eroskedastic so that OLS estimation is inefficient.

Estimation of Factor Realizations f̂t

Using (10), the factor realizations in a given time period t, ft, can be estimated

using the cross-sectional feasible weighted least squares (FWLS) regression

bft,fwls = ( bB0cD−1 bB)−1 bB0cD−1(Rt − bμ) (11)

Performing this regression for t = 1, . . . , T times gives the time series of factor

realizations (bf1, . . . , bfT ).
The factor model estimated covariance matrix is then given by

bΩF = bB bB0 +cD



Tests for the Number of Factors

Using the maximum likelihood estimates of B and D based on a K−factor
model and the sample covariance matrix bΩ, a likelihood ratio test (modified
for improved small sample performance) of the adequacy of K factors is of the

form

LR(K) = −(T − 1− 1
6
(2N + 5)− 2

3
K) ·

³
ln | bΩ|− ln | bB bB0 +cD|´ .

LR(K) is asymptotically chi-square with 1
2

³
(N −K)2 −N −K

´
degrees of

freedom.

Remarks:

• Traditional factor analysis starts with a
√
T - consistent and asymptotically

normal estimator of Ω, usually the sample covariance matrix bΩ, and makes
inference onK based on bΩ. A likelihood ratio test is often used to selectK
under the assumption that εit is normally distributed (see below). However,

when N →∞ consistent estimation of Ω, an N×N matrix, is not a well

defined problem. Hence, if N is large relative to T , then traditional factor

analysis may run into problems. Additionally, typical algorithms for factor

analysis are not efficient for very large problems.

• Traditional factor analysis is only appropriate if εit is cross-sectionally un-
correlated, serially uncorrelated, and serially homoskedastic.



Principal Components

• Principal component analysis (PCA) is a dimension reduction technique
used to explain the majority of the information in the sample covariance

matrix of returns.

• With N assets there are N principal components, and these principal

components are just linear combinations of the returns.

• The principal components are constructed and ordered so that the first
principal component explains the largest portion of the sample covariance

matrix of returns, the second principal component explains the next largest

portion, and so on. The principal components are constructed to be or-

thogonal to each other and to be normalized to have unit length.

• In terms of a multifactor model, the K most important principal compo-

nents are the factor realizations. The factor loadings on these observed

factors can then be estimated using regression techniques.



Population Principal Components

Let Rt denote the N × 1 vector of returns with N × N covariance matrix

Ω = E[(Rt − E[Rt])(Rt − E[Rt])
0]. Consider creating factors from the

linear combinations (portfolios) of returns

f1t = p01Rt = p11R1t + · · ·+ p1NRNt

f2t = p02Rt = p21R1t + · · ·+ p2NRNt
...

fNt = p0NRt = pN1R1t + · · ·+ pNNRNt

Note:

var(fkt) = p
0
kΩpk, cov(fjt, fkt) = p

0
jΩpk

The principal components are those uncorrelated factors f1t, f2t, . . . , fNt whose

variances are as large as possible.

Extracting Principal Components

The first population principal component is p∗01Rt where the (N × 1) vector
p∗1 solves

max
p1

p01Ωp1 s.t. p01p1 = 1.

The solution p∗1 is the eigenvector associated with the largest eigenvalue of Ω.

The second principal component is p∗02Rt where the (N × 1) vector p∗2 solves

max
p2

p02Ωp2 s.t. p02p2 = 1 and p∗01 p2 = 0

The solution p∗2 is the eigenvector associated with the second largest eigenvalue
of Ω. This process is repeated until all N principal components are computed.



Spectral (Eigenvalue) Decomposition of Ω

Ω = PΛP0

P
(N×N)

= [p∗1 ... p∗2 ... · · · ... p∗N ], P0 = P−1

Λ = diag(λ1, . . . , λN), λ1 > λ2 > · · · > λN

• P is the orthonormal maxtrix of eigen-vectors

• Λ is the diaganol matrix of ordered eigen-values

Variance Decomposition

NX
i=1

var(Rit) =
NX
i=1

var(fit) =
NX
i=1

λi

where λi are the ordered eigenvalues of var(Rt) = Ω. Therefore, the ratio

λiPN
i=1 λi

gives the proportion of the total variance
PN
i=1 var(Rit) attributed to the ith

principal component factor return, and the ratioPK
i=1 λiPN
i=1 λi

gives the cumulative variance explained. Examination of these ratios help in

determining the number of factors to use to explain the covariance structure of

returns.



Sample Principal Components and Estimated Factors

Sample principal components are computed from the spectral decompositon of

the N ×N sample covariance matrix Ω̂N when N < T :

Ω̂N = P̂Λ̂P̂
0

P̂
(N×N)

= [p̂∗1 ... p̂∗2 ... · · · ... p̂∗N ], P̂0 = P̂−1

Λ̂ = diag(λ̂1, . . . , λ̂N), λ̂1 > λ̂2 > · · · > λ̂N

The estimated factor realizations are simply the first K sample principal com-

ponents

bfkt = p̂∗0kRt, k = 1, . . . ,K. (12)

f̂t = (f̂1t, . . . , f̂Kt)
0

The factor loadings for each asset, βi, and the residual variances, var(εit) =

σ2i can be estimated via OLS from the time series regression

Rit = αi + β0if̂t + εit, t = 1, . . . , T (13)

giving bβi and bσ2i for i = 1, . . . , N . The factor model covariance matrix of

returns is then bΩFM = bB bΩf
bB0 +cD (14)

where

bB =
⎛⎜⎜⎝

bβ01
...bβ0N
⎞⎟⎟⎠ , cD =

⎛⎜⎝ bσ21 0 0

0 . . . 0

0 · · · bσ2N
⎞⎟⎠ ,

and

bΩf =
1

T − 1
TX
t=1

(bft − f)(bft − f)0, f = 1

T

TX
t=1

bft



Factor Mimicking Portfolios

Since each sample principal component (factor), f̂tk, is a linear combinations

of the returns, it is possible to construct portfolios that are perfectly correlated

with the principal components by re-normalizing the weights in the p̂∗k vectors
so that they sum to unity. Hence, the weights in the factor mimicking portfolios

have the form

ŵk =

Ã
1

10N p̂
∗
k

!
· p̂∗k, k = 1, . . . ,K (15)

where 1 is a (N×1) vector of ones, and the factor mimicking portfolio returns
are

Rk,t = ŵ
0
kRt

Asymptotic Principal Components

• Asymptotic principal component analysis (APCA), proposed and developed
in Conner and Korajczyk (1986), is similar to traditional PCA except that

it relies on asymptotic results as the number of cross-sections N (assets)

grows large.

• APCA is based on eigenvector analysis of the T × T matrix bΩT . Conner

and Korajczyk prove that as N grows large, eigenvector analysis of bΩT is

asymptotically equivalent to traditional factor analysis. That is, the APCA

estimates of the factors ft are the first K eigenvectors of bΩT . Specifically,

let bF denote the orthornormal K × T matrix consisting of the first K

eigenvectors of bΩT . Then
bft is the tth column of bF.



The main advantages of the APCA approach are:

• It works in situations where the number of assets, N , is much greater
than the number of time periods, T . Eigenvectors of the smaller T × T

matrix bΩT only need to be computed, whereas with traditional principal

component analysis eigenvalues of the larger N ×N matrix bΩN need to

be computed.

• The method allows for an approximate factor structure of returns. In an
approximate factor structure, the asset specific error terms εit are allowed

to be contemporaneously correlated, but this correlation is not allowed

to be too large across the cross section of returns. Allowing an approxi-

mate factor structure guards against picking up local factors, e.g. industry

factors, as global common factors.

Determining the Number of Factors

• In practice, the number of factors is unknown and must be determined
from the data.

• If traditional factor analysis is used, then there is a likelihood ratio test for
the number of factors. However, this test will not work if N > T .

• Connor and Korajczyk (1993) described a procedure for determining the
number of factors in an approximate factor model that is valid for N > T .

Bai and Ng (2002) proposed an information criteria that is easier and more

reliable to use.



Bai and Ng Method

Bai and Ng (2002) propose some panel Cp (Mallows-type) information criteria

for choosing the number of factors. Their criteria are based on the observation

that eigenvector analysis on bΩT or
bΩN solves the least squares problem

min
βi,f t

(NT )−1
NX
i=1

TX
t=1

(Rit − αi − β0ift)2

Bai and Ng’s model selection or information criteria are of the form

IC(K) = bσ2(K) +K · g(N,T )

bσ2(K) =
1

N

NX
i=1

bσ2i
where bσ2(K) is the cross-sectional average of the estimated residual variances
for each asset based on a model with K factors and g(N,T ) is a penalty

function depending only on N and T .

The preferred model is the one which minimizes the information criteria IC(K)

over all values of K < Kmax. Bai and Ng consider several penalty functions

and the preferred criteria are

PCp1(K) = bσ2(K) +K · bσ2(Kmax)µN + T

NT

¶
· ln

µ
NT

N + T

¶
,

PCp2(K) = bσ2(K) +K · bσ2(Kmax)µN + T

NT

¶
· ln

³
C2NT

´
,

CNT = min(
√
N,
√
T )



Algorithm

First, select a number Kmax indicating the maximum number of factors to be

considered. Then for each value of K < Kmax, do the following:

1. Extract realized factors bft using the method of APCA.
2. For each asset i, estimate the factor model

Rit = αi + β0ibfKt + εit,

where the superscript K indicates that the regression has K factors, using

time series regression and compute the residual variances

bσ2i (K) = 1

T −K − 1
TX
t=1

bε2it.

3. Compute the cross-sectional average of the estimated residual variances

for each asset based on a model with K factors

bσ2(K) = 1

N

NX
i=1

bσ2i (K)
4. Compute the cross-sectional average of the estimated residual variances

for each asset based on a model with Kmax factors, bσ2(Kmax).
5. Compute the information criteria PCp1(K) and PCp2(K).

6. Select the value of K that minimized either PCp1(K) or PCp2(K).

Bai and Ng perform an extensive simulation study and find that the selection

criteria PCp1 and PCp2 yield high precision when min(N,T ) > 40.


