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1 Overview of Simulation-Based Econo-

metric Estimation

Problem: Many estimation problems have objective

functions that involve high-dimensional integrals that

cannot be numerically evaluated using conventional

methods

Solution 1: Approximate high dimensional integrals

using simulation techniques

• Maximum simulated likelihood (MSL) estimation

• Method of simulated moments (MSM) estimation

Solution 2: Simulate from structural model and match

moments to fitted auxiliary model



• Indirect inference

• Efficient method of moments (EMM) estimation

Goal of Grant: Create user-friendly software compo-

nents for implementing simulation-based estimation

techniques
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2 Probabilistic Discrete Choice Mod-

els

Choice Set: j = 1, . . . , J discrete alternatives

• Mutually exclusive alternatives

• Choices are exhaustive

• Finite number of alternatives

• Order and ranking of choices may matter

Examples

• Transportation mode choice



• Political party candidate choice

• Bond rating choice

2.1 McFadden’s Random Utility Model

• Decision maker n faces J alternatives from choice
set

• Unj = unobserved utility for person for choice j

• Person chooses alternative with highest utility
Choose alternative i iff Uni > Unj ∀ j 6= i

Model Construction



• xnj = observed attributes of alternatives faced
by person n

• sn = observed attributes of decision maker n

• εn = (εn1, . . . , εnJ)
0 = unobserved attributes of

alternatives

εn has pdf f(εn|θ)

• Vnj = V (xnj, sn) = x0njβ + s0nδj = observed
utility

• Unj = Vnj + εnj = unobserved random utility

Choice Probability

Pni = Pr(Uni > Unj ∀ j 6= i)

= Pr(Vni + εni > Vnj + εnj ∀ j 6= i)

= Pr(εnj − εni < Vni − Vnj ∀ j 6= i)

=
Z
· · ·

Z
I[εnj−εni<Vni−Vnj ∀ j 6=i]f(εn|θ)dεn



Remarks:

1. Choice probabilities require evaluation of multi-

dimensional integral

2. Only differences in utility determine choice prob-

ability: utility must be normalized for level and

scale

3. Only effects that differ across alternatives can be

identified

Vni − Vnj = (xni−xnj)0β + s0n(δi − δj)

set δ1 = 0 for identification

4. Distribution of εn determines choice model

Logit: εnj ∼ iid extreme value.



• Unobserved factors are uncorrelated and homoskedas-
tic across alternatives.

• Pni has closed form solution

GEV: εn ∼ generalized extreme value.

• Allows limited correlation across alternatives.

• Logit is special case. Nested logit is common

model.

• Pni has closed form solution.

Probit: εn ∼ N(0,Ω).

• Allows general correlation and heteroskedasticity
across alternatives.



• Easily modified to handle panel data.

• Pni does not have closed form solution.

• Restrictions on Ω are required to normalize utility

for level and scale. Identification can be tricky.

Mixed-logit: εnj = η0nznj + νnj, ηn ∼ f(ηn|θ) and
vnj ∼ iid extreme value.

• Allows for general correlation and heteroskedas-
ticity across alternatives.

• Can approximate any random utility discrete choice
model.

• f(ηn|θ) can be any distribution.



• Easily modified to handle panel data.

• Identification can be tricky.



3 Choice Probabilities and Integra-

tion

y = decision outcome from choice situation

x = observed factors

ε = unobserved random factors with pdf f(ε)

y = h(x, ε) = behavioral model

Pr(y|x) = Pr(ε s.t. y = h(x, ε)) = choice probability

Let I[A] = 1 when event A occurs and 0 otherwise.

Then

Pr(y|x) = Pr(I[y=h(x,ε)] = 1)

=
Z
I[y=h(x,ε)]f(ε)dε



3.1 Complete Close-Form Expression

Logit binary decision model:

y = 1 if action is taken

= 0, otherwise

Net utility

U = U1 − U0 = x
0β + ε

f(ε) = e−ε/(1 + e−ε)2

F (ε) = 1/(1 + e−ε)

Choice probability

P1 = Pr(y = 1|x) = Pr(U > 0)

= Pr(ε > −x0β)
=

Z
I[ε>−x0β]f(ε)dε

=
Z ∞
−x0β

f(ε)dε

=
ex
0β

1 + ex
0β



3.2 Complete Simulation

Choice probability is an expectation:

Pr(y|x) = Pr(I[y=h(x,ε)] = 1)

=
Z
I[y=h(x,ε)]f(ε)dε

= E[I[y=h(x,ε)]]

Approximate E[I[y=h(x,ε)]] using Monte Carlo Inte-
gration

• Draw εr from f(ε)

• If y = h(x, εr) = 1, set Ir[y=h(x,εr)] = 1; other-
wise set set Ir[y=h(x,εr)] = 1

• Repeat processR times and compute Monte Carlo
average

cPr(y|x) = 1

R

RX
r=1

Ir[y=h(x,εr)]



4 Logit Models

Random Utility Model

Unj = Vnj + εnj = x
0
njβ + s

0
nδj + εnj

εnj ∼ iid extreme value

f(εnj) = exp(−εnj) exp(− exp(−εnj))
F (εnj) = exp(− exp(−εnj))

Properties:

• Form of density normalizes utility for level and

scale

• Choice probability has closed form solution

Pni =
exp(Vni)PJ
j=1 exp(Vnj)

, i = 1, . . . , J

Pni ≥ 0,
JX
i=1

Pni = 1.



• Marginal effects
∂Vnj

∂xnj
= β,

∂Vnj

∂sn
= δj

Let zni be an element of xni. Then

∂Pni
∂zni

= βzPni(1− Pni)

∂Pni
∂znj

= −βzPniPnj

• Elasticities
Ei,zni =

∂Pni
∂zni

· zni
Pni

= βzzni(1− Pni)

Ei,znj =
∂Pni
∂znj

· znj
Pni

= −βzznjPnj
Note: cross elasticity only depends on j ⇒ pro-

portionate substitution

• Odds ratios/IIA property
Pni
Pnk

=
exp(Vni)

exp(Vnk)
= exp(Vni − Vnk)



Note: ratio only depends on alternatives i and

k ⇒ relative odds of choosing alternative i over

alternative k is the same no matter what other

alternatives are available. Hence, the ratio is in-

dependent from alternatives irrelevant to i and

k.

• IIA: Red bus/Blue bus example



4.1 Maximum Likelihood Estimation

Define yni = 1 if individual n selects alternative i, and

yni = 0 otherwise.

Pr(individual n selects alternative that is observed)

=
JY
i=1

(Pni)
yni

Pni =
ex
0
niβ+s

0
nδiP

j e
x0njβ+s0nδj

Given a random sample of size N, the joint probability

that all individuals select the alternatives that were

observed is
NY
n=1

JY
i=1

(Pni)
yni

which gives the log-likelihood function

lnL(θ) =
NX
i=1

JX
i=1

yni ln(Pni)

θ = (β0, δ2, . . . , δJ)0



The maximum likelihood estimator is defined as

θ̂mle = argmax
θ

lnL(θ)

• Logit log-likelihood is globally concave

• √N(θ̂mle−θ)→ N(0, I(θ)−1), I(θ) = −E[∂2 lnL(θ)
∂θ∂θ0 ]



4.2 Example: Commuter Mode Choice

• Data on the mode choice of 453 commuters: (1)
car alone, (2) carpool, (3) bus, and (4) rail.

• Observe cost and time on each mode and the
chosen mode

• Random utility model with J = 4 alternatives and
N = 453 commuters

Uni = Vni + εni,

Vni = x0niβ + s0nδi
Pni = Pr(Uni > Unj, ∀ j 6= i)

where xni denotes the 2 × 1 vector of cost and
time variables that vary over individuals and al-

ternatives, and sn represents a 3 × 1 vector of

alternative specific constants.



5 Probit Models

Random utility model

Unj = Vnj + εnj = x
0
njβ + εnj

εn = (εn1, . . . , εnJ) ∼ N(0,Ω)

f(εn|θ) = φ(εn) = (2π)
−J/2|Ω|−1/2 exp

½
−1
2
ε0nΩ−1εn

¾
F (εn) = Φ(εn) =

Z εn1

−∞
· · ·

Z εnJ

−∞
φ(z)dz

In terms of εn, choice Probability is J−dimensional
integral

Pni = Pr(εnj − εni < Vni − Vnj ∀ j 6= i)

=
Z
· · ·

Z
I[εnj−εni<Vni−Vnj ∀ j 6=i]φ(εn)dεn

Result: Pni depends on distribution of εnj − εni ∀
j 6= i ⇒ Dimension may be reduced to J − 1. Define

Ũnji = Unj − Uni
Ṽnji = Vnj − Vni
ε̃nji = εnj − εni
ε̃ni = (ε̃n1i, . . . , ε̃nJi)

0 excluding ε̃nii



Then

ε̃ni ∼ N(0, Ω̃i)

Ω̃i = MiΩM
0
i

where Mi is the identity matrix of dimension J − 1
with a (J − 1) × 1 column of −1 values inserted at
the ith column.

In terms of ε̃ni, Pni is J − 1 dimensional integral

Pni =
Z ∞
−∞

· · ·
Z ∞
−∞

I(ε̃nji < −Ṽnji,∀ j 6= i)φ(ε̃ni)dε̃ni

Remarks:

• For J−1 > 3 cannot accurately evaluate integral

using numerical integration

• Integral may be accurately approximated using
simulation

• Not all parameters of model are identified without
further restrictions



5.1 Identification

1. Take utility differences with respect to the first

alternative and compute

Ω̃1 =M1ΩM
0
1

2. Normalize the level and scale of utility by setting

the (1, 1) element of Ω̃1 to unity. This produces

the (J − 1) × (J − 1) restricted error difference
covariance matrix

Ω̃∗1 =


1 ω∗12 · · · ω∗1,J−1

ω∗22 · · · ω∗2,J−1
. . . ...

ω∗J−1,J−1


which has J(J − 1)/2− 1 unique elements.

3. Construct the normalized J×J covariance matrix



for the errors using

Ω∗ =



0 0 0 · · · 0
0 1 ω∗12 · · · ω∗1,J−1
0 ω∗12 ω∗22 · · · ω∗2,J−1
... ... ... . . . ...
0 ω∗1,J−1 ω∗2,J−1 · · · ω∗J−1,J−1


=

Ã
0 00
0 Ω̃∗1

!

4. Compute Choleski factorization

Ω̃∗1 = CC0

C =


1 0 · · · 0
c21 c22 · · · 0
... ... . . . ...

cJ−1,1 cJ−1,2 · · · cJ−1,J−1


where C has J(J − 1)/2− 1 elements

5. θ = (β0, c21, . . . , cJ−1,J−1)0 represents the K +
J(J − 1)2− 1 parameters to be estimated in the
normalized probit model.



5.2 Accept-Reject Simulation of Pni

Pni = Pr(εnj − εni < Vni − Vnj ∀ j 6= i)

=
Z
· · ·

Z
I[εnj−εni<Vni−Vnj ∀ j 6=i]φ(εn)dεn

• Draw εrn from φ(εn)

• Calculate Ur
ni = x

0
niβ + εrni for i = 1, . . . , J

• If Ur
ni > Ur

nj for all j 6= i set Ir = 1; otherwise

set Ir = 0

• Repeat process R time and compute Monte Carlo

average

P̆ni =
1

R

RX
r=1

Ir



Problems

• P̆ni may be zero

• P̆ni is not a smooth function of β



5.3 Truncated Normal Distribution

Let z ∼ N(0, 1), let φ(z) denote the pdf and Φ(z)
denote the CDF. Then for any upper truncation point
v,

τ = z|z ≤ v ∼ TN(v)

f(z) = φ(z)/Φ(v) for z ≤ v

= 0, otherwise

5.3.1 Simulating from a Truncated Normal Density

Goal: Generate random draw from TN(v)

• Draw u ∼ U [0, 1]

• Compute ū = Φ(v)u

• Compute τ = Φ−1(ū)



5.4 Smooth Simulation of Pni

Let J − 1 = M. Then Pni is the M−dimensional
negative orthant probability:

Pni = Pr(x < v)

x = ε̃ni ∼ N(0, Ω̃∗i )
v = (−Ṽn1i,−Ṽn2i, . . . ,−ṼnJi)0
= (v1, v2, . . . , vM)

0

Define

x = Cz, Ω̃∗i = CC0

C =


c11 0 · · · 0
c21 c22 · · · 0
... ... . . . ...

cM1 cM2 · · · cMM


z ∼ N(0, IM)

Then

Pr(x ≤ v) = Pr(Cz ≤ v)
= Pr(c11z1 ≤ v1, c21z1 + c22z2 ≤ v2, . . . ,

c31z1 + c32z2 + · · ·+ cMMzM ≤ vM)



Define

D = {z ∈ R : z1 ≤
v1
c11

, z2 ≤
v2 − c21z1

c22
, . . . ,

zM ≤ vM − cM1z1 − · · ·− cM−1,M−1zM−1
cMM

}

Then

Pni =
Z
D
φ(z1) · · ·φ(zM)dz1 · · · dzM

Over D, zi ∼ TN(
vi−ci1z1−···ci,i−1zi−1

cii
) and may be

simulated using the recursive algorithm:

1. Draw u1, . . . , uM−1 iid U [0, 1]



2. Compute

τ1 = Φ−1
Ã
u1Φ

Ã
v1
c11

!!

τ2 = Φ−1
Ã
u2Φ

Ã
v2 − c21τ1

c22

!!
...

τM−1 = Φ−1(uM−1

×Φ

Ã
vM−1 − cM−1,1τ1 − · · ·− cM−1,M−1τM−1

cMM

!
)

Result:

Pni = Φ

Ã
v1
c11

!Z
[0,1]M−1

Φ

Ã
v2 − c21τ1

c11

!
· · ·

· · ·Φ
Ã
vM − cM,1τ1 − · · ·− cM,M−1τM−1

c11

!
du1 · · · duM−1

may be estimated using Monte Carlo integration.



5.4.1 GHK Algorithm
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Algorithm

1. Compute Pr
³
z1 <

v1
c11

´
= Φ( v1c11

)

2. Generate τr1, . . . , τ
r
M−1 recursively as described

above

3. Compute

Φ

Ã
v2 − c21τ

r
1

c22

!
, . . . ,

Φ

Ã
vM − cM1τ

r
1 − · · ·− cM,M−1τrM−1

c33

!



4. Repeat 2-3 R times and compute MC estimate

P̆ni = Φ

Ã
v1
c11

!
1

R

RX
r=1

Φ

Ã
v2 − c21τ

r
1

c22

!

×Φ

Ã
v3 − c31τ

r
1 − c32τ

r
2

c33

!

· · · ×Φ

Ã
vM − cM,1τ1 − · · ·− cM,M−1τM−1

cMM

!

Remarks

• P̆ni is an unbiased simulator: E
h
P̆ni

i
= Pni

• P̆ni is continuous and differential function of θ

• By law of large numbers, as R→∞
P̆ni

p→ Pni

SD(P̆ni) = O(
√
R)



5.4.2 Accuracy of GHK Simulator

Evaluate p = Pr(x < v), x ∼ N(0,Ω), 100 times

using R = 100 random draws and R = 50 draws

using anti-thetic variates.

v1 =


−1.0
−0.75
−0.5
−0.2

 ,Ω1 =


1.0
0.2 1.0
0.3 0.4 1.0
0.1 0.3 0.5 1.0



v2 =


0.0
0.0
0.0
0.0

 ,Ω2 =


1.0
0.2 1.0
0.2 0.4 1.0
0.2 0.4 0.6 1.0



v2 =


1.0
1.0
1.0
1.0

 ,Ω2 =


1.0
0.9 1.0
0.0 0.0 1.0
0.0 0.0 0.95 1.0





Example 1 R = 100 No AV R = 50 AV
p 0.0240 0.0240
Mean 0.0240 0.0240
|Bias| 0.0001 0.0000
Std. dev. 0.0008 0.0003

Example 2 R = 100 No AV R = 50 AV
p 0.1497 0.1497
Mean 0.1495 0.1498
|Bias| 0.0002 0.0001
Std. dev. 0.0048 0.0014

Example 3 R = 100 No AV R = 50 AV
p 0.6473 0.1497
Mean 0.6471 0.1498
|Bias| 0.0002 0.0015
Std. dev. 0.0090 0.0069



5.5 Maximum Simulated Likelihood Estima-

tion

Log-likelihood function

lnL(θ) =
NX
i=1

JX
i=1

yni ln(Pni(θ))

θ = (β0, c21, . . . , cJ−1,J−1)0

Pni =
Z ∞
−∞

· · ·
Z ∞
−∞

I(ε̃nji < −Ṽnji,∀ j 6= i)φ(ε̃ni)dε̃ni

ε̃ni ∼ N(0, Ω̃∗i ), Ω̃∗i =MiΩ
∗M0

i

• lnL(θ) cannot be analytically evaluated, θ̂mle =

argmaxθ lnL(θ) is not feasible.

• Given data and fixed θ,for each n and chosen i,

Pni(θ) may be approximated using R replications

of the GHK simulator giving P̆ni(θ).

— There are R ·N · (J − 2) random numbers.



• Simulated log-likelihood function

ln L̆(θ) =
NX
i=1

JX
i=1

yni ln(P̆ni(θ))

• θ̆msle = argmaxθ ln L̆(θ) is called the maximum
simulated likelihood estimator.

5.5.1 Properties of SMLE

• ln L̆(θ) is a biased estimate of lnL(θ)

— For fixed R, θ̆msle is not consistent

• If R→∞ slower than
√
N then θ̆msle is consis-

tent but not asymptotically normal

• If R → ∞ faster than
√
N then θ̆msle is con-

sistent, asymptotically normal and equivalent to

mle.



• In optimization, must use the same random num-

bers to compute P̆ni(θ) for all values of θ to pre-

vent chatter. This is a stochastic equicontinuity

condition required for consistency.



5.6 Example

• Data on the mode choice of 453 commuters: (1)
car alone, (2) carpool, (3) bus, and (4) rail.

• Observe cost and time on each mode and the
chosen mode

• Random utility model with J = 4 alternatives and
N = 453 commuters

Uni = Vni + εni,

Vni = x0niβ + s0nδi
Pni = Pr(Uni > Unj, ∀ j 6= i)

where xni denotes the 2 × 1 vector of cost and
time variables that vary over individuals and al-

ternatives, and sn represents a 3 × 1 vector of

alternative specific constants.



Normalized covariance for uncorrelated and heteroskedas-

tic errors

Structural covariance

Ω = I4

Error difference covariance

Ω̃1 = M1I4M
0
1

= M1M
0
1

=

 2 1 1
1 2 1
1 1 2


Normalized error difference covariance

Ω̃∗1 =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1





6 Mixed Logit

The mixed-logit model is a random utility model

Uni = Vni(β) + εni, i = 1, . . . , J ;n = 1, . . . , N

εni ∼ iid extreme value

β has pdf f(β|θ)
For fixed θ, Pni is

Pni(θ) =
Z
· · ·

Z
Lni(β)f(β|θ)dβ

where

Lni(β) =
exp(Vni(β))PJ
j=1 exp(Vnj(β))

• Mixed-logit is a mixture of logits with f(β|θ) used
as the mixing distribution.

• If f(β|θ) = 1 for β = b (and zero otherwise)
then the mixed logit choice probability reduces to
the regular logit choice probability.



6.1 Random Coefficients Interpretation

Idea: “tastes” associated with attributes vary across

individuals ⇒ β varies with n :

Uni = x
0
niβn + εni

βn has pdf f(βn|θ)
εni iid extreme value

If βn were known, then the conditional choice proba-

bility is

Pni|βn =
exp(x0niβn)PJ
j=1 exp(x

0
njβn)

For unknown βn, the unconditional choice probability

is obtained by integrating the conditional probability

with respect to the marginal distribution for βn giving

the mixed logit probability.

Remarks:



• Random coefficients formulation produces corre-

lation among utilities across alternatives:

cov(Uni, Unj) = cov(x0niβn + εni,x
0
njβn + εnj)

= cov(x0niβn,x0njβn) = x0nivar(βn)xnj
which is, in general, non-zero even if var(βn) is

a diagonal matrix.

• Usually, the elements of βn are assumed to be
uncorrelated so that θ may be partitioned into a

vector of location parameters b and a vector of

scale parameters s. For example,

βn|θ ∼ iid N(b,S)

where S is a diagonal matrix with sii along the

diagonal. This implies that

βnk ∼ iid N(bk, skk)

• Usually, some elements of βn are assumed to be
fixed.



6.2 Random Effects Interpretation

Typical random-effects model formulation for utility

Uni = x
0
niα+ z

0
niµn + εni

where

• xni are observed covariates with fixed coefficients
α

• zni are observed covariates with random coeffi-

cients µn

• xni and zni may have common elements

• εni is distributed iid extreme value.



Result: correlation in utility across alternatives is de-

termined by zni and the distribution of µn

cov(Uni, Unj)

= cov(x0niα+ z0niµn + εni,x
0
njα+ z

0
njµn + εnj)

= cov(z0niµn, z0njµn) = znivar(µn)znj

• The covariates zni are usually dummy variables
constructed by the user in a particular way to

produce a desired pattern of correlation across

alternatives.

• Usually the elements of µn are assumed uncorre-
lated with mean zero. For example,

µn ∼ iid N(0,S)

where S is a diagonal matrix with sii along the

diagonal. This implies that

µnk ∼ iid N(0, skk)



• Random coefficient model is a random effects

model

Uni = x0niβn + εni

= x0nib+ x0ni(βn − b) + εni

E[βn] = b



6.3 Mixing Distributions

Common univariate mixing distributions for βnk are

• Normal

• Log normal - useful if βnk is the same sign for all
n

• Uniform - useful to bound range of βnk

• Triangular - useful to bound range of βnk

Above distributions may be characterized in terms of

2 parameters:

bk = location

sk = scale



Simulation of βnk:

βk = bk + sk · F−1(εk)
εk ∼ U [0, 1]

F−1() = inverse standardized CDF

Remark: With the random-effects specification, usu-

ally bk = 0.



6.4 Simulation of Pni

• Draw βr randomly from f(β|θ) R times

• Form the average of the logit kernels over the

random draws:

P̆ni(θ) =
1

R

RX
r=1

Lni(β
r)

• P̆ni(θ) is an unbiased estimate of Pni(θ) by con-

struction.

• By the law of large numbers, as R→∞
P̆ni(θ)

p→ Pni(θ)

SD(P̆ni(θ)) = O(
√
R).



6.5 Maximum Simulated Likelihood Estima-

tion

Simulated Log-likelihood function

lnL(θ) =
NX
i=1

JX
i=1

yni ln(P̆ni(θ))

θ = parameters of f(β|θ)

P̆ni(θ) =
1

R

RX
r=1

Lni(β
r)



6.6 Example

• Data on the mode choice of 453 commuters: (1)
car alone, (2) carpool, (3) bus, and (4) rail.

• Observe cost and time on each mode and the
chosen mode

• Random utility model with J = 4 alternatives and
N = 453 commuters

Uni = Vni + εni,

Vni = x0niβ + s0nδi
Pni = Pr(Uni > Unj, ∀ j 6= i)

where xni denotes the 2 × 1 vector of cost and
time variables that vary over individuals and al-

ternatives, and sn represents a 3 × 1 vector of

alternative specific constants.



• Mixed effects specification: alternative specific

random effects

Uni = β1costni + β2timeni +

β3nCarpooln + β4nBusn +

β5nRailn + εni

βkn ∼ N(bk, s
2
k), k = 3, 4, 5



6.7 Extension to Panel Data

With panel data, utility may be expressed as

Unjt = x
0
njtβnt + εnjt

εnjt ∼ iid extreme value ∀ n, j, t

individuals: n = 1, . . . , N

alternatives: j = 1, . . . , J

time periods: t = 1, . . . , T

6.7.1 Time invariant random effects

• Assume tastes vary over individuals but remain
constant over time: βnt = βn.

• Let in = (i1, . . . , iTn)0 denote a vector of alterna-
tives for each time period t = 1, . . . , Tn faced by

individual n (allows for unballanced panels).



• x0nitt may contain lagged values of xnitt and ynitt

• Conditional on βn, the probability that individual
n selects the sequence of alternatives specified by

in is

Pnin|βn = Lnin(βn) =
TnY
t=1

exp(x0nittβn)PJ
j=1 exp(x

0
njtβn)

For unknown βn, the unconditional choice prob-

ability is obtained by integrating the conditional

probability with respect to the marginal distribu-

tion for βn giving the mixed logit probability

Pnin(θ) =
Z
· · ·

Z
Lnin(βn)f(βn|θ)dβn



6.7.2 Time Dependent Random Effects

Unjt = x
0
njtβnt + εnjt

εnjt ∼ iid extreme value ∀ n, j, t

βk,nt = bk + β̃k,nt
β̃k,nt = ρβ̃k,nt +wk,nt

wk,nt ∼ iid N(0, s2)

Simulation of Pni (single βnt)

1. Draw wr
n1 for 1st period and calculate

β̃
r
n1 = wr

n1

βrn1 = b+ β̃
r
n1

Lni1(β
r
n1)

2. Draw wr
n2 for 2nd period and calculate

β̃
r
n2 = ρβrn1 +wr

n2

βrn2 = b+ β̃
r
n2

Lni2(β
r
n2)



3. Repeat 1 - 2 for t = 3, . . . , T

4. Compute

TY
t=1

Lnit(β
r
nt)

5. Repeat 1 - 4 R times and compute

P̆ni =
1

R

RX
r=1

TY
t=1

Lnit(β
r
nt)



6.8 Example: Choice of Electricity Supplier

A sample of 361 residential electricity customers were

asked a series of questions of choice experiments. In

each experiment, 4 hypothetical electricity suppliers

were described. The person was asked which of the

4 suppliers he/she would choose. As many as 12 ex-

periments were presented to each person, and some

people stopped before answering all questions. There

are a total of 4308 experiments.

Characteristics of suppliers

• Price of supplier - (a) fixed price per kWh; (b)
time-of-day rate; (c) seasonal rate

• Length of contract in years

• Local or well known company



Mixed logit model specification: time homogeneous

panel

Unit = β1kWhPricenit + β2nlengthnit + β3nlocalnit

+β4nwellknownnit + β5TODnit

+β6nseasonalnit + εnit

βkn ∼ N(bk, s
2
k)



7 Low Discrepancy Sequences

A Monte Carlo estimate for the s-dimensional integral

is given by:

I =
1

N

N−1X
i=0

f(xi),xi ∈ [0, 1)s

• If the xi are pseudo-random uniform vectors the

SD of the approximation error is O(N1/2).

— Rate is independent of the dimension of the

problem.

— Rate is slow; to obtain an extra digit of ac-

curacy requires 100 times as many function

evaluations.



• Since the early 1990s, more evenly-spaced sequences
based on a mathematical concept called discrep-

ancy have been widely used in physics, engineer-

ing, and financial applications, in so-called quasi-

Monte Carlo experiments. In most cases low

discrepancy sequences (LDS) improve the accu-

racy of the estimate, I, typically offering a con-

vergence rate of O(N−1 log(N)s), where s is the
dimension.

— As N increases for fixed s, rate behaves more

like N−1 than N−1/2, and an extra digit of
accuracy requires little more than 10 times as

many function evaluations.

— The methods apply most naturally to applica-

tions that can be transformed into an integral

over the s-dimension unit hypercube. Then a

LDS in the sequel tries to choose points which

are evenly distributed in the hypercube.



7.0.1 Discrepancy and Low Discrepancy Sequences

• Q ⊆ [0, 1]s is an axially parallel s−dimensional
rectangle

• x1, . . . , xN ∈ [0, 1]s

• Intuitively, an evenly distributed point set satisfies
# of xi ∈ Q

# of all points
≈ vol(Q)

vol([0, 1]s)

for as many rectangles Q as possible

Defn: The discrepancy of point set {x1, . . . , xN} is

DN = sup
Q

¯̄̄̄
# of xi ∈ Q

N
− vol(Q)

¯̄̄̄



Defn: A sequence of points x1, x2, . . . , xN is a low

discrepancy sequence if there exists a constant Cs,

independent of N, such that

DN ≤ Cs
(logN)s

N

LDS implemented in S+lowDiscrepancy

• Halton sequences
with scrambling by permutations or random shifts,

• Faure sequences
with Owen and/or Faure-Tezuka scrambling,

• Sobol sequences
with Owen and/or Faure-Tezuka scrambling,

• Niederreiter sequences
with Owen and/or Faure-Tezuka scrambling, and



• Niederreiter-Xing sequences
with Owen and/or Faure-Tezuka scrambling.



7.0.2 Problems with LDS

• If s is moderately large, the initial behavior of
unscrambled versions of some LDSs can be bad.

• To overcome such poor behavior a number of
scrambling methods have been proposed in the

literature.

• With deterministic LDSs it is difficult to estimate
the integration error rate of the approximation.

However, with randomized LDSs it is possible to

estimate the error rate using the usual statistical

methods.



7.1 Improving Accuracy of GHK Simulator

References

• Sandor, Z. and P. Andras (2003). “Alternative
Sampling Methods for Estimating Multivariate Nor-

mal Probabilities,” mimeo, Econometric Institute,

Erasmus University Rotterdam.

— Studied the performance of the GHK simulator

using a variety of LDSs.

— The GHK simulator with LDSs outperformed

the GHK simulator with random uniforms, some-

times by a huge margin

— At dimension 10, for the percision of the GHK

simulator with random draws to match the

precision with Owen scrambled Niederreiter-

Xing sequences the number of random draws

need to be 100 times larger



— At dimension 50, random samples need to be

about 4 times larger than LDS samples to

achieve the same level of accuracy.



7.2 Improving Accuracy of Mixed Logit Prob-

abilities

References

1. Train, K. (2000). “Halton Sequences for Mixed

Logit,” mimeo, Dept. of Economics, UC Berke-

ley.

• For s ≤ 5, found simulation variance in esti-

mated parameters from mixed logit models to

be considerably smaller with 100 Halton draws

than with 1000 random draws.

• Even coverage of Halton draws over the do-
main of integration reduces variability of P̆ni
across n relative to random draws.

• With Halton sequences, the draws for one ob-
servation tend to fill in the spaces that were



left empty by the previous observations caus-

ing P̆ni to be negatively correlated over obser-

vations. This reduces the variance of ln L̆(θ).

2. Bhat, C. (2001). “Quasi-random maximum sim-

ulated likelihood estimation of the mixed multi-

nomial logit model,” Transportation Research.

• For s ≤ 5 and 125 Halton draws, found the

simulation error to be half as large as with

1000 random draws and smaller than with 2000

random draws.

3. Sandor, Z. and K. Train (2002). “Quasi-random

Simulation of Discrete Choice Models,” mimeo,

Dept. of Economics, UC Berkeley.

• Analyzed the use of Halton, randomized Hal-
ton, and scrambled Neidereitter-Xing sequences

for the evaluate on mixed logit probabilities.



• Found that 8 times as many random draws

are required to reach the same level of perfor-

mance as the best LDS studied (Neidereitter-

Xing with Owen-type scrambling).

4. Bhat, C. (2003). “Simulation estimation of mixed

discrete choice models using randomized and scram-

bled halton sequences,” Transportation Research.

• For high dimensional problems non-randomized
Halton sequences do not perform as well as for

low dimensional problems. For s = 10, 150

standard Halton draws are comparable to 500

random draws.

• Randomized Halton sequences perform well

for high dimensional problems. For s = 10,

100 scrambled Halton draws perform as well

as 150 standard Halton draws. 150 scrambled

Halton draws perform as well as 1000 random

draws.


