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Abstract

In this paper we propose a new approach for the econometric analysis of the

dynamics of price discovery using a structural cointegration model for the price

changes in arbitrage linked markets. Our methodology characterizes the dynam-

ics of price discovery based on the impulse response functions from an identified

structural cointegration model, and we measure the efficiency of a market’s price

discovery by the absolute magnitude of cumulative pricing errors in the price dis-

covery process. We apply our methodology to investigate the extent to which the

US dollar contributes to the price discovery of the yen/euro exchange rate. Our

results show that substantial price discovery of JPY/EUR occurs through the

dollar, and that the efficiency of the dollar’s price discovery is positively related

to the relative liquidity of the dollar markets versus the cross rate market.
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1 Introduction

Price discovery is one of the central functions of financial markets. In the market

microstructure literature, it has been variously interpreted as, “the search for an equi-

librium price” (Schreiber and Schwartz (1986)), “gathering and interpreting news”

(Baillie et. al. (2002)), “the incorporation of the information implicit in investor

trading into market prices” (Lehmann (2002)). These interpretations suggest that

price discovery is dynamic in nature, and an efficient price discovery process is char-

acterized by the fast adjustment of market prices from the old equilibrium to the

new equilibrium with the arrival of new information. In particular, Madhavan (2002)

distinguishes dynamic price discovery issues from static issues such as trading cost

determination.

One notable institutional trend of financial markets is the trading of identical or

closely related assets in multiple market places. This trend has raised a number of

important questions. Does the proliferation of alternative trading venues and the

resulting market fragmentation adversely affect the price discovery process? How do

the dynamics of price discovery of an asset depend on market characteristics, such as

transaction costs and liquidity? What institutional structures and trading protocols

facilitate the information aggregation and price discovery process? In contrast to

the wide literature on transaction costs, however, the studies on price discovery are

relatively limited. In a recent survey of market microstructure studies, Madhavan

(2002) remarks, “The studies surveyed above can be viewed as analyzing the influence

of structure on the magnitude of the friction variable. What is presently lacking is a

deep understanding of how structure affects return dynamics, in particular, the speed

(italics as cited) of price discovery.” In this paper, we propose an approach to directly

characterize the speed of price discovery in the context of an asset trading in multiple

markets.

At the most general modeling perspective, each of the observable prices of an as-
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set in multiple markets can be decomposed into two components: one reflecting the

common efficient (full-information) price shared by all these markets (Garbade and

Silber (1979)); and one reflecting the transitory frictions that arise from the trading

mechanism, such as the bid-ask bounce, liquidity effects, and rounding errors. Evolv-

ing as a random walk, the common efficient price captures the fundamental value of

the financial asset and its innovation impounds the expectation revisions of investors

(thus new information) about the asset payoffs. How observed prices respond to

the common efficient price innovation characterizes the dynamics of price discovery.

Unfortunately, as emphasized by Hasbrouck (2002), the common efficient price (and

its innovation) is generally unobservable. Therefore, identifying the common efficient

price innovations is a necessary step before any meaningful measure of price discovery

can be constructed.

In the multiple markets context, the common random walk efficient price implies

that the observable prices in different markets for the same asset are cointegrated

with a known cointegrating vector. In this paper, we show that the structure of the

cointegration model allows for the identification of the efficient price innovation with

minimal restrictions using a modification of the permanent and transitory (P-T) de-

composition of Gonzalo and Ng (2001). With an identified structural cointegration

model in hand, we propose new measures of price discovery based on impulse response

functions to characterize the dynamics of a market’s price discovery process. The pri-

mary and satellite (leading and lagging) markets are distinguished by examining the

time paths of their price responses to the common efficient price innovation. In this

framework, we measure one market’s contribution to price discovery by the relative

speed to which its observed price moves to the new fundamental value following a

shock to the efficient price, and by the magnitude of cumulative pricing errors in the

adjustment to the new fundamental value. As a result, our methodology establishes

a framework to directly quantify the dynamics of price discovery.

The rest of the paper is organized as follows. In section 2, we develop a dynamic
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structural cointegration model for the price changes in two arbitrage linked markets.

We propose new dynamic measures of price discovery based on structural impulse re-

sponse functions in section 3, and discuss indentification and estimation in section 4.

In section 5, we perform simulation experiments to evaluate the finite sample perfor-

mance of our proposed methodology for bivariate models. We discuss the extension

of our methodolgy to n markets in section 6. In section 7, we present an empirical

application of our methodology using ultra high frequency foreign exchange data.

Secton 7 contains our concluding remarks. Some technical results are given in the

short appendix.

2 Structural Price Discovery Cointegration Model

As emphasized by Lehmann (2002), because standard measures of price discovery

(e.g., the information share measure of Hasbrouck, 1995) are based on the residuals

from a reduced from vector error correction (VEC) model their interpretation is not

always clear. A clear interpretation of price discovery is only possible in a structural

model; i.e., a model in which the sources of shocks are identified. In this section, we

propose a structural cointegration model for prices in arbitraged linked markets that

identifies information and liquidity shocks with minimal restrictions. Our model is

motivated by the structural VAR models widely used in empirical macroeconomics

(e.g. Bernanke, 1986, Blanchard and Quah, 1989, King et. al., 1991). An excellent

survey of these models, which we draw heavily from, is given in Levtchenkova et. al.

(1999).

For ease of exposition, consider a single asset traded in two distinct markets.

The generalization to n prices is straightforward and is discussed in section 6. Let

pt = (p1,t, p2,t)
0 denote a 2×1 vector of log prices for the asset from the two markets.

In a multiple-trading environment, these prices may be the trade prices or quotes from

different trading venues. More generally, the prices may be an asset’s cash market
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price and the price of its derivatives, or the observed price of an asset and its price

synthetically constructed from other financial assets. In essence, these prices are

closely linked by arbitrage. We assume that the efficient price of the asset follows a

random walk shared by each of these observed prices so that pt is a nonstationary

process. In time series terminology, these prices are integrated of order 1, or I(1), and

the price changes, ∆pt, are integrated of order zero, or I(0). Furthermore, since the

prices in pt are for the same underlying asset (the common efficient price), they are

not expected to drift far apart from each other and so the difference between them

should be I(0). Formally, we assume that pt is cointegrated with known cointegrating

vector β = (1, − 1)0 so that β0pt = p1,t − p2,t is I(0).

We assume that ∆pt has a structural moving average (SMA) representation of

the form

∆pt = D(L)ηt = D0ηt +D1ηt−1 +D2ηt−2 + · · · (1)

D(L) =
∞X
k=0

DkL
k, D0 6= I2

where the elements of {Dk}∞k=0 are 1-summable andD0 is invertible. We assume that

the number of structural shocks is equal to the number of observed prices, so that

D(L) is invertible. The innovation to the efficient price of the asset, ηPt , is labeled

permanent and the noise innovation, ηTt , is labeled transitory so that ηt = (η
P
t , η

T
t )
0.

These structural shocks are assumed to be serially and mutually uncorrelated with

diagonal covariance matrix C = diag(σ2P , σ
2
T ). The matrix D0 contains the initial

impacts of the structural shocks on∆pt, and defines the contemporaneous correlation

structure of ∆pt. Given the dichotomy into permanent and transitory shocks, the

SMA model may be re-expressed equation-by-equation as

⎛⎜⎝ ∆p1,t

∆p2,t

⎞⎟⎠ =

⎛⎜⎝ dP1 (L) dT1 (L)

dP2 (L) dT2 (L)

⎞⎟⎠
⎛⎜⎝ ηPt

ηTt

⎞⎟⎠
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where dPi (L) and dTi (L) (i = 1, 2) are lag polynomials describing the dynamic re-

sponses to the permanent and transitory shocks, respectively.

The permanent innovation ηPt carries new information on the fundamental value

of the asset, and permanently moves the market prices. The defining characteristic

of ηPt is that it has a one-to-one long-run effect on the price levels for each market:

lim
k→∞

∂Et [pt+k]

∂ηPt
= lim

k→∞

kX
l=0

∂Et [∆pt+l]

∂ηPt
= lim

k→∞

kX
l=0

DP
l = D

P (1) = 1 (2)

where DP
k and D

P (1) are the first column of the dynamic multiplier matrix Dk and

the long-run impact matrix D(1) that corresponds to ηPt , respectively. Equation (2)

says all market prices have the same long-run response to a one unit increase in the

common efficient price after various market friction factors are worked out in the

price discovery process.

The transitory innovation ηTt summarizes non-information related shocks, such

as the trading by uninformed or liquidity traders. The defining characteristic of ηTt

is that it is uncorrelated with the informational innovation ηPt , and has no long-run

effect on the price levels:

lim
k→∞

∂Et [pt+k]

∂ηTt
= lim

k→∞

kX
l=0

∂Et [∆pt+l]

∂ηTt
= lim

k→∞

kX
l=0

DT
l = D

T (1) = 0 (3)

where DT
k and D

T (1) are the second column of the dynamic multiplier matrix Dk

and the long-run impact matrix D(1) that corresponds to ηTt , respectively. Hence,

the long-run impact matrix of the structural innovations ηt has the form

D(1) =

⎡⎢⎣1 0

1 0

⎤⎥⎦ (4)

Using (4), the Beveridge-Nelson (BN) decomposition (Beveridge and Nelson,
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1981) of the SMA model in (1) is

pt = p0 +D(1)
tX

j=1

ηj + st (5)

=

⎡⎢⎣1
1

⎤⎥⎦ tX
j=1

ηPj + st

=

⎡⎢⎣1
1

⎤⎥⎦mt + st

where st = D∗(L)ηt, D
∗
k = −

P∞
j=k+1Dj , k = 0, · · · ,∞, and mt = mt−1 + ηPt .

Similar to the stylized microstructure models of market prices (e.g. Glosten, 1987),

equation (5) shows that each of the market prices for the asset is composed of an

unobservable common efficient price, a transitory pricing error si,t in market i, and a

constant1. The common efficient price is the driving force of the cointegrated prices.

The transitory nature of si,t implies that pi,t will adjust to the efficient price mt

over time. The remaining constant reflects any nonstochastic difference between the

market price and its efficient price; e.g., the average (half) bid-ask spread or the

initial value. For simplicity, in what follows assume p0 is equal to the zero vector.

Unlike the stylized models commonly used in previous price discovery studies, as

summarized by Lehmann (2002), the model (5) clearly identifies how the prices move

in response to new information or liquidity shocks. To see this more clearly, rewriting

(5) equation-by-equation gives

⎛⎜⎝ p1,t

p2,t

⎞⎟⎠ =

⎛⎜⎝ mt

mt

⎞⎟⎠+
⎛⎜⎝ d∗P1 (L) d∗T1 (L)

d∗P2 (L) d∗T2 (L)

⎞⎟⎠
⎛⎜⎝ ηPt

ηTt

⎞⎟⎠ (6)

where d∗Pi (L) and d∗Ti (L) (i = 1, 2) are lag polynomials describing pricing error

responses to new information and liquidity shocks, respectively. Price responses to

1The 1-summability of the lag polynomial D(L) assures the 1-summability of D∗(L).
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new information involve a permanent change in the efficient price, and the transitory

adjustments toward the new equilibrium captured by d∗Pi (L) as the markets work out

various market imperfections. The latter dynamics characterize the workings of the

price discovery process. In contrast, price responses to liquidity shocks only involve

transitory price fluctuations around a fixed efficient price level captured by d∗Ti (L).

We emphasize that minimal assumptions have been imposed on the SMA model

specification (6). Only the long-run impacts of the structural innovations are spec-

ified. How the market prices respond overtime to new information and liquidity

shocks is left unrestricted. In particular, the lag lengths of d∗Pi (L) and d∗Ti (L) are

unrestricted and the prices are not required to “fully adjust” over some prespeci-

fied time intervals. Therefore, the model is general enough to accommodate various

complex market microstructure effects at various stages of the price discovery process.

To illustrate the SMA representation for a stylized market microstructure model,

consider a partial price adjustment model similar to that used in Amihud and Mendel-

son (1987) and Hasbrouck and Ho (1987):

pi,t = pit−1 + δi(mt − pit−1) + bTi,0η
T
t (7)

mt = mt−1 + ηPt

0 ≤ δi ≤ 2

Solving for ∆pi,t gives

∆pi,t = [1− (1− δi)L]
−1δiη

P
t + [1− (1− δi)L]

−1(1− L)bTi,0η
T
t

= dPi (L)η
P
t + dTi (L)η

T
t

where dPi (L) = [1− (1− δi)L]−1δi and dTi (L) = [1− (1− δi)L]−1(1−L)bTi,0. The SMA

representation (1) is determined from the appropriate elements of the lag polynomials

dPi (L) and dTi (L). In particular, the initial impact and long-run impact matrices are
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given by

D0 =

⎛⎜⎝ dP1 (0) dT1 (0)

dP2 (0) dT1 (0)

⎞⎟⎠ =

⎛⎜⎝ δ1 bT1,0

δ2 bT2,0

⎞⎟⎠
D(1) =

⎛⎜⎝ dP1 (1) dT1 (1)

dP2 (1) dT1 (1)

⎞⎟⎠ =

⎛⎜⎝ 1 0

1 0

⎞⎟⎠
Amihud and Mendelson (1987) used (7) with bTi,0 = 1 to model the dynamics of price

adjustment to fundamental value for a single security. Hasbrouck and Ho (1987)

used this model with bTi,0 = 0 to explain positive autocorrelations in stock returns. In

the price discovery context, δi captures the speed of price discovery or information

processing. Following a one unit change to the efficient price, in each period market

i0s price will move toward, or discover, the new efficient price at rate of δi. A value of

δi closer to one implies a more efficient price discovery process. If δi = 1 and b
T
i,0 = 0,

then new information is immediately incorporated and the market price will be equal

to the efficient price. If δi > 1 then overshooting of traders to new information occurs.

In Yan and Zivot (2006), we used the structural price discovery model (1) to

investigate the structural determinants of the information share (Hasbrouck, 1995)

and the component share (Booth et. al., 1999, Chu et. al., 1999, and Harris et. al.,

2002) - two widely used price discovery measures. We found that the component

share does not reflect a market’s price responses to new information at all, and the

information share cannot be interpreted unambiguously even when the cross-market

innovations are uncorrelated. More importantly, we showed that the component

share and the information share are static measures of price discovery since they only

account for contemporaneous price responses to the underlying structural innovations.

Hence, they say very little about the dynamics of price discovery.
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3 Measuring Price Discovery Dynamics

Intuitively, price discovery is the dynamic process by which a market incorporates

new fundamental information about an asset’s value into the asset’s price. A market

is more efficient in the price discovery process than another market if it incorporates

a larger amount of the new information more quickly. In general, the dynamic ad-

justment process involves reactions to both permanent and transitory shocks, and

what matters for price discovery is the dynamic adjustment to permanent shocks.

Surprisingly, the study of the dynamic adjustment to new information has not re-

ceived much attention in the empirical literature on price discovery. This is partly

due to the fact that existing measures of price discovery are based on reduced form

error correction models that do not identify the sources of shocks.

In a typical multiple market trading scenario, when the fundamental price an

asset increases by $1, the traded or quoted prices of the asset in all markets will

eventually reflect the $1 increase in the efficient price. However, the prices from the

different markets may converge to the new equilibrium price with different speeds. A

leading market’s price may converge very quickly (impounding the new information),

and pull other markets’ prices toward the new equilibrium (through arbitrage). The

leading market thus has a greater contribution to price discovery. From this dynamic

perspective, the relative speed and efficiency of multiple markets converging toward

the new efficient price reveals each market’s contribution to the price discovery pro-

cess.

The structural cointegration model in (1) offers a convenient tool to directly char-

acterize how multiple market prices for the same underlying asset discover the new

equilibrium price following the arrival of new information. The tool is based on the

impulse response function (IRF) of a market’s price to the permanent innovation

of the common efficient price implied by the cointegration model. From (1), the ex-

pected price response in market i, k periods after a one unit increase to the permanent
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shock ηPt , is given by

fi,k =
∂Et [pi,t+k]

∂ηPt
=

kX
l=0

∂Et [∆pi,t+l]

∂ηPt
=

kX
l=0

dPi,l, k = 0, 1, · · · ; i = 1, 2 (8)

where dPi,l is the coefficient on the lth lag of dPi (L). An important feature of the

price responses in (8) is that all market prices have the same long-run response to a

one unit increase in the common efficient price. This is consistent with the notion

that the multiple market prices eventually incorporate the new information on the

underlying asset and discover the new equilibrium. Each market’s price discovery

process of impounding new information may be characterized by tracing the time

path of price responses converging toward the permanent one unit change. A market

with a more efficient price discovery process is one with a faster convergence of the

price responses toward the new equilibrium. Hereafter, we refer the impulse response

functions of the market prices to a one unit common efficient price innovation as the

price discovery impulse response functions (PDIRFs).

It is important to note that the PDIRFs in (8) are different from the impulse

response functions used in the existing price discovery literature (e.g. Hasbrouck,

1995, 2003). These IRFs measure the market price responses to the orthogonalized

reduced form forecasting errors, which are, in general, linear combinations of the

underlying structural innovations. Only in special cases can these reduced form IRFs

be interpreted as capturing the underlying structural innovations.

The PDIRFs for markets with different price discovery efficiency may be illus-

trated with the partial price adjustment model (7). In this model, the PDIRFs are

determined by the coefficients of dPi (L) = [1− (1− δi)L]
−1δi = δi

P∞
k=0(1− δi)

kLk.

Figure (1) shows the PDIRF plots implied by (7) under different price discovery

speed parameters. The price response plot in the upper panel corresponds to a lead-

ing market with a fast price discovery speed, δ1 = 0.6, and the plot in the lower

panel is associated with a lagged market with a slow price discovery speed, δ2 = 0.2.
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The two plots differ in both the magnitude of the initial impact of new information

(informational lag) and the persistence of the pricing error (the difference between

the price and the efficient price), which are both captured by the parameter δi.

The plots of the PDIRFs are a useful way to graphically characterize and compare

the price discovery dynamics between the multiple markets. However, it is also

desirable to have a numerical summary of the dynamic efficiency of price discovery

for each market. The dynamic efficiency of market i at a given horizon k in response

to a one unit permanent shock may characterized by the difference between PDIRF

and the long-run response of one unit, fi,k − 1. Given a non-negative loss function L,

we define the price discovery efficiency loss (PDEL) for market i as the accumulated

efficiency loss

PDELi(K
∗) =

K∗X
k=0

L(fi,k − 1), i = 1, 2 (9)

where K∗ is a truncation lag chosen such that fi,K∗ ≈ 1. Natural symmetric loss

functions are the absolute value loss and the squared loss. The PDEL measures each

market’s efficiency in terms of the magnitude of total information related mispricing

errors - deviations of the market price from the new equilibrium - during the process of

impounding new information. A highly persistent pricing error process in one market

(as in the lower panel of Figure (1)) suggests price discovery inefficiency and inflates

the PDEL. The smaller the pricing error loss when one market impounds new infor-

mation, the smaller the PDEL for this market, and the more efficient this market’s

price discovery process. In the extreme case of a perfectly efficient price discovery

process, the PDIRF will reflect an immediate incorporation of new information and

the PDEL will be zero.
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4 Identification and Estimation of the Structural Coin-

tegration Model

In this section we show how to identify and estimate the parameters of the SMA

model (1).

4.1 Identification

For identification, the SMA model parameters in (1) must be uniquely determined

from the reduced form moving average model parameters for ∆pt, which we assume

has the Wold representation form2

∆pt = Ψ(L)et = et +Ψ1et−1 +Ψ2et−2 + · · · (10)

Ψ(L) =
∞X
s=0

ΨkL
k, Ψ0 = I2

where et is a 2× 1 vector satisfying E[et] = 0 and

E[ete
0
s] =

⎧⎪⎨⎪⎩ 0

Σ

if t 6= s

otherwise

The matrix polynomial Ψ(L) = Ψ(1) + (1 − L)Ψ∗(L) has the property that the

elements of {Ψk}∞k=0 are 1-summable and Ψ∗(L) is full rank everywhere on |z| ≤ 1.

Since pt is cointegrated with cointegrating vector β, the Granger Representation

Theorem (Engle and Granger, 1987) states that ∆pt has a vector error correction

(VEC) model representation of infinite order, which we assume can be approximated

by the finite order VEC(K − 1) model:

∆pt = α(β0pt−1 − μ) +
K−1X
k=1

Γk∆pt−k + et (11)

2We omit any deterministic terms in the Wold representation for ease of exposition.
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The term μ in (11) captures systematic differences in the two prices, such as the

mean bid-ask spread, or the risk free return between the spot and futures prices. The

vector α contains the error correction coefficients that measure each price’s expected

speed in eliminating the price difference. The VEC(K−1) model (11) is the empirical

reduced form cointegration model. As shown in the Appendix, the VEC(K−1) model

may be cast in state space form and the Wold coefficient matrices Ψk and Ψ(1) may

recovered using a simple recursive algorithm3.

Applying the Beveridge-Nelson (BN) decomposition to Ψ(L) in (10) and iterating

backward yields the levels relationship:

pt = Ψ(1)
tX

j=1

ej + st (12)

where Ψ(1) =
P∞

k=0Ψk, st = (s1,t, s2,t)
0 = Ψ∗(L)et, Ψ

∗
k = −

P∞
j=k+1Ψj , k =

0, · · · ,∞. Since the elements of {Ψk}∞k=0 are 1-summable, the elements of {Ψ∗k}∞k=0
are also 1-summable which implies that st ∼ I(0). The matrix Ψ(1) contains the

cumulative impacts of the innovation et on all future price movements, and thus

measures the long-run impact of et on prices. As shown in Hasbrouck (1995), since

β0Ψ(1) = 0 and β = (1, − 1)0, the rows of Ψ(1) are identical. Intuitively, the long-

run impacts of any innovation on the prices of the same asset in multiple markets are

expected to be identical. Denote ψ = (ψ1, ψ2)
0 as the common row vector of Ψ(1)

and define the permanent innovation

ηPt = ψ0et = ψ1e1,t + ψ2e2,t (13)

We may then rewrite (10) as the common stochastic trend representation suggested

3The standard approach in the price discovery literature, see Hasbrouck (1995) and Huang (2002),
is to compute the Ψk’s numerically by iterating an estimated VAR in levels forward, and then taking
the first difference. Alternatively, the Ψk’s may be numerically computed by iterating the estimated
VEC(K − 1) in (11) forward as in Cochrane (1994). In both approaches, Ψ(1) is computed by
summing Ψk’s over a large number of periods as an approximation of the infinite sum

P∞
k=0Ψk.

Our state space approach avoids these approximations.
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in Stock and Watson (1988):

pt =

⎡⎢⎣1
1

⎤⎥⎦mt + st (14)

mt = mt−1 + ηPt

st = Ψ∗(L)et

Equation (14) shows that the reduced form MA model implies the same common

efficient price representation for the multiple market prices as in the SMA model (5),

and the permanent innovation ηPt in the SMA model is the same as the efficient price

innovation defined in (13). The critical difference is that the transitory pricing errors

st in (14) are now driven by the reduced form innovations et. Consequently, (14) does

not offer meaningful interpretations about whether the price movements are related

to information arrival except in very special cases.

The SMA coefficients in (1) may be identified from the reduced form empirical

VEC(K − 1) model (11) using a modification of the P-T decomposition of Gonzalo

and Ng (2001). The identification proceeds in a number of steps.

First, the reduced form matricesΨk andΨ(1) are computed from the VEC(K−1)

model by casting the model in state space form and using the algorithm described in

the Appendix. The vector ψ is taken to be the common row of Ψ(1).

Next, we follow the procedure outlined in Levtchenkova et. al. (1999) and Gon-

zalo and Ng (2001) and define the permanent and transitory innovations from the

reduced form errors using

²t =

⎡⎢⎣�Pt
�Tt

⎤⎥⎦ =
⎡⎢⎣α0⊥et
β0et

⎤⎥⎦ =Get (15)

where α⊥ is the 2 × 1 orthogonal complement of α such that α0α⊥ = 0, α and β

are from equation (11), and G = [α⊥
... β]0 is a 2× 2 transformation matrix assumed
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to be nonsingular4. Gonzalo and Ng (2001) show that the permanent and transitory

innovations, �Pt and �Tt , satisfy the following conditions

lim
k→∞

∂Et [pt+k]

∂�Pt
6= 0

lim
k→∞

∂Et [pt+k]

∂�Tt
= 0

We then calibrate the long-run impacts of the permanent innovation on the price

variables to be the same. To do this, we utilize Johansen’s factorization (Johansen,

1991) of the long-run impact matrix

Ψ(1) = β⊥(α
0
⊥Γ(1)β⊥)

−1α0⊥

= ξ ·α0⊥

where β⊥ is the 2 × 1 orthogonal complement of β such that β0β⊥ = 0, Γ(1) =

I2−
PK−1

k=1 Γk from equation (11), and ξ is a 2×1 vector. If �Pt = α0⊥et, the long-run

impact of a unit change in �Pt on the prices is ξ. Although Ψ(1) is uniquely identified

for a given VEC model, the vectors ξ and α⊥ are only identified up to a non-singular

transformation. A natural identifying restriction to impose in the price discovery

analysis is that a one unit innovation to the efficient price have a one unit long-run

impact on all price variables as in (2). This restriction implies that ξ is the 2 × 1

vector of ones, 1. In addition, this requirement identifies α⊥ to be the common row

vector of Ψ(1), ψ5. Therefore, we replace the vector α⊥ with ψ in the matrix G in

4The nonsingularity of G is not guaranteed. Indeed, as pointed out by Levtchenkova et. al.
(1999), and relevant to the present study, G will be singular if β = (1,−1)0 and α = (α1, α1); i.e.,
the speed of adjustment coefficients in each equation are the same. In this case, it is easy to see that
α⊥ = (1,−1)0 = β and G is singular.

5The linking of α⊥ with ψ removes a source of uncertainty that is associated with the Gonzalo-
Ng P-T decomposition. In their decomposition, α⊥ must be estimated directly from α and is not
unique. If particular, they show that different estimates of α⊥ can be very sensitive to small changes
in α.
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equation (15) so that

lim
k→∞

∂Et [pt+k]

∂�Pt
= 1

Since the permanent and transitory innovations, �Pt and �Tt , may be correlated,

they may need to be orthogonalized to identify ηPt and ηTt . Gonzalo and Ng (2001)

suggest to construct the orthogonalized permanent and transitory innovations using

the Choleski decomposition of the covariance matrix of ²t. Since the variances of ηt

are unrestricted6, we use the triangular factorization

var(²t) = HCH
0

where H is a unique lower triangular matrix with 1s along the principal diagonal,

and C is a unique diagonal matrix with positive entries along the principal diagonal.

Using the matrix H we construct the required structural innovation vector ηt as

ηt = H
−1²t = H

−1Get

The elements of ηt are uncorrelated since

var(ηt) = H
−1HCH0(H−1)0 = C

and the variances of the structural innovations ηPt and ηTt are given by the diagonal

elements of the matrix C.

6In the Gonzalo-Ng P-T decomposition, the long-run impact matrix D(1) is unrestricted and
identification is achieved by setting var(ηt) = I2. In our framework, D(1) is restricted to (1 : 0)
which allows var(ηt) = diag(σ

2
P , σ

2
T ).
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The structural VMA representation in (1) may then be recovered using

∆pt = Ψ(L)et (16)

= Ψ(L)G−1HH−1Get

= D(L)ηt

= DP (L)η
P
t +DT (L)η

T
t

where D(L) = Ψ(L)D0, D0 = G
−1H, ηt = D

−1
0 et, and DP (L) and DT (L) are the

columns of D(L) corresponding to ηPt and ηTt , respectively. For a bivariate model,

the results of Gonzalo and Ng (2001) can be used to show that the parameters of

the SMA model (16) are exactly identified. This implies that the values of the SMA

model parameters are invariant to the ordering of the prices in ∆pt.

4.2 Estimation

The empirical implementation of the identification procedure described in the pre-

vious subsection is straightforward. Since β = (1,−1)0 is known, the parameters of

the empirical VEC(K−1) model (11) may be estimated by least squares equation by

equation. The main practical issue is the choice of lag length for the fitted VEC(K−1)

model. The estimated value of Ψ(1), and hence ψ, is often sensitive to the chosen

lag length. This may be explained from the results from Faust and Leeper (1997)

who show that if the underlying VAR model is of infinite order, then the estimate of

Ψ(1) has a variance that diverges as the sample size goes to infinity. In particular,

with high frequency data very large lag lengths may be required to explain the data

and estimates of ψ may be imprecise and quite sensitive to the chosen lag length.

Since the estimated SMA model parameters are complicated nonlinear functions

of the estimated VEC(K−1) model parameters, we follow Gonzalo and Ng (2001) and

use a bootstrap procedure to assess their sampling variability. We first determine the

lag length K−1 and estimate the VEC(K−1) model (11) giving parameter estimates
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α̂, Γ̂(L) and residuals êt. We then generate a bootstap sample by random sampling

of êt with replacement and then reconstruct pt using the initial estimates α̂ and

Γ̂(L). We then re-estimate the VEC(K−1) model parameters, form the SMA model

estimates from the modified P-T decomposition. We repeat this procedure 1000 times

and use the bootstrap distribution to evaluate the sampling uncertainty of the SMA

model parameters.

5 Simulation Examples

In this section we examine the finite sample performance of our proposed methodology

for measuring the dynamics of price discovery using simulated data from some stylized

dynamic structural models.

5.1 Just Identified Bivariate Model

Consider simulated data from the stylized dynamic structural model (7) where the

true dynamics of price discovery between markets are known. Our interest centers

on the accuracy of the PDIRFs and PDEL, and the testing of the null hypothesis

H0 : g(PDEL1, PDEL2) = ln(PDEL1/PDEL2) = 0 using bootstrap calculations

from estimated reduced form VEC(K − 1) models.

The simulation model used is (7) with δ1 = 0.8, δ2 = 0.2, bT0,1 = 0.5 and bT0,2 =

−0.5. Market 1 has a greater speed of price discovery dynamics than market 2 and

both markets respond equally, in absolute value, to transitory shocks. Setting σ2P = 1

and σ2T = 0.64 removes the correlation between the reduced form residuals. Since

dPi (L) = δi
P∞

k=0(1− δi)
kLk it is straightforward to compute analytic values for the

PDIRFs and the PDEL, for a given loss function, for any truncation lag K∗.

For the specified parameters, we generate artificial samples of size 500, 1000, 5000

and 10000 observations for the bivariate price system assuming normally distributed

errors. To mimic what a researcher would do in practice, we fit the VEC(K − 1)
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model (11) with the lag order of the system determined by minimizing the Bayesian

Information Criterion (BIC). We then estimate the PDIRFs and PDELs and evaluate

their sampling uncertainty using the bootstrap.

Figure 2 shows the estimated PDIRFs, with 95% bootstrap confidence intervals,

along with the true PDIRFs for the two markets. The plots show that the estimated

PDIRFs track the true PDIRFs well, especially for very large samples. Table 1 gives

the estimated PDEL using the absolute value loss function and K∗ = 30, along

with 95% bootstrap confidence intervals. For smaller samples, there is considerable

uncertainty in the individual estimates. However, when N = 10000 the estimates are

quite precise. For all sample sizes, the 95% percent bootstrap confidence interval for

ln(PDEL1/PDEL2) excludes zero.

5.2 Noninvertible Bivariate Model

A key restriction of the structural cointegration model is that the number of structural

shocks is equal to the number of observed prices. As a result, with the same asset

trading in n markets there is one permanent shock and n− 1 transitory shocks. For

example, with two markets all permanent sources of new information are lumped

into a single structural permanent shock and all transitory frictions are lumped into

a single structural transitory shock. In reality, there may be multiple sources of

structural permanent and transitory shocks.

To illustrate the basic issues, consider the stylized microstructure model (7) mod-

ified to have two sources of structural transitory shocks:

pi,t = pi,t−1 + δi(mt − pit−1) + bTi,0η
T
it (17)

mt = mt−1 + ηPt

0 ≤ δi ≤ 2

Models similar to (17) have been used by Harris et. al. (2002) and Hasbrouck (2002).
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In (17), the structural errors ηt = (η
P
t , η

T
1t, η

T
2t)
0 have zero means, diagonal covariance

matrix diag(σ2T , σ
2
1T , σ

2
2T ), and are mutually uncorrelated at all leads and lags. The

transitory shocks for each market are intended to capture local liquidity-based motives

for trade that are uncorrelated with the permanent news innovation. With two prices

and three structural errors, the structural moving average representation for ∆pt has

the form (1) with

D(L) =

⎛⎜⎝ dP1 (L) dT1 (L) 0

dP2 (L) 0 dT2 (L)

⎞⎟⎠
where dPi (L) = [1 − (1 − δi)L]

−1δi and dTi (L) = [1 − (1 − δi)L]
−1(1 − L)bTi,0. Since

D0 is not invertible there is no longer a unique mapping between the reduced form

moving average representation and the structural moving average representation and

so all of the structural shocks cannot be recovered from the observed data.

If the data are generated by (17) and the structural cointegration model with

two identified structural shocks is estimated what do the structural impulse response

functions represent? A technical result due to Blanchard and Quah (1989) provides

an answer7. They considered a bivariate structural model for which there are more

than two sources of structural shocks. In particular, they assumed that the economy

is driven by m shocks, but each shock is either a permanent or a transitory shock.

This assumption is not sufficient to prevent the commingling of shocks (i.e., identified

shocks are likely to be a mixture of both types of shocks). However, they prove that

commingling of shocks is avoided when the dynamic relationship between the observed

variables remains the same across different permanent shocks, with the same result

holding for all transitory shocks. This result suggests that the bivariate structural

cointegration model should correctly identify the dynamic responses to the permanent

shock when prices respond to the different transitory shocks in the same way.

To illustrate the impact of multiple structural transitory shocks on the estimated

7This technical result is discussed in the Appendix of Blanchard and Quah (1989). See also Faust
and Leeper (1997).
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PDIRFs, we generated data from (17) with δ1 = 0.8, δ2 = 0.2, b
T
0,1 = 0.5, b

T
0,2 = 0.5,

σ2P = 1 and σ2T,1 = σ2T,2 = 0.64 assuming normally distributed errors. The true

PDIRF is the same as in the previous simulation example with one transitory shock.

We then computed the PDIRFs and PDEL values as if there were only one permanent

and one transitory shock. Figure 3 shows the estimated PDIRFs, along with the true

PDIRFs, for samples of size 500, 1000, 5000 and 10000. For sample sizes greater than

500, the estimated PDIRFs track the true PDIRFs quite well. Table 2 gives the

estimated PDEL using the absolute value loss function and K∗ = 30, along with

95% bootstrap confidence intervals. For larger sample sizes the PDEL estimates are

reasonable and the bootstrap confidence intervals contain the true values.

6 Extension to n Markets

The extension of the structural cointegration model and the dynamic measures of

price discovery to a single asset trading in n markets is straightforward. Let pt =

(p1,t, . . . , pn,t)
0 denote a n × 1 vector of I(1) prices of a single asset trading in n

markets linked by arbitrage. Since there is a single I(1) fundamental value, there are

n−1 cointegrating vectors βi such that β
0
ipt is I(0). Furthermore, since the difference

between any two prices is I(0) it is convenient to use as a basis for the cointegrating

space the following (n− 1)× n matrix of rank n− 1

B0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0

1 0 −1 · · · 0

...
...

. . . · · ·
...

1 0 · · · · · · −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= (1n−1

...− In−1)

where 1n−1 is an (n− 1)× 1 vector of ones. As in the two asset case, the restriction

B0Ψ(1) = 0 implies that the n× n matrix Ψ(1) has rank one and can be expressed

as 1nψ
0 where ψ0 is the n× 1 common row vector of Ψ(1).
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In the SMA representation (1), the structural shocks are now ηt = (ηPt ,η
T 0
t )

0

where ηT 0t is an (n − 1) × 1 vector of transitory shocks. The elements of ηt have

mean zero, are mutually uncorrelated at all leads and lags and have diagonal covari-

ance matrix diag(σ2P , σ
2
T,1, . . . , σ

2
T,n−1). The permanent shock satisfies (2), the n− 1

transitory shocks satisfy (3) and so the n × n long-run impact matrix has the form

D(1) = [1n
... 0n×(n−1)].

The procedure to identify the permanent and transitory shocks remains essen-

tially the same. The n× n matrix to rotate the reduced form errors to (correlated)

permanent and transitory shocks is G = [ψ
... B]0. The rotated errors ²t = Get are

orthogonalized using the triangular factorization matrixH to give the orthogonalized

structural errors ηt = H
−1²t. As noted by Gonzalo and Ng (2001), when n > 2, ηt is

not unique and the ordering of the variables in ²t will influence the decomposition.

However, Gonzalo and Ng point out that the recursive structure imposed by the tri-

angular factorization of var(²t) is not as rigid as when the factorization is applied to

var(et) because in the moving average representation for ²t the initial impact matrix

G−1 is not the identity matrix.

7 Empirical Example: Price Discovery in Foreign Ex-

change Markets

In this section we illustrate our methodology for characterizing price discovery dy-

namics using a data set of ultra high frequency foreign exchange (Fx) rate quotes.

We first give some background on price discovery using Fx data. We then describe

our data set and the variables used for analysis, and follow this by the estimation of

the structural cointegration model and price discovery measures.
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7.1 Vehicle Currency and Price Discovery

The US dollar (USD) has been the dominant international currency since World

War II. One important role of the dollar is to act as a vehicle currency, or medium

of exchange, through which transactions between other currencies are made. Such

indirect transactions are attractive because the cost of two transactions against the

dollar are usually lower than the cost in the direct exchanges of non-dollar currencies.

Because of this special role, the dollar markets, e.g. dollar/euro (USD/EUR) and

Japanese yen/dollar (JPY/USD), are largest and most liquid in foreign exchange

(Fx) transactions. Even the introduction of the euro in 1999, a perceived challenger

against the dollar, has not so far changed the dollar’s dominant roll. In fact, the

most recent central bank survey by the Bank of International Settlements (BIS) in

2001 reveals that the dollar entered on one side of 90% of 1.2 trillion dollars average

daily turnover, with an increased share from 87% in 1998 (BIS (2002)). By currency

pairs, 60% of total trading volume occurs in three dollar markets: USD/EUR (30%),

JPY/USD (20%), and USD/British pound (GBP) (10%), while the largest market

share for cross rates is only 3% for JPY/EUR.

The dollar’s medium-of-exchange role has inspired many studies attempting to

explain the rise and evolution of vehicle currencies, including Krugman (1980), Black

(1991), Hartmann (1994), and Rey (2001). The common foundation of these studies

is the inverse relationship between transaction costs and (expected) trading volumes.

Market participants tend to choose the exchange or transaction medium with lower

transaction costs and higher market liquidity. In addition, transaction costs may be

further lowered as market making (e.g. order processing) costs are spread over large

trading volumes. This interaction between transactions costs and trading volume im-

plies a persistent role of any established vehicle currency. The international monetary

system, however, may shift from one vehicle currency to another with the arrival of

strong shocks; e.g., the replacement of the British sterling by the US dollar as the
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vehicle currency. With the launch of the euro, the issues of currency competition

and the potential challenge against the dollar’s hegemonic status by the euro have

become heated research and discussions topics. See, for example, Hartmann (1998a)

and Portes and Rey (1998).

We focus on another aspect of vehicle currencies: their contribution to the price

discovery of the exchange rates between other currencies. Specifically, we examine the

extent to which the dollar contributes to the price discovery of JPY/EUR, the cross

rate with the largest market share. In contrast to the well studied medium function

of trading other currencies at lower costs, the dollar’s price discovery contribution to

cross rates has not received as much attention. In fact, the market characteristics of

vehicle currencies have important implications for the price leadership of the cross

rate constructed from the dollar rates; e.g., the dollar implied JPY/EUR rate by the

USD/EUR rate and the JPY/USD rate.

First, most nonpublic information about the euro or yen may first be impounded

into the dollar prices of these currencies. Lyons (1995, 1997) develops a model in

which foreign exchange dealers may extract private information regarding economic

fundamentals from their nondealer customer order flows. The optimal strategy for

players with superior information is to profit from trading with uninformed or liquid-

ity traders. Liquidity traders (e.g. corporate customers and hedge fund managers) for

the euro and yen are attracted to the dollar markets because of the relatively lower

trading costs with the vehicle currency than trading directly with other nondollar

currencies. According to Admati and Pfleiderer (1988), informed traders prefer to

trade at the times when liquidity traders concentrate. Consequently, the dollar prices

of the euro and yen may become more informative as informed players trade with

liquidity traders and reveal their private information. Another source of nonpublic

information in the Fx market is central bank interventions8. The dollar is widely

8Most central bank interventions are not released to the news media simultaneously with the
operation. See Lyons (2001) and references therein.
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used as the intervention currency by non-US central banks9. As foreign monetary

authorities buy or sell the dollar for the home currency, the intervention effects should

be first reflected in the dollar rates.

Second, consider the effects of public information in the Fx market through

macroeconomic news announcements. Harris and Raviv (1993), and Kandel and

Pearson (1995) suggest that market participants may have differential interpreta-

tions of such public signals, and it is the trading process that aggregates heteroge-

neous beliefs of investors and produces price discovery. Evans and Lyons (2002),

and Love and Payne (2002) find evidence that order flows transmit significant shares

of macroeconomic news into exchange rates. As the dollar markets are the most

liquid, macroeconomic news releases from Japan (Europe) may be more efficiently

assimilated into the dollar price of the yen (euro), rather than the cross rate.

In summary, the special role of the dollar as a vehicle currency suggests that

substantial price discovery of JPY/EUR may occur through the dollar. The more

liquid are the dollar markets relative to the cross rate market, the more informative

are the dollar market prices and the stronger is the price leadership of the dollar

implied JPY/EUR rate.

Our analysis provides several important contributions to the Fx price discovery

literature. First, the Fx market has seen substantial structural changes in the past

ten years, notably the replacement of the legacy EMS currencies by the euro (for other

structural changes, see Galati 2001, BIS 2002, and ECB 2003). Most price discovery

studies examined a market environment that no longer exists. Using more recent data,

we measure the relative price discovery contributions of major currencies during the

beginning of the so-called “euro era”. Second, we apply our newly developed measures

of price discovery dynamics. Finally, we relate measures of relative liquidity and

transaction costs, the critical attributes for a vehicle currency, to the price discovery

9For example, the dollar operation accounts for the majority of Bank of Japan’s (BOJ) inter-
ventions. BOJ seldom uses the euro at much smaller magnitudes. For more information, see the
quarterly intervention reports at the website of Japan’s Ministry of Finance.
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contribution of an international currency10.

Our analysis is closely related to the analysis in De Jong et. al. (1998). Using one

year (1992-1993) of indicative quotes data, they find that the direct JPY/Deutschemarks

(DM) exchange rate and the dollar implied JPY/DM rate (constructed from DM/USD

and JPY/USD) are roughly equally important for the price discovery of the direct

JPY/DM rate, and the direct JPY/DM rate obtains its strongest price discovery role

during the European and American trading hours.

7.2 Data Description and Variable Construction

Our analysis of the dynamics of price discovery is based on the bid-ask quotes of

the spot Fx rates for three currency pairs: USD/EUR, JPY/USD, and JPY/EUR.

The quotes are from a proprietary data set sponsored by a major investment bank.

The data is taken from the interdealer electronic currency exchanges, which currently

accounts for roughly one third of overall spot Fx trading volume11. The data sample

covers a period from 22:00 Greenwich Mean Time (GMT) July 6, 2003 to 22:00

GMT September 26, 2003. Each observation is time-stamped up to the millisecond

from midnight GMT, and contains the bid and ask quotes. Unlike the Reuters FxFx

indicative quotes widely used in empirical studies12, the bid-ask quotes in our data

are tradeable or firm. The data is delivered to us with a proprietary outlier filter

applied. We further visually screen the data by plotting the quotes by days, and find

no significant outliers. The quote observations with non-positive spreads (ask quote

minus bid quote) are removed.

The Fx market operates on a 24-hour basis, and only turns quiet over the weekend

periods. Our analysis focuses on the business week when Fx trading is especially

10These factors have been examined in the price discovery studies of equity markets. Hasbrouck
(1995) and Huang (2002) look at the trading volume shares, and Eun and Sabherwal (2003) use the
ratio of bid-ask spreads.
11Lyons (2001) reports that the spot Fx trades can be classified into three types based on the

involved counter parties: dealer-customer trades, direct inter-dealer trades, and brokered inter-dealer
trades, each of which accounts for one third of the overall volume.
12See Goodhart and O’Hara (1997) for a survery of the studies using the FxFx data.
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active. All observations with time stamps from Friday 22:00 GMT to Sunday 22:00

GMT are excluded, which leaves us with 12 business weeks, or 60 trading days, of

quotes data. Each trading day is defined as from 22:00 GMT of the previous day

to 22:00 GMT of that day. A similar “business weekend” definition is also used in

Andersen and Bollerslev (1998).

One distinguishing feature of the Fx market is that the Fx trading activity system-

atically varies across a 24-hour trading day as the earth sequentially passes through

the business hours of the major geographical financial centers: Tokyo, London, and

New York. Identifying the portions of a trading day that correspond to the business

hours of these financial centers is important for price discovery studies, since the rel-

ative (currency pair-wise) importance and market liquidity of a particular currency

may change across a day. Generally, during the business hours of the home market,

the trading of currency pairs involving the home currency are more active than oth-

ers. For example, the market for JPY/USD is more active than that for USD/EUR

during Tokyo’s business hours even though USD/EUR accounts for a larger share of

overall turnover. Accordingly, we break a 24-hour trading day into four sessions -

Asian, European, American, and post American - based on the local business hours

of the three major geographical financial centers13. Table 3 lists the timing definition

for the four sessions. Notice that the correspondence between the GMT hours and

local business hours is based on the daylight saving time (DST) that prevails during

our sample period. Furthermore, the starting time of each intraday session is based

on the conventional business starting hour of that center. Because the business hours

of consecutive financial centers may be overlapping, the traders from the previous

center may still be present in the market in the following session. This is especially

true for the American session. When New York traders start trading, the traders

in London still have the whole afternoon to go through. The American session ends

13The Fx market is a decentralized market without specific market open and close hours for each
geographical financial center.
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earlier in the local time because New York traders quit from active trading when their

European counterparts quit from the market (Goodhart and Demos, 1991). The post

American session intends to capture the quiet interim period after the active trading

in North America, but before the start of trading in Asia. This naming convention

of intraday trading sessions is used throughout our empirical investigation.

The price variables for exchange rates are measured by logarithmic (log) mid

quotes. Log mid quotes are further multiplied by 10,000 so that price changes are

in basis points. The raw quotes are unequally spaced in time and are aligned to an

equally spaced time clock for statistical analysis. Our alignment algorithm imputes

the most recent observation within the business week as the sampled observation for

each of equally spaced alignment positions. The aligned observations thus measure

the prevailing market price (midquote) levels. After alignment the three exchange

rate series have the same number of observations. The direct JPY/EUR rate is

defined as log mid quote of JPY/EURt, while the US dollar implied rate is defined

as log mid quote of JPY/USDt + log mid quote of USD/EURt. One advantage of

quotes data is that it is free of the infrequent trading problem. Infrequent trading

arises as a measurement problem when investors’ opinions can not be reflected in the

market price until a trade occurs and the transaction price is observed (e.g. see Lo

and MacKinlay, 1990). Quotes are different from trades in that quotes are valid until

they are revised, and quote revision can occur in the absence of trades. Because the

quote changes over weekends are quite different from those within normal trading

intervals, all quote changes over weekends are excluded from the sample.

The spreads are defined in terms of the differences of the paired ask and bid

quotes, and are expressed in units of the minimum grid on which each exchange rate

can move, so called pips. The USD/EUR rate is conventionally quoted as how many

dollars per euro, and one pip is 0.0001 USD. The JPY/USD and JPY/EUR rates are

quoted as how many yen per dollar and yen per euro, respectively. One pip for these

two exchange rates is 0.01 JPY. Because the price of USD/EUR is in the 1 dollar
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range and the prices of JPY/USD and JPY/EUR are in the range of 100 JPY, the

spreads measured in pips are approximately the percentage spreads. Accordingly,

the pip spreads may be compared across these three exchange rates. We use the

pip spreads as the measure of transaction costs in each market. There are other

potential transaction costs to consider, such as commissions. Our communication

with Fx practitioners suggests that the interdealer commissions are about $15 per

trade. Goodhart et. al. (1996) find that there is little variation in the size of

interdealer Fx trades and the typical trade size is $1 million worth. This amounts to

a $100 spread cost and $30 commissions for a typical round-trip transaction assuming

a one pip spread. Therefore, the bid-ask spreads make up the majority of actual

transaction costs. To characterize the transaction costs in each market at a particular

time of day, we further compute the hourly mean spreads in pips by averaging all

spreads of each exchange rate within a particular GMT hour across the 60 trading

days in the sample.

We use the ratio of the sum of hourly mean spreads of USD/EUR and JPY/USD

to the hourly mean spreads of JPY/EUR (hereafter, the spread ratio) to measure

the hourly relative liquidity of the dollar markets against the cross rate market.

Transaction costs and liquidity in individual markets measured by bid-ask spreads

have been examined in many previous vehicle currency and more general Fx studies;

e.g., Black (1991), Hartmann (1998b), and Huang and Masulis (1998). However,

whether liquidity traders for the euro or yen use the dollar as the transaction medium,

and consequently where informed traders may reveal their nonpublic information,

ultimately depends on the relative transaction costs in the dollar markets versus in

the cross rate market. The lower the spread ratio is from one, the more cost-attractive

it is to trade the yen and the euro through the dollar and the more liquid are the dollar

markets relative to the cross rate market. Measuring relative liquidity with the spread

ratio allows for a rich characterization of the relative importance/attractiveness of

the dollar throughout the intraday Fx market evolution.
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7.3 Preliminary Data Analysis

We start our data analysis by looking at the market trading activity approximated

by the hourly tick frequency of quote entries. The use of quote tick frequency as

a proxy for trading volume and market activity in the Fx studies can be traced

back to Goodhart and Demos (1991) and Bollerslev and Domowitz (1993). For each

exchange rate, we compute the average hourly frequency of quote entries by averaging

the quote counts of the exchange rate within each intraday hour across the 60 days

in our sample. The resulting trading activity measures are plotted in Figure 5,

with the upper, middle, and lower panels for USD/EUR, JPY/USD, and JPY/EUR,

respectively.

A first look at the plots suggests that there are similar intraday activity patterns

across the three exchange rate markets. The intraday patterns reflect three activity

peaks corresponding to the business hours of three world’s financial centers, and

are largely consistent with the earlier findings in Goodhart and Demos (1991)14.

Interestingly, although the trading restrictions over the Tokyo lunch hours have been

removed since 1994 (see Ito el. al., 1998), a market activity trough is still observed

during this period (3:00 - 4:00 GMT).

A closer examination of the activity patterns of three markets reveals more in-

teresting differences. First, consistent with the BIS survey data, the overall activity

of USD/EUR is highest, followed by JPY/USD and JPY/EUR. This ordering is

expected given the dollar’s dominance in the Fx market. The market activity differ-

ences, however, become more subtle during individual geographical trading sessions.

During the Asian trading hours, the market activity of JPY/USD is highest, followed

by USD/EUR, reflecting the home market effect. But the home market effect only

applies to JPY/USD, not to JPY/EUR, which indicates the dollar’s dominance and

vehicle currency role in the Asian session.

14Goodhart and Demos (1991) did not examine the cross rate market.

31



When European markets are open, which includes both the European and Amer-

ican trading sessions, the market for USD/EUR is naturally most active. However,

the market activity of JPY/EUR elevates to a comparable level to that of JPY/USD.

This makes the size of the euro markets, measured by the sum of the activity of

JPY/EUR and USD/EUR, very competitive against the size of the dollar markets,

measured by the sum of the activity of JPY/USD and USD/EUR. After the Euro-

pean markets and American session close, the dollar regains its dominance in the

post American session.

The hourly mean spreads in pips are plotted in Figure 6. The intraday spread

variations generally reverse the pattern found in the market activity plots. This is

due to lower order processing costs as expected trading volumes increase (Black, 1991,

Hartmann, 1998b) and/or the effects from increased dealer competition (Huang and

Masulis, 1998). The spread level is lowest for USD/EUR, followed by JPY/USD, and

is highest for JPY/EUR.

7.4 Estimation Details

There is little formal guidance for the choice of the sampling interval for the statistical

analysis, and the results of the price discovery analysis may be sensitive to the chosen

sampling frequency. For the highly liquid Fx market, determining which price leads

and which price follows requires sampling at very high time resolutions. To illustrate,

Figure 4 presents one episode of exchange rate movements in our sample around 23:50

GMT on August 11, 2003, at which Japan released the first GDP estimates for the

second quarter of 2003. The line with squares depicts the movement of the dollar

implied JPY/EUR price (midquote) and the line with triangles traces the direct

JPY/EUR price (data are in their original scale). The economic recovery data in

Japan’s GDP release caused appreciation of Japanese yen from 134.63 yen/euro to

134.50 yen/euro. Both the direct and implied JPY/EUR rates moved toward the new

price level following the announcement, with the direct rate lagging behind by about
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three minutes. The figure clearly indicates an incidence of how the dollar contributes

to the price discovery of JPY/EUR. For uncovering the price discovery dynamics, the

choice of sampling frequency is crucial. The price discovery dynamics of the two rates,

from the original price to the new price, occurs within a 5-minute time resolution.

Accordingly, we initially choose a 15-second sampling interval for our analysis. We

also provide results based on a 5-minute sampling interval for comparison purposes.

Starting with 15-second exchange rate quotes within each intraday GMT hour,

or geographical trading session, we fit the VEC(K − 1) model in (11) with K chosen

to minimize the Bayesian Information Criterion (BIC). The PDIRFs and PDEL for

each market are then computed from the estimated VEC(K−1) coefficients following

the procedure outlined in section 4.

A stylized fact of the Fx market that impacts our bootstrapping procedure to

assess the sampling variability of the estimated PDIRFs and PDEL is the systematic

intraday patterns of exchange rate volatility. Dacorogna et. al. (1993) show that the

intraday volatility seasonality in the Fx market results from the sequential alterna-

tion of geographical trading centers. Andersen and Bollerslev (1998) identify calendar

features, such as sequential trading centers, holidays of major trading centers, and

day light savings time, as well as effects of prescheduled macroeconomic announce-

ments, in the intraday volatility pattern of DM/USD rate. Because the analysis of

price discovery mainly focuses on modeling the means of exchange rate movements,

volatility patterns are expected to remain in estimated residuals. When computing

the empirical distribution of the price discovery measures through bootstrapping, the

systematic features of the residual distribution can be preserved by sampling desea-

sonalized residuals and then restoring the seasonalities. Together with the exchange

rate quotes data, the investment company also provides an estimated volatility scal-

ing (multiplicative) factor for the JPY/EUR rate over the sample period, accounting

for the seasonal calendar effects and macroeconomic announcement effects. The scal-

ing factor is constructed using the approach outlined in Andersen and Bollerslev
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(1998) with three years (2000 - 2002) of 5-minute historical data. For residuals at

the 15-second resolution, each of the 5-minute scaling factors is repeated 20 times to

obtain the 15-second scaling factors. Our modified bootstrapping procedure is a fol-

lows: deseasonalize the estimated residuals with the volatility scaling factors; sample

the deseasonalized residual pairs with replacement; generate the bootstrapped data

sample with the state-space representation of the estimated model; refit the model

with the bootstrapped data and compute the PDIRFs and PDEL. In this way, we

construct a bootstrap distribution with 1,000 samples for each of the price discovery

measures.

7.5 Results

Figure 8 through Figure 11 show the PDIRF plots of the dollar implied and di-

rect JPY/EUR prices in the four trading sessions. In each figure, the plots depict

the impulse responses of the dollar implied (upper panel) and direct (lower panel)

JPY/EUR price levels following a one unit (basis point) innovation to the JPY/EUR

efficient price. In all figures, the responses of both the implied and direct JPY/EUR

price levels converge toward the one basis point permanent level change in the ef-

ficient price of JPY/EUR which reflects the fact that both the dollar implied and

direct JPY/EUR rates represent the same fundamental asset and share the com-

mon efficient price. Furthermore, in all trading sessions, the plots suggest that the

dollar implied rate discovers the new efficient price at a faster pace than the direct

JPY/EUR rate. In particular, the PDIRFs of the direct JPY/EUR rate in all trading

sessions display the dynamics characterized by the lagged price discovery model in

Figure 1. There are, however, significant differences in the price discovery dynamics

of the two JPY/EUR prices across trading sessions. In the Asian and post Ameri-

can trading sessions, the dollar implied JPY/EUR rate quickly converges to the new

equilibrium while the pricing error of the direct JPY/EUR price is highly persistent.

In contrast, the price discovery dynamics of the two prices during the European and
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American trading sessions are more similar.

To examine the sensitivity of the results to the chosen sampling frequency we

re-do the PDIRF analysis using quotes aligned to a 5-minute time clock. Figures 12

through 15 present the corresponding PDIRF plots. For all but the post-American

session, the plots suggest little differences in the price discovery dynamics between

the two rates.

Table 4 gives the estimated PDEL ratio, PDELimplied/PDELdirect, and the

spread ratio for each intraday hour. All point estimates of the PDEL ratio are

less than .55, and only five of the upper confidence bounds are greater than 0.76,

which suggests that the dollar markets indeed contribute substantial price discovery

for JPY/EUR. The spread ratio is lower than 1 across the day implying the expected

costs of exchanging the euro and yen through two round transactions against the dol-

lar is generally lower than the costs of directly trading the two currencies. However,

even though the spread ratio is lower than 1, some transactions between the euro

and yen may still be carried out directly because of the “double coincidence of wants

problem”15.

Table 5 summarizes a regression of the PDEL ratio on the spread ratio and a

constant. The coefficient on the spread ratio variable is 0.40, with a robust stan-

dard error of 0.14, indicating that the dollar’s contribution to the price discovery of

JPY/EUR is negatively (positively) related to the spread ratio (relative liquidity of

the dollar markets). From Table 5 it can be seen that the dollar’s PDEL ratio varies

from roughly 0 to .50 as the spread ratio varies from 0 to 1. The regression results

support the argument that as the dollar markets become more liquid compared to the

cross rate market, more nonpublic information will be revealed in the dollar markets,

and the effects of public announcements (e.g. macroeconomic releases) from Japan

or Europe will be more efficiently impounded into the dollar prices of the yen or the

euro. Consequently, the prices in the dollar markets will be more informative. On

15For example, see the partial indirect exchange case in Krugman (1980)).
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the other hand, if the direct exchange of the euro and yen in the cross rate market

becomes relatively more liquid, there will be lower volume in the dollar markets and

less price discovery of JPY/EUR occurring through the dollar.

The intraday evolution of the dollar’s PDEL ratio and the spread ratio are plot-

ted in Figure 7. Consistent with the regression analysis, there is a clear positive

relationship between the relative liquidity of the dollar markets and the dollar’s price

discovery contribution across the day. In particular, the spread ratio is lower in the

Asian and post American trading sessions, while it is higher and reaches a peak dur-

ing the European and American sessions when the European markets are open. This

intraday pattern of the spread ratio suggests that the spreads in the cross rate market

decrease more progressively than the spreads in the two dollar markets during this

period of the day even though each exchange rate market experiences lower spreads

in the European business hours (see Figure 6).

This relative liquidity change between the dollar markets and the cross rate market

coincides with the intraday market activity variations in Figure 5. Unlike the sharp

contrast of market activity in the Asian and post American sessions, the JPY/USD

market and the JPY/EUR market have more comparable trading activities during

the European business hours. We interpret the non-proportional changes of market

activity and spreads between the three markets as the enhanced competition of the

euro against the dollar for transactions with the yen. In the Asian and post American

trading sessions, the dollar dominates and most transactions between the euro and yen

are intermediated by the dollar. In contrast, a more significant fraction of transactions

between the euro and yen is carried out directly in the cross rate market. The euro’s

competition weakens the dollar’s role as vehicle currency and lowers trading volume

concentration in the dollar markets. As a result, the dollar’s contribution to the price

discovery of JPY/EUR drops and reaches a minimum during the European business

hours.

Similar findings have been documented in an earlier study of the price discovery
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of JPY/DM by De Jong et. al (1998). They find that the direct JPY/DM rate

obtains its strongest price discovery role in the European and American trading

hours. However, they offer no explanation for this result. The close linkage between

relative liquidity and price discovery contribution identified in our analysis suggests

that their findings may be explained by the enhanced liquidity in the cross rate market

during the European business hours.

8 Conclusion

In this paper we propose a new approach for the econometric analysis of the dynam-

ics of price discovery using a structural cointegration model for the price changes in

arbitrage linked markets. The structural model not only characterizes the common

efficient price shared by the multiple markets, but also quantifies the dynamic pro-

cess by which market prices converge to, or discover, the new equilibrium efficient

price. Our methodology characterizes the dynamics of price discovery based on the

impulse response functions from an identified structural cointegration model, and we

measure the efficiency of a market’s price discovery by the absolute magnitude of

cumulative pricing errors in the price discovery process. We apply our methodology

to investigate the extent to which the US dollar contributes to the price discovery

of the yen/euro exchange rate. Our results show that substantial price discovery of

JPY/EUR occurs through the dollar. The efficiency of the dollar’s price discovery

is positively related to the relative liquidity of the dollar markets versus the cross

rate market. This suggests that the relative liquidity and lower transaction costs in

the dollar markets are attractive to profit-taking trading by informed agents, and

are conducive to efficient assimilation of dispersed economy-wide information. We

find that the relative liquidity of the dollar markets and the dollar’s price discovery

efficiency are particularly low during the European business hours, and we attribute

this to the enhanced competition of the euro against the dollar for transactions with
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the yen.
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Appendix

The reduced form VEC model (11) may be re-expressed as

β0pt − μ = β0(∆pt + pt−1)− μ (18)

= β0
K−1X
k=1

Γk∆pt−k + (β
0α+ I2)(β

0pt−1 −μ) + β0et

where I2 is a 2× 2 identity matrix. The first equation in (18) is an identity, and the

second equation is obtained by substituting (11) into the first one. The coefficients

α and Γk can be estimated by applying the least square regression to (11) with the

term μ replaced by the sample mean of β0pt. The state space representation of (18)

and (11) is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆pt

∆pt−1

∆pt−2

∆pt−3
...

∆pt−K+2

β0pt − μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ1 Γ2 Γ3 · · · ΓK−2 ΓK−1 α

I2 0 0 · · · 0 0 0

0 I2 0 · · · 0 0 0

0 0 I2 · · · 0 0 0

...
...

...
. . . 0 0 0

0 0 0 · · · I2 0 0

β0Γ1 β0Γ2 β0Γ3 · · · β0ΓK−2 β0ΓK−1 β0α+ I2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆pt−1

∆pt−2

∆pt−3

∆pt−4
...

∆pt−K+1

β0pt−1 − μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

et

0

0

0

...

0

β0et

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

or

∆
∼
pt = F∆

∼
pt−1 +

∼
et

where F is a square matrix of dimension l = 2×(K−1)+1. By recursive substitution,

the state vector ∆
∼
pt at t+ j periods ahead, ∆

∼
pt+j , can be written as

∆
∼
pt+j =

∼
et+j +F

∼
et+j−1 +F

2∼et+j−2 + · · ·+Fj∼et +F
j+1∆

∼
pt−1 (20)
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The dynamic multiplier matrix of
∼
et on ∆

∼
pt+j is

∂∆
∼
pt+j

∂
∼
et

= Fj (21)

and the dynamic multiplier matrix of et on ∆pt+j , the Ψj matrix in (10), is

Ψj =
∂∆pt+j
∂et

= Fj
[1:2, 1:2] +F

j
[1:2, l]β

0 (22)

The matrix Fj
[1:2, 1:2] denotes the submatrix consisting of the first 2 rows and first

2 columns of the matrix Fj , and Fj
[1:2, l] is the submatrix consisting of the first two

rows and the last column of Fj . Using (19), the long-run impact matrix Ψ(1) in

(??) may be computed exactly as follows

Ψ(1) =
∞X
j=0

Ψj =

⎛⎝ ∞X
j=0

Fj

⎞⎠
[1:2, 1:2]

+

⎛⎝ ∞X
j=0

Fj

⎞⎠
[1:2, l]

β0 (23)

=
³
(I2 − F)−1

´
[1:2, 1:2]

+
³
(I2 − F)−1

´
[1:2, l]

β0

Johansen’s factorization (Johansen (1991)) also offers a convenient exact computation

of Ψ(1). However, the state-space approach substantially reduces the computational

burden in the simulation approach used in Hasbrouck (1995) and Cochrane (1994),

especially in a large multi-variate system. In addition, the state-space representation

is very useful for generating artificial data when bootstrapping the estimated VEC

model.
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Table 1: PDEL Estimates from Simulated Prices

This table reports the price discovery efficiency loss (PDEL) estimates from the price data
simulated from the following 2-market model:

pi,t = pi,t−1 + δi(mt − pi,t−1) + bTi,0η
T
t

mt = mt−1 + ηPt

where i = 1, 2 for two markets, and the structural errors ηt = (η
P
t , η

T
t )
0 are normally

distributed with zero means, and diagonal covariance matrix diag(σ2P , σ
2
T ), and are

mutually uncorrelated at all leads and lags. The simulation parameterization is
δ1 = 0.8, δ2 = 0.2, b

T
0,1 = 0.5, b

T
0,2 = −0.5, σ2P = 1 and σ2T = 0.64. The second column gives

the true PDELs implied by the specified parametrization. The last four columns of the
table report the estimated PDELs from artificial samples of size 500, 1000, 5000, and 10000
observations. For each sample, the VEC model is fitted with the BIC optimal lag length
and the PDIRFs are estimated. The PDELs are computed with the absolute value loss
function and K∗ = 30.

True Values N = 500 N = 1000 N = 5000 N = 10000
PDEL1 0.250 0.999 0.380 0.326 0.243

(0.367, 1.515) (0.226, 1.094) (0.211, 0.808) (0.219, 0.496)

PDEL2 3.995 2.518 3.745 4.092 3.971
(1.557, 3.954) (2.633, 4.997) (3.551, 4.666) (3.596, 4.339)

log(PDEL1PDEL2
) -2.771 -0.925 -2.288 -2.531 -2.793

(-2.280, -0.155) (-2.876, -1.094) (-2.916, -1.761) (-2.912, -2.100)
Notes: 95% bootstrap confidence interval in parenthesis
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Table 2: PDEL Estimates from Simulated Prices: Two Transitory Innova-
tions

This table reports the price discovery efficiency loss (PDEL) estimates from the price data
simulated from the following 2-market model:

pi,t = pi,t−1 + δi(mt − pit−1) + bTi,0η
T
it

mt = mt−1 + ηPt

where i = 1, 2 for two markets, and the structural errors ηt = (η
P
t , η

T
1t, η

T
2t)

0 are normally
distributed with zero means, and diagonal covariance matrix diag(σ2T , σ

2
1T , σ

2
2T ), and are

mutually uncorrelated at all leads and lags. The simulation parameterization is
δ1 = 0.8, δ2 = 0.2, b

T
0,1 = 0.5, b

T
0,2 = 0.5, σ

2
P = 1, σ

2
1T = 0.64, σ

2
2T = 0.64. The second

column gives the true PDELs implied by the specified parametrization. The last four
columns of the table report the estimated PDELs from artificial samples of size 500, 1000,
5000, and 10000 observations. For each sample, the VEC model is fitted with the BIC
optimal lag length and the PDIRFs are estimated. The PDELs are computed with the
absolute value loss function and K∗ = 30.

True Values N = 500 N = 1000 N = 5000 N = 10000
PDEL1 0.250 0.945 0.218 0.056 0.111

(0.210, 1.700) (0.052, 1.120) (0.026, 0.488) (0.022, 0.424)

PDEL2 3.995 2.384 3.773 3.672 3.849
(1.393, 3.705) (2.679, 5.057) (3.189, 4.185) (3.476, 4.236)

log(PDEL1PDEL2
) -2.771 -0.925 -2.850 -4.182 -3.543

(-2.773, 0.107) (-4.357, -0.958) (-4.937, -2.018) (-5.152, -2.302)
Notes: 95% bootstrap confidence interval in parenthesis

Table 3: Intraday Geographical Sessions of the Fx Market

The table defines four geographical trading sessions in a 24-hour trading day based
on the local business hours of Tokyo, London, and New York.The correspondance of
GMT hours and local business hours is based on the daylight savings time.

Geographical Segments Hours in GMT Local Business Hours

Asian 22:00 - 06:00 (next day) 07:00 - 15:00 (Tokyo time)
European 06:00 - 12:00 07:00 - 13:00 (London time)
American 12:00 - 18:00 08:00 - 14:00 (New York time)
Post American 18:00 - 22:00 14:00 - 18:00 (New York time)
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Table 4: Price Discovery Efficiency Loss (PDEL) Ratio and Spread Ratio

This table reports the price discovery efficiency loss (PDEL) ratio and the spread
ratio between the US dollar implied JPY/EUR market and the direct JPY/EUR
market for each intraday GMT hour. The PDELs are estimated by the VEC model
of the dollar implied and direct JPY/EUR prices at 15-second resolutions with the
sample from July to September 2003. The lag length of the VEC model is optimally
chosen by the BIC. The PDELs are computed with the absolute loss function and
the PDIRF truncation lag of 30 (7 and a half minutes equivalent). Column Qt2.5
and Qt97.5 bracket 95% bootstrap confidence intervals of PDEL estimates. The
spread ratio is defined as the ratio of the sum of spreads in the USD/EUR and
JPY/USD markets to the spreads in the JPY/EUR market.

PDEL Ratio
GMT Hours Estimates Qt2.5 Qt97.5 Spread Ratio

22:00 - 23:00 0.08 0.02 0.19 0.42
23:00 - 00:00 0.23 0.07 0.76 0.45
00:00 - 01:00 0.21 0.09 0.47 0.53
01:00 - 02:00 0.26 0.14 0.57 0.56
02:00 - 03:00 0.54 0.32 1.38 0.60
03:00 - 04:00 0.27 0.08 0.98 0.49
04:00 - 05:00 0.13 0.06 0.62 0.53
05:00 - 06:00 0.32 0.15 0.88 0.55
06:00 - 07:00 0.28 0.20 0.46 0.63
07:00 - 08:00 0.21 0.14 0.37 0.76
08:00 - 09:00 0.35 0.24 0.52 0.78
09:00 - 10:00 0.26 0.21 0.43 0.72
10:00 - 11:00 0.22 0.15 0.38 0.73
11:00 - 12:00 0.47 0.32 0.70 0.71
12:00 - 13:00 0.34 0.26 0.52 0.73
13:00 - 14:00 0.29 0.25 0.40 0.76
14:00 - 15:00 0.46 0.36 0.62 0.75
15:00 - 16:00 0.34 0.21 0.63 0.66
16:00 - 17:00 0.21 0.11 0.34 0.55
17:00 - 18:00 0.26 0.11 0.56 0.51
18:00 - 19:00 0.11 0.07 0.25 0.44
19:00 - 20:00 0.24 0.08 0.53 0.45
20:00 - 21:00 0.18 0.07 0.31 0.39
21:00 - 22:00 0.39 0.15 0.77 0.43
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Table 5: Regression of The PDEL Ratio and The Spread Ratio

This table presents regression analysis of the PDEL ratio on the spread ratio. The
standard errors are autocorrelation-heteroscedasticity consistent.

Variables Coefficient Std. Error p value

Constant 0.04 0.09 0.63
Spread Ratio 0.40 0.14 0.01

AdjR2 0.17
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Figure 1: Price discovery impulse response functions. The figure plots the price
responses implied by the partial price adjustment model subsequent to one unit innovation

in the efficient price.

51



0.
5

1.
0

0 5 10 15 20 25 30
Steps

Obs 10000: Market 1 Obs 10000: Market 2

Obs 5000: Market 1

0.
5

1.
0

Obs 5000: Market 2

0.
5

1.
0

Obs 1000: Market 1 Obs 1000: Market 2

Obs 500: Market 1

0.
5

1.
0

0 5 10 15 20 25 30
Steps

Obs 500: Market 2
P

ric
e 

Le
ve

l R
es

po
ns

e

Figure 2: Price discovery impulse response functions (PDIRFs) of simu-
lated prices. This figure compares the estimated price discovery dynamics of two markets
with their true dynamics given by a stylized partial adjustment model. The model is spec-

ified as in Table 1, and features a frictional innovatioin affecting both markets. Four rows

of plots corresponds to simulation samples of size 500, 1000, 5000, and 10000 observations.

The PDIRFs are estimated using the VEC model with the BIC optimal lag length. In each

plot, the solid black line depicts the true PDIRFs; the estimated PDIRFs are given by the

blue diamond dotted line; the red square dotted lines bracket the ± 2 bootstrap standard

deviation confidence intervals.
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Figure 3: Price discovery impulse response functions (PDIRFs) of simu-
lated prices: separate transitory innovations. This figure compares the estimated
price discovery dynamics of two markets with their true dynamics given by a stylized partial

adjustment model. The model is specified as in Table 2, and features separate transitory

innovations for two markets. Four rows of plots corresponds to simulation samples of size

500, 1000, 5000, and 10000 observations. The PDIRFs are estimated using the VEC model

with the BIC optimal lag length. In each plot, the solid black line depicts the true PDIRFs;

the estimated PDIRFs are given by the blue diamond dotted line; the red square dotted lines

bracket the ± 2 bootstrap standard deviation confidence intervals.
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Figure 4: One episode of the Fx market movement. The figure depicts the price
movements of the direct and dollar implied JPY/EUR rates around 23:50 GMT, August 11,

2003, at which Japan released the first GDP estimates for the second quarter of 2003. The

blue line with squares depicts the movement of the dollar implied JPY/EUR price (midquote)

and the red line with triangles traces the direct JPY/EUR price (data are in their original

scale).
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Figure 5: Average hourly tick Frequency of exchange rate quotes. The

figure displays the average hourly quote entries of USD/EUR, JPY/USD, and JPY/EUR in

the upper, middle, and lower panels repectively. All times are in GMT. The sample period

ranges from July 6 to September 26, 2003, 60 trading days in total. The average hourly quote

frequency for one exchange rate is obtained by averaging the quote counts for the exchange

rate within a particular GMT hour across 60 trading days. The first stackbar is for the hour

22:00 - 23:00, and the last stackbar is for the hour 21:00 - 22:00.
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Figure 6: Hourly mean bid-ask spreads of exchange rates. The figure displays
the hourly average bid-ask spreads of USD/EUR, JPY/USD, and JPY/EUR in the upper,

middle, and lower panels repectively. All times are in GMT. The sample period ranges

from July 6 to September 26, 2003, 60 trading days in total. The mean bid-ask spreads are

computed by averaging all spreads within a particular GMT hour across 60 trading days in

the sample. The first stackbar is for the hour 22:00 - 23:00, and the last stackbar is for the

hour 21:00 - 22:00. Spreads are measured in units of pips.
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Figure 7: The PDEL ratio and spread ratio, July to September, 2003. The
figure plots the price discovery efficiency loss (PDEL) ratio and the spread ratio between the

US dollar implied JPY/EUR market and the direct JPY/EUR market for each intraday GMT

hour. The PDELs are estimated by a vector error correction model of the dollar implied and

direct JPY/EUR prices at 15-second resolutions. The spread ratio is defined as the ratio of

the sum of spreads in the USD/EUR and JPY/USD markets to the spreads in the JPY/EUR

market.
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Figure 8: Price discovery impulse response functions: Asian; 15-second.
The figure plots the impulse response functions of the dollar implied (upper panel) and direct

(lower panel) JPY/EUR prices during Asian trading hours subsequent to one unit innovation

in the efficient price of JPY/EUR. The estimates are based on the vector error correction

model estimated at 15-second resolution. For trading hours specification, refer to Table

3. Dotted lines bracket the confidence interval constructed by two- bootstrapping-standard

deviations of the impulse responses.
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Figure 9: Price discovery impulse response functions: European; 15-
second. The figure plots the impulse response functions of the dollar implied (upper panel)
and direct (lower panel) JPY/EUR prices during European trading hours subsequent to one

unit innovation in the efficient price of JPY/EUR. The estimates are based on the vector er-

ror correction model estimated at 15-second resolution. For trading hours specification, refer

to Table 3. Dotted lines bracket the confidence interval constructed by two- bootstrapping-

standard deviations of the impulse responses.

59



0.
8

0.
9

1.
0

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00
Time (Minutes:Seconds)

Panel B. Direct JPY/EUR

0.
8

0.
9

1.
0

Panel A. Dollar Implied JPY/EUR

P
ric

e 
Le

ve
l R

es
po

ns
e

Figure 10: Price discovery impulse response functions: American; 15-
second. The figure plots the impulse response functions of the dollar implied (upper panel)
and direct (lower panel) JPY/EUR prices during American trading hours subsequent to one

unit innovation in the efficient price of JPY/EUR. The estimates are based on the vector er-

ror correction model estimated at 15-second resolution. For trading hours specification, refer

to Table 3. Dotted lines bracket the confidence interval constructed by two- bootstrapping-

standard deviations of the impulse responses.
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Figure 11: Price discovery impulse response functions: post American;
15-second. The figure plots the impulse response functions of the dollar implied (upper
panel) and direct (lower panel) JPY/EUR prices during post American trading hours sub-

sequent to one unit innovation in the efficient price of JPY/EUR. The estimates are based

on the vector error correction model estimated at 15-second resolution. For trading hours

specification, refer to Table 3. Dotted lines bracket the confidence interval constructed by

two- bootstrapping-standard deviations of the impulse responses.
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Figure 12: Price discovery impulse response functions: Asian; 5-minute.
The figure plots the impulse response functions of the dollar implied (upper panel) and

direct (lower panel) JPY/EUR prices during Asian trading hours subsequent to one unit

innovation in the efficient price of JPY/EUR. The estimates are based on the vector error

correction model estimated at 5-minute resolution. For trading hours specification, refer to

Table 3. Dotted lines bracket the confidence interval constructed by two- bootstrapping-

standard deviations of the impulse responses.
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Figure 13: Price discovery impulse response functions: European; 5-
minute. The figure plots the impulse response functions of the dollar implied (upper panel)
and direct (lower panel) JPY/EUR prices during European trading hours subsequent to one

unit innovation in the efficient price of JPY/EUR. The estimates are based on the vector er-

ror correction model estimated at 5-minute resolution. For trading hours specification, refer

to Table 3. Dotted lines bracket the confidence interval constructed by two- bootstrapping-

standard deviations of the impulse responses.
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Figure 14: Price discovery impulse response functions: American; 5-
minute. The figure plots the impulse response functions of the dollar implied (upper panel)
and direct (lower panel) JPY/EUR prices during American trading hours subsequent to one

unit innovation in the efficient price of JPY/EUR. The estimates are based on the vector er-

ror correction model estimated at 5-minute resolution. For trading hours specification, refer

to Table 3. Dotted lines bracket the confidence interval constructed by two- bootstrapping-

standard deviations of the impulse responses.
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Figure 15: Price discovery impulse response functions: post American; 5-
minute. The figure plots the impulse response functions of the dollar implied (upper panel)
and direct (lower panel) JPY/EUR prices during post American trading hours subsequent to

one unit innovation in the efficient price of JPY/EUR. The estimates are based on the vector

error correction model estimated at 5-minute resolution. For trading hours specification, refer

to Table 3. Dotted lines bracket the confidence interval constructed by two- bootstrapping-

standard deviations of the impulse responses.
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