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Abstract

The Beveridge-Nelson (BN) decomposition is a model-based method for decomposing time series

into permanent and transitory components. It is closely related to decompositions based on unobserved

components (UC) models with random walk trends and covariance stationary cycles. The decomposition

when extended to I(2) models can also be related to non-model based signal extraction filters such as

the HP filter. We show that the BN decomposition provides information on the correlation between the

permanent and transitory shocks in a certain class of UC models. The correlation between components

is known to determine the smoothed estimates of components from UC models. The BN decomposition

can also be used to evaluate the efficacy of alternative methods. We also show, contrary to popular

belief, that the BN decomposition can produce smooth cycles if the reduced form forecasting model is

appropriately specified.

1 Introduction

The Beveridge-Nelson (BN) decomposition is a model-based method for decomposing a univariate or multi-

variate time series into permanent and transitory (PT) components. It begins with a definition of the sto-

chastic trend as the limiting forecast of the level of the series minus any deterministic components given the

current information set. The permanent component is a pure random walk while the remaining movements

in the series are the I(0) transitory component. Other than the random walk trend, the BN decomposi-

tion does not make assumptions about the structure of the components and the correlations between them.

However, it is closely related to decompositions based on unobserved components (UC) models with ran-

dom walk trends and covariance stationary cycles. The BN decomposition can also be related to non-model

based signal extraction filters such as the Hodrick-Prescott (HP) filter and other Butterworth lowpass filters

considered by Gomez (2001). These latter methods are indirectly related to the BN decomposition through

their relationships with UC models.

1



Our contribution in this paper is to clarify the relationship between the BN decomposition and other

univariate detrending methods popular in economics. In particular, for certain I(1) and I(2) models we show

the relationship between the BN decomposition and UC models with correlated permanent and transitory

shocks and we clarify when the correlation between shocks is identified. Furthermore, for a particular class

of UC models, we show how the ARIMA model used to compute the BN decomposition can be used to

determine the range of correlation values such that the real-time trend and cycle estimates from the UC

models are equivalent to the BN decomposition. We also demonstrate how the BN decomposition can be used

as a benchmark to test the over-identifying restrictions that are commonly made in applied macroeconomics

research. Examining the over-identifying restrictions can help applied researchers understand some of the

assumptions they make and the resulting trade-offs that exist. We emphasize that smoothed estimates from

UC models can potentially be unidentified. If the random walk trend is the correct model, restrictions placed

on the parameter space that are commonly made in the literature can result in spurious cycles. Many of

these results have been stated previously in the literature and part of our contribution is to present these

results in a cohesive manner.

The BN decomposition holds less relevance for researchers who believe that the trend is not a pure

random walk. Consequently, our analysis is limited to models with random walk trend components. There

exist other types of PT decompositions in which the permanent component is an integrated series but not a

pure random walk. These include the canonical decomposition of Hillmer and Tiao (1982) and the general

PT decompositions of Quah (1992), but these are outside the scope of this paper. As emphasized by Quah

(1992), the random walk trend implicit in the BN decomposition maximizes the importance of the permanent

component. This should always be recognized when interpreting the results of the BN decomposition.

2 The BN Decomposition of an I(1) Process

Assume that the univariate time series yt is an I(1) process with Wold representation given by

∆yt = μ+ ψ(L)�t =
∞X
j=0

ψj�t−j (1)

where ∆ = 1 − L, ψ(0) = 1, ψ(1) 6= 0,
P∞

j=0 j
1/2|ψj | < ∞, and �t are iid (0, σ2) one-step-ahead forecast

errors. The permanent component or trend τ t of the BN decomposition of yt is defined as the limiting

forecast minus any deterministic components

τBNt = lim
J→∞

E[yt+J − Jμ|Ωt] (2)

Writing yt+J = yt +∆yt+1 + · · ·+∆yt+J and using E[∆yt+j |Ωt] (j = 1, . . . , J) based on (1) allows for the
analytic evaluation of τBNt as

τBNt = μ+ τBNt−1 + ψ(1)�t (3)
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Hence, the BN trend is a pure random walk with drift μ and has innovation variance σ2ψ(1)2. The transitory

component or cycle, cBNt , is defined as the difference between yt and the BN trend

cBNt = yt − τBNt = ψ̃(L)�t (4)

where ψ̃(L) =
P∞

j=0 ψ̃jL
j and ψ̃j = −

P∞
k=j+1 ψk. Solo (1989) showed that the

1
2 -summability of ψ(L) and

the uniqueness of the Wold decomposition guarantees the existence and uniqueness of the BN decomposition.

From (3) and (4) it is clear that the BN decomposition produces real-time or one-sided estimates of the

permanent and transitory components at time t.

An alternative derivation of the BN decomposition follows directly from the factorization ψ(L) = ψ(1)+

(1− L)ψ̃(L). Then (1) may be rewritten as

∆yt = μ+ ψ(1)�t + (1− L)ψ̃(L)�t (5)

which identifies (μ+ ψ(1)�t) /(1−L) as the permanent component and ψ̃(L)�t as the transitory component.

In practice, the BN decomposition may be computed in a number of ways. Typically, it is assumed that

ψ(L) = θ(L)/φ(L) where the orders of φ(L) and θ(L) are p and q, respectively, and the roots of φ(L) = 0 and

θ(L) = 0 are assumed to lie outside the complex unit circle. A brute force approach is based on estimating

an ARMA(p, q) model for ∆yt, using these estimates to compute an estimate of ψ(1) = θ(1)/φ(1), and then

forming estimates of the components using (2) and (4) with the ARMA residuals in place of �t. Cuddington

and Winters (1987), Miller (1988) and Newbold (1990) provided improvements to this brute force method.

These methods are valid if the forecasting model for ∆yt is a univariate ARMA(p, q) model. Ariño and

Newbold (1998) extended the algorithm of Newbold (1990) to multivariate forecasting models for ∆yt. See

also Evans and Reichlin (1994) for a discussion of the BN decomposition for multivariate models. Recently,

Morley (2002) provided a very simple state-space approach for calculating the BN decomposition that is valid

for any forecasting model for ∆yt that can be cast into state-space form. In particular, suppose ∆yt − μ is

a linear combination of the elements of the m× 1 state vector αt

∆yt − μ = z0αt

where z is an m× 1 vector with fixed elements. Suppose further that

αt = Tαt−1 + ηt, ηt ∼ iid N(0,Q), (6)

such that all of the eigenvalues of T have modulus less than unity, and Im −T is invertible. Then, Morley

3



(2002) showed that

τBNt = yt + z
0T(Im−T)

−1
αt|t (7)

cBNt = yt − τBNt = −z0T(Im−T)
−1
αt|t

where αt|t = E[αt|Ωt] denotes the filtered or real-time estimate of αt from the Kalman filter.1 An important

advantage of Morley’s approach is its generality. It works the same way for univariate and multivariate

forecasting models for ∆yt.

Disadvantages of the methods described above to compute the BN decomposition are that they lose the

first observation due to differencing the data, and that they do not provide standard error bands for the

extracted trend and cycle estimates. However, as discussed by Morley, Nelson, and Zivot (MNZ) (2003)

and Andersen, Lo and Snyder (2006) and shown in the next section, the BN decomposition may also be

computed directly using the Kalman filter from certain UC models. This allows for the use of all the data

and for the calculation of standard error bands for the extracted trend and cycle estimates. It also allows

for the extraction of trend and cycle estimates at time t using information in the full sample, ΩT .

3 The BN Decomposition and Unobserved Components Models

An advantage of the BN decomposition is that it produces a decomposition into permanent and transitory

components with minimal assumptions about the structure of the components. The definition of the BN

trend (2) identifies the permanent component as a pure random walk, and this result can be used to link the

BN decomposition with traditional UC models with random walk trends. The following subsections describe

the class of UC models that are consistent with the BN decomposition. Throughout, we assume that ∆yt has

a reduced form covariance stationary and invertible ARMA(p, q) representation such that ψ(L) = θ(L)/φ(L)

in (1).

3.1 Single Source of Error Model

The definitions of the BN permanent and transitory components in (3) and (4) suggest the following single-

source-of-error (SSOE) state space representation2

yt = τ t + ct (8)

(1− L)τ t = μ+ ψ(1) �t

ct = ψ̃(L) �t

1Throughout the paper we refer to filtered estimates as real-time estimates based on information only available at time t,
and smoothed estimates as final estimates based on all available sample information.

2Andersen, Lo and Snyder (2006) gave a slightly different, but equivalent, formulation of the SSOE model that includes �t
in the measurement equation.
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where ψ̃(L)�t ∼ ARMA(p, n) with n = max(q − 1, 0). It is clear from (8) that the innovations to the

permanent and transitory components are perfectly correlated

ρ =
cov(ψ(1)�t, ψ̃(0)�t)q
var(ψ(1)�t) var(ψ̃(0)�t)

=
ψ(1) ψ̃(0)

|ψ(1) ψ̃(0)|
= −1 or 1

where the sign of ρ depends on the sign of ψ̃(0). Hence, there always exists a UC representation with perfectly

correlated shocks that is consistent with the BN decomposition. However, as discussed by MNZ, (8) is not

the only UC representation that is consistent with the BN decomposition.

Andersen, Lo and Snyder (2006) use the SSOE representation of the BN permanent and transitory

components to compute the BN decomposition directly using the Kalman filter. The filtered estimates

τ t|t = E[τ t|Ωt] and ct|t = E[ct|Ωt] produced by the Kalman filter correspond to the BN permanent and

transitory components (3) and (4), respectively. An advantage of this approach is that the form of the

ARMA(p, n) model for ψ̃(L) allows for direct calculation of ψ(1). However, as noted by Watson (1986),

Harvey and Koopman (2000), and emphasized in Morley (2006), the components τ t|t and ct|t in the SSOE

model are estimated with zero mean squared error because they are an exact function of past observations.

As a result, the standard errors for τ t|t and ct|t computed from the Kalman filter will be equal to zero.

Morley (2006) used this result to argue against interpreting the SSOE representation as a structural model.

3.2 Two Source of Error Model

The perfect correlation between shocks to the components in (8) is due to the single disturbance term �t,

which represents the forecast error in the reduced form ARMA(p, q) model for ∆yt. However, as argued

by Shapiro and Watson (1988) and others, the economic forces underlying movements in real output imply

multiple sources of shocks. For example, suppose that ψ(L)�t is the sum of two independent processes

ψ1(L)�1t and ψ2(L)�2t, where �1t ∼ iid (0, σ2�1), �2t ∼ iid (0, σ2�2), and cov(�1t, �2t) = 0. Then equation (5)

becomes

(1− L)yt = μ+ (ψ1(1) �1t + ψ2(1) �2t) + (1− L)(ψ̃1(L)�1t + ψ̃2(L)�2t) (9)

= μ+ ψ(1) �t + (1− L)
n
ψ̃1(L)�1t + ψ̃2(L)�2t

o
The permanent innovation is still ψ(1)�t but the transitory innovation is now ψ̃1(0)�1t + ψ̃2(0)�2t. If ψ̃1(L)

is zero,3 then the correlation between permanent and transitory innovations will be between -1 and 1

ρ =
ψ2(1) ψ̃2(0)σ

2
�2q

ψ1(1)
2 ψ̃2(0)

2 σ2�1σ
2
�2 + ψ2(1)

2 ψ̃2(0)
2σ4�2

6= −1 nor 1
3As a simple example, let ψ1(L)�t be a white noise process. Then, ψ(1) = 1 and ψ̃1(L) = 0.
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If the cov(�1t, �2t) 6= 0, then the correlation between the permanent and transitory shocks will be between
-1 and 1 even when ψ̃1(L) is not zero.

In equation (9), the permanent component ψ(1)�t does not depend on the individual shocks. This means

that the variance of the permanent component is always identified and is exactly the same as the variance

of the permanent component from the SSOE model (8). In contrast, the parameters of the cycle and

the correlation between the permanent and transitory shocks are generally not identified without further

assumptions on the parametric form of the UC model.

To understand the general relationship between the permanent and transitory components defined by

the BN decomposition from an ARMA(p, q) reduced form model for ∆yt and those defined in an unobserved

components model, consider a typical UC model with two sources of shocks

yt = τ t + ct (10)

τ t = τ t−1 + d+ wt, wt ∼ iid (0, σ2w)
φ(L)ct = θ∗(L) vt, vt ∼ iid (0, σ2v)

cov(wt, vt) = σwv

where the order of φ(L) is p, the order of θ∗(L) is n = max(q− 1, 0) and the roots of φ(z) = 0 and θ∗(z) = 0
lie outside the complex unit circle. We call (10) a UC-ARMA(p, n) model. For q > 0, the MA order in (10)

is one less than the MA order in the reduced form ARMA(p, q) model. In (10), wt is the permanent shock

and vt is the transitory shock.

The reduced form of (10) is an ARMA model for ∆yt

φ(L)(1− L)yt = φ(1) + φ(L)wt + (1− L)θ∗(L)vt (11)

The MA polynomial on the right-hand side of (11) has order max(p, n+1) with respect to L4 . As discussed

in Harvey (1989), identification of the UC model parameters requires solving for these parameters uniquely

from knowledge of the reduced form ARMA parameters. Since the AR polynomial in (11) and in the reduced

form ARMA(p, q) model are the same, the remaining parameters to be identified from the UC model are the

n MA parameters in θ∗(L) and the 3 covariance matrix parameters σ2w, σ
2
v, and σwv. From the MA portion

of the reduced form ARMA(p, q) model, the number of moments that may be calculated is max(p, n+1)+1.

Therefore, the order condition for exact identification is max(p, n+ 1) + 1 = n+ 3. For example, when p is

2 and n is 0, the number of UC model parameters is equal to the number of reduced form moments and the

UC model is exactly identified. MNZ used this result to estimate σwv. If (n + 3) > (max(p, n + 1) + 1) or

(q + 1) > p when q ≥ 1, the UC model (10) is under-identified. In this case, we can match the moments of
4A referee pointed out that if q < p in the reduced form ARIMA(p, q) model, then the order of the MA component of

(11) may end up being less than max(p, n + 1) if wt and vt are perfectly correlated. For example, an ARIMA(1,1,0) reduced
form model has a SSOE UC-ARMA(1,0) representation whereas a UC-ARMA(1,0) model with two sources of shocks has an
ARIMA(1,1,1) reduced form.
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the reduced form and the moments of the corresponding ARIMA model once we have chosen the correlation.

Of course, the resulting UC model parameters must satisfy certain necessary conditions such as positive

definitiveness of the covariance matrix and invertibility of the MA coefficients.

As long as a UC model with random walk trend does not restrict the parameter space which matches the

moments of the observed data, the UC model produces the same filtered estimates as the BN decomposition

from an unrestricted ARIMA model. For these admissible UC models, the value of the correlation between

the permanent and transitory components, ρwv, does not impact the values of τ t|t or ct|t computed by the

Kalman filter. However, as noted by Harvey and Koopman (2000), Morley (2006), and Proietti (2006), the

value of ρwv does impact the precision of τ t|t and ct|t if |ρwv| 6= 1. In this case, τ t|t and ct|t are estimated

with non-zero mean squared error because there are now two distinct sources of error. As a result, standard

error bands for the extracted components computed by the Kalman filter will be positive.

3.3 ARIMA(2,1,2) Model

To illustrate the relationship between a particular reduced form ARIMA model for yt and the class of

observationally equivalent UC-ARMA models with correlated shocks, consider the following reduced form

ARIMA(2,1,2) model for yt that was studied by MNZ

(1− φ1L− φ2L
2)(1− L)yt = μ+ (1 + θ1L+ θ2L

2)�t (12)

As shown in Proietti (2006), the ARIMA(2,1,2) model (12) is the unrestricted reduced form associated with

the following UC-ARMA(2,1) model with correlated shocks

yt = τ t + ct (13)

τ t = τ t−1 + d+ wt, wt ∼ iid(0, σ2w)
ct = φ1ct−1 + φ2ct−2 + vt + θvvt−1, vt ∼ iid(0, σ2v)

cov(wt, vt) = σwv

The reduced form implied by (13) is the following ARIMA(2,1,2) model

φ(L)∆yt = φ(1)d+ (wt − φ1wt−1 − φ2wt−2) + (vt + (θv − 1)vt−1 − θvvt−2) (14)

7



However, not all of the parameters of the UC-ARMA(2,1) model are identified since q + 1 = 3 > p = 2. To

determine which parameters can be identified, consider the moments of the MA part of (14)

γ0 = (1 + φ21 + φ22)σ
2
w +

¡
1 + (θv − 1)2 + θ2v

¢
σ2v + 2(1− φ1(θv − 1) + φ2θv)σwv (15)

γ1 = (−φ1 + φ1φ2)σ
2
w + ((θv − 1)− θv(θv − 1))σ2v + (−φ1 − φ2(θv − 1)

+(θv − 1) + θvφ1)σwv

γ2 = −φ2σ2w − θvσ
2
v + (−φ2 − θv)σwv

Notice that the variance of the shock to the trend, σ2w, does not depend on the covariance

σ2w =
γ0 + 2(γ1 + γ2)

1− 2φ1 − 2φ2 + 2φ1φ2 + φ21 + φ22
(16)

and is identified from the reduced form moments and parameters. The remaining parameters are not iden-

tified without further restrictions. If σwv (or ρwv) is given arbitrarily, then the remaining two unknowns

(σ2v, θv) may be determined. Similarly, if σ
2
v or θv is given, then (σwv, θv) or (σwv, σ

2
v) may be determined.

The system (15) is nonlinear in the parameters, however, so there may exist multiple solutions. Admis-

sible solutions must satisfy the covariance stationarity and invertibility conditions as well as the positive

definiteness of the covariance matrix of (wt, vt)
0.

Assuming normal errors, all admissible solutions will have the same likelihood value as the unrestricted

reduced form ARIMA(2,1,2) model and will produce the same decomposition into permanent and transitory

components as the BN decomposition. This implies that there will be an observationally equivalent collec-

tion of UC-ARIMA(2,1) models, consistent with the unrestricted reduced form ARIMA(2,1,2) model, with

different values of the correlation between trend and cycle innovations. This means that the reduced form

ARIMA model used to compute the BN decomposition provides information about permissible correlation

values between the permanent and transitory shocks in the UC model.

The SSOE model sets ρwv = ±1 in (13). Evaluating ψ(1) and ψ̃(L) in (8), see also Proietti and Harvey

(2000), gives the resulting UC-ARMA(2,1) parameters in terms of the parameters of the unrestricted reduced

form

d =
1

φ(1)
μ, σ2w = ζ21 σ

2
� , σ2v = ζ22 σ

2
�

θv =
ζ3
ζ2
, ρwv =

ζ1ζ2
|ζ1ζ2|

= 1 or − 1

where

ζ1 = ψ(1) =
θ(1)

φ(1)
, ζ2 =

φ(1)− θ(1)

φ(1)
, ζ3 = −

φ2θ(1) + θ(2)φ(1)

φ(1)

As noted by Proietti (2006), the variance of the permanent component is ψ(1)2σ2� , which is the same as the
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variance of the permanent component in the BN decomposition. Also, the sign of ρwv depends on the sign

of φ(1) − θ(1). In particular, if ψ(1) > 1 then ρwv = −1 and if ψ (1) < 1 then ρwv = 1. The SSOE model

has a nonzero moving average parameter θv unless φ2θ(1) + θ(2)φ(1) = 0, and |θv| can be greater than one
implying a noninvertible model.

The UC-ARMA(2,1) model with correlated components considered byMNZ imposes the restriction θv = 0

in (13). As a result, the order condition for identification is satisfied which allows σ2w, σ
2
v and σwv to be

recovered from (15) using

⎡⎢⎣ σ2w
σ2v
σwv

⎤⎥⎦ =
⎡⎢⎣ 1 + φ21 + φ22 2 2(1 + φ1)

−φ1(1− φ2) −1 −(1− φ2 + φ1)

−φ2 0 −φ2

⎤⎥⎦
−1 ⎡⎢⎣γ0γ1

γ2

⎤⎥⎦
Using this result, MNZ estimated ρwv to be −0.9062 for postwar quarterly real GDP. However, this is just
one such UC-ARMA(2,1) model that is consistent with the reduced form. Setting θv = θ0v 6= 0 also gives a
linear system that can be inverted to obtain a solution for σ2w, σ

2
v,and σwv. Hence, the deduced correlation is

a function of θ0v and different values of θ
0
v will produce different correlations. Therefore, to draw conclusions

about the correlation between shocks in the UC-ARMA(2,1) model one must derive the set of all admissible

correlation values as a function of θ0v.We do this for U.S. postwar quarterly real GDP in the empirical section

below.

Proietti (2006) considered the UC-ARIMA(2,1) with ρwv = 0 and θv free to see if expanding the dynamics

of the cycle could give a UC model with uncorrelated components that matched the moments of the US real

GDP data used by MNZ. This model is also closely related to the UC model of Harvey and Jaeger (1993) in

the I(1) case. Unfortunately, the system of equations (15) relating the autocovariances to the remaining UC

model parameters is nonlinear and it is not straightforward to determine admissibility. Proietti shows that

any UC-ARMA(2,1) model with ρwv > 0 and θv = 0 is equivalent to a model with ρwv = 0 and θv < 0, and

a model with ρwv < 0 and θv = 0 is equivalent to one with ρwv = 0 and θv > 0 provided σw/σv is sufficiently

small.

The UC model with uncorrelated components used by Watson (1986) imposes the restrictions θv = σwv =

0. From the order condition, the UC-ARMA(2,1) model is now overidentified and imposes complicated

nonlinear restrictions on the reduced form ARIMA(2,1,2) model parameters. These restrictions can be

checked for admissibility using the moment conditions (15). If they are not admissible, then the resulting

estimated trend and cycles will be different from the BN decomposition. For example, MNZ showed that

Kalman filtered trend and cycle estimates from the UC-ARMA(2,1) model with θv = σwv = 0 are typically

very different than those from the BN decomposition for US postwar quarterly real GDP. To explain these

results, MNZ tested and firmly rejected the overidentifying restrictions using a likelihood ratio test. We note

that Ord, Koehler and Snyder (1997) advocated the use of SSOE UC models because they do not impose

the complicated restrictions on the reduced form that result from UC models with orthogonal components.
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3.4 BN Decomposition and Smoother

In this section, we provide intuition on how the BN decomposition breaks apart a time series. We also

show the effects that the correlation between components has on the smoothed estimates of the trend

τ t|T = E [τ t|ΩT ] and cycle ct|T = E [ct|ΩT ]. In a SSOE model, the components are estimated with zero
mean squared error making the filtered and smoothed estimates equal to one another. This was previously

noted byWatson (1986) and Harvey (1989). When the components are not perfectly correlated, the smoothed

estimates will be a function of the correlation. If a unique correlation cannot be estimated from the data,

smoothed estimates for the BN decomposition and any equivalent UC models are not identified without

additional assumptions. Therefore, we discuss the importance of any further restrictions placed on the

parameter space.

To illustrate the main issues, consider an ARIMA(0,1,1) model omitting the drift term for simplicity

(1− L) yt = (1 + θL) �t

This model was also analyzed by Harvey and Koopman (2000). Figure 1 provides an example of the BN

decomposition on simulated data from the ARIMA(0,1,1) process, where θ = 0.3 is taken from estimates

on U.S. real GDP. The circles ° and the bold line connecting them are the observations. The vertical

distance between two circles at two points in time is the overall shock to the series. The purpose of this

graph is to highlight how the BN decomposition will break this shock into two pieces. The value of the

BN trend, represented by a triangle 4, is by definition the long-run forecast of the series at time t. Using
the ARIMA(0,1,1) model as the forecasting function, the forecast for ∆yt is particularly simple because the

autocorrelation function of an MA(1), which determines the forecast, dies out after one period. In this case,

the trend or equivalently the long run-forecast is τ t = yt + θ�t. The cycle is the difference between the

observation and the trend ct = −θ�t, which is represented graphically by the vertical distances between °
and 4. Notice that the cycle contains forecasting information under the assumption that the next period’s
innovation has expectation zero. If the cycle is negative (positive), the series is expected to move upward

(downward) in the next period because it is below (above) the trend in the current period.

Figure 1 also provides intuition on how the two UC models that match the moments of the data generating

process operate as well. First consider the UC model with two sources of noise. In this case, the permanent

shock (ωt) is the amount the long run forecast gets modified in a single period, ωt = τ t − τ t−1 = 4 −5.
The transitory shock (υt) is the vertical distance between the observation and the trend, υt =°−4. For
the SSOE model, the single source of error �t will get split into ωt and υt, i.e.

�t = ∆yt − θ�t−1 =°−5
∆yt = °− ¦

−θ�t−1 = 5− ¦
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Connecting the triangles (4), we can see that the trend is not “smooth” in this example. The increased
variability of the trend is caused by the positive serial correlation θ in the time series and its impact on the

forecasting function, which was mentioned by Beveridge and Nelson (1981). The BN decomposition produces

a highly variable trend because of the time series properties of the data. In particular, the fact that U.S.

real GDP is highly persistent.

This is relevant to recent work on signal extraction and unobserved component models. Harvey and Koop-

man (2000) advocated using only unobserved component models whose smoothed estimates have positive

and symmetric weighting patterns. Similarly, Proietti and Harvey (2000) suggested an interesting formula

for a BN smoother. Both of these recommendations require that the components be uncorrelated and that

the parameter space be restricted in order not to allow too high a level of persistence. Lippi and Reichlin

(1992) proved that if the persistence is large i.e. ψ (1) > 1, then the series cannot be decomposed into un-

correlated components. Relative to the example here, a smoother with positive and symmetric weights, and

consequently a model with uncorrelated components, cannot estimate this trend if it were the true model. By

restricting θ from taking positive values, a smoother with symmetric weights must pass through the middle

of the kinked line in Figure 1. This means that, if the restrictions on the parameter space are incorrect,

the resulting decomposition would underestimate the trend and could produce cycles that are artificial and

spurious.

Figure 2 includes another series simulated from the ARIMA(0,1,1) model, where we now set θ = −0.3 and
the random draws for �t are the same as above. This highlights the effects of the correlation on estimates of

the trend. A zero correlation UC model and the BN decomposition can produce the same filtered estimates

when θ is negative. Connecting the triangles to form the trend, it will pass through the middle of the

kinked line in this data generating process. There exists a clear trade-off that applied researchers need to

make. For real-time or filtered estimates relevant for policy analysis, the zero correlation restriction does not

dramatically improve filtered estimates of the cycle while it may inhibit its estimation. This is demonstrated

more clearly below. Meanwhile, the restrictions will often uniquely determine the smoothed estimates of the

cycle.

4 The Relationship between the BN Decomposition and Unob-

served Components Models for I(2) Processes

In the previous section, we discussed the relationship between the BN decomposition and UC models with

correlated shocks for I(1) processes represented by an ARIMA model. However, many empirical implemen-

tations of UC models allow the slope of the random walk trend to also evolve as a random walk, see e.g.,

Clark (1987) and Harvey and Jaeger (1993). This UC model allows for a more flexible trend that can pick

up smooth structural breaks. In this specification, the time series yt follows an I(2) process.

For I(1) processes, we stressed how the BN decomposition could be compared to UC models by comparing
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their reduced-form ARIMA representations. It is possible to extend this comparison for I(2)models to include

other popular non-model based trend/cycle decompositions. For example, Gomez (2001) demonstrated that

a class of two-sided Butterworth lowpass filters and band-pass filters (built from the lowpass filters) are

equivalent to UC models and consequently ARIMA models.5 This class of nonparametric filters is based

in the frequency domain and includes the Hodrick-Prescott (HP) filter as a special case. To apply these

filters, a user chooses the tuning parameters of the gain function. These tuning parameters implicitly

determine the underlying ARIMA model and its parameter values. Consequently, one can test the over-

identifying restrictions imposed by the nonparametric filters by comparing their ARIMA representations to

an unrestricted ARIMA model.

4.1 The BN Decomposition for an I(2) Process

Assume that yt is an I(2) process with a Wold representation given by

(1− L)2yt = ψ(L)�t, (17)

where ψ(L) and �t are defined as in (1). Using the BN factorization of ψ(L), we can rewrite (17) as

(1− L)2yt = ψ(1) �t + (1− L)ψ̃(L)�t

Dividing both sides by (1− L) and applying the BN factorization to ψ̃(L), we obtain

(1− L)yt =
ψ(1)

(1− L)
�t + ψ̃(1)�t + (1− L)ẽψ(L)�t (18)

Splitting the integrated parts from the stationary part in (18), the permanent and transitory components in

the BN decomposition for an I(2) process may be defined as

(1− L)τ t =
ψ(1)

(1− L)
�t + ψ̃(1)�t (19)

ct = ẽψ(L)�t (20)

5Not all of the nonparametric filters considered by Gomez (2001) will have random walk trends, in particular the band-pass
filters he considers. They consequently may not always be equivalent to the BN decomposition. Harvey and Trimbur (2003)
have extended his work by building UC models with higher-order stochastic cycles that include random walk trends and slopes.
These models have bandpass filter properties in terms of the cycles they can extract. Using the results in Trimbur (2006), this
class of models can be shown to have reduced-form ARIMA representations and will be equivalent to the BN decomposition.
Therefore, it is possible to test any over-identifying restrictions that are present, although we do not consider that here.
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Defining the double integrated part of (19) as a random drift term dt, the BN decomposition has the following

SSOE UC model representation

yt = τ t + ct (21)

(1− L)τ t = dt−1 + [ψ(1) + ψ̃(1)]�t

(1− L)dt = ψ(1)�t

ct = ẽψ(L)�t
Notice that in the I(2) case there is an overall trend, τ t, which follows a double random walk, a drift term,

dt, that follows a random walk, and a residual cycle component, ct.

When ψ(L) = θ(L)/φ(L), Newbold and Vougas (1996) derived a computationally efficient algorithm for

computing the components of (21). Alternatively, the components may be computed using the Kalman filter

applied directly to the SSOE model (21). Oh and Zivot (2006) extended the method of Morley (2002) for

cases in which ∆2yt = z0αt, where z is an m× 1 vector with fixed elements and the m× 1 state vector αt

follows the transition equation (6). They showed that the components may be computed using

τBNt = yt − z0T2(Im −T)−2αt|t (22)

dBNt = ∆yt + z
0T(Im −T)−1αt|t

cBNt = z0T2(Im −T)−2αt|t

4.2 The Relationship between the BN Decomposition and UC Models

Assume that ψ(L) = θ(L)/φ(L) in (17), and consider (21) rewritten as a typical UC model with three shocks

yt = τ t + ct (23)

τ t = τ t−1 + dt−1 + wt, wt ∼ iid (0, σ2w)
dt = dt−1 + ut, ut ∼ iid (0, σ2u)

φ(L)ct = θ∗(L) vt, vt ∼ iid (0, σ2v)
cov(wt, ut) = σwu, cov(wt, vt) = σwv, cov(ut, vt) = σuv

where the order of θ∗(L) is n = max(q − 2, 0). The reduced form of (23) is

φ(L)(1− L)2yt = φ(L)ut−1 + φ(L)(1− L)wt + (1− L)2θ∗(L)vt (24)

The MA polynomial has the order of max(p+ 1, n+ 2) with respect to L. From the MA portion, max(p+

1, n+2)+1 moments may be calculated. Excluding the AR parameters, the unknown parameters in the UC

model (23) are the n MA parameters and the 6 covariance matrix parameters σ2w, σ
2
u, σ

2
v, σwu, σwv and σuv.
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If (n+6) > (max(p+1, n+2)+1) or (q+2) > p+1 when q ≥ 2, the model (23) is under-identified. In this
case, we can match the moments of the reduced form and the moments of the corresponding ARIMA model

given different choices for the correlations. Admissible choices must satisfy certain necessary conditions such

as positive definitiveness of the covariance matrix and invertibility of the MA coefficients.

4.3 ARIMA(0,2,2) Model

Connections between the BN decomposition, UC models, and some commonly used signal extraction filters

can be illustrated using the following ARIMA(0,2,2) reduced form model for yt

(1− L)2yt = (1 + θ1L+ θ2L
2)�t (25)

This is the unrestricted reduced form associated with the following UC-ARMA(0,0) model

yt = τ t + ct (26)

τ t = τ t−1 + dt + wt, wt ∼ iid (0, σ2w)
dt = dt−1 + ut, ut ∼ iid (0, σ2u)
ct = vt, vt ∼ iid (0, σ2v)

cov(wt, ut) = σwu, cov(wt, vt) = σwv, cov(ut, vt) = σuv

The reduced form of (26) is

(1− L)2yt = ut−1 + (1− L)wt + (1− L)2vt (27)

which implies an ARIMA(0,2,2) model. Not all of the parameters of (27) are identified since q + 2 = 4 >

p+ 1 = 1. To determine which parameters may be identified, consider the moments of (25)

γ0 = 2σ2w + σ2u + 6σ
2
v + 2σwu + 6σwv + 2σuv (28)

γ1 = −σ2w − 4σ2v − σwu − 4σwv − 2σuv
γ2 = σ2v + σwv + σuv

Notice that the variance of the slope shock is identified since it only depends on the reduced form moments,

σ2u = γ0 +2γ1 + 2γ2. However, the remaining parameters are not identified without further restrictions. All

admissible UC models will satisfy the moment conditions (28), the invertibility of the MA polynomial in

(25), the positive definiteness of the covariance matrix of (wt, vt, ut)
0, and will admit the same trend-cycle

decomposition as the BN decomposition based on (25).

The SSOE model imposes three restrictions |ρwu| = |ρwv| = |ρuv| = 1, which exactly identifies the

remaining parameters. Evaluating ψ(1), ψ̃(1) and ẽψ(L) in (21) gives the resulting UC-ARMA(0,0) parameters
14



in terms of the reduced form ARIMA(0,2,2) parameters

σ2w = ξ21σ
2
� , σ

2
u = ξ22σ

2
� , σ

2
v = ξ22σ

2
�

ρwv =
ξ1ξ2
|ξ1ξ2|

, ρwu =
ξ1ξ3
|ξ1ξ3|

, ρuv =
ξ2ξ3
|ξ2ξ2|

ξ1 = ψ̃(1) + ψ(1) = 1− θ2, ξ2 = ψ(1) = 1 + θ1 + θ2, ξ3 = θ2

The signs of the correlations depend on the signs of θ1 and θ2.

The traditional local linear trend model (e.g., Harvey, 1989) sets ρwu = ρwv = ρuv = 0. With these

restrictions, the remaining variance parameters may be recovered using

⎡⎢⎣ σ2w
σ2u
σ2v

⎤⎥⎦ =
⎡⎢⎣ 2 1 6

−1 0 −4
0 0 1

⎤⎥⎦
−1 ⎡⎢⎣ γ0

γ1

γ2

⎤⎥⎦
This model will be admissible provided all of the variances are positive. However, as discussed by Harvey

(1989), the parameter space for the ARIMA(0,2,2) that supports the local linear trend model is quite

restrictive. As a result, the filtered estimates of trend and cycle from the local linear trend model are likely

to be different from those computed from the BN decomposition.

As shown by Harvey and Jaeger (1993) and Gomez (1999), the HP filter (e.g., Hodrick and Prescott,

1997) results from a restricted version of the local linear trend model. HP defined the permanent component

as the solution to

min
τ1,...,τT

TX
t=1

(yt − τ t)
2 + λ

TX
t=3

((1− L)2τ t)
2 (29)

where λ is a smoothness parameter such that large values of λ produce smooth trends. For quarterly data

HP recommended using λ = 1600. This solution is equivalent to the smoothed estimate of τ t from the local

linear trend model with the additional restrictions σ2w = 0 and σ2v/σ
2
u = λ. The resulting cycle from the HP

detrended data is equivalent to the smoothed estimate of ct from the restricted local linear trend model.

If λ is fixed then there are no parameters to be estimated, and the HP filter imposes two overidentifying

restrictions which may be tested against the unrestricted reduced form.

Gomez (2001) showed that certain Butterworth or bandpass filters have more desirable properties than

the HP filter and also have UC model representations. For example, consider the Butterworth filters based

on the sine and tangent functions as described in Gomez (2001) and denoted BFS and BFT, respectively.

These filters depend on a differencing parameter d and a frequency parameter xc. For the BFS, Gomez

(2001) showed that λ = [2 sin(xc/2)]−2d where λ is the smoothness parameter for the HP filter in (29). For

example, λ = 1600 is equivalent to xc = 0.1583, or a period of 9.2 years. Using the results in the Appendix

of Gomez (2001), it can be shown that the parameters of the BFS and BFT when d = 2 can be mapped

into the parameters of the ARIMA(0,2,2) reduced form. For the BFS, the procedure is as follows. Set

15



λ = [2 sin(xc/2)]
−4, compute C = sin(xc/2)

2, D = 1− 2C cos(π/2) + C2 and E =
q
(C +

√
D)2 − 1. Then

the ARIMA(0,2,2) parameters are determined using

θ1 =
2(C −

√
D)

C +
√
D +E

, θ2 =
C +
√
D −E

C +
√
D +E

, σ2� = λ(C +
√
D +E)2

For the BFT, set λ = 1/ tan(xc/2)4, compute C = tan(xc/2), D = cos(π/2), and E = C
p
2(1−D). Then

the ARIMA(0,2,2) parameters are determined using

θ1 =
2(C2 − 1)
C2 + 1 +E

, θ2 =
C2 + 1−E

C + 1 +E
, σ2� = λ(C2 + 1 +E)2

As a result, the appropriateness of these filters can be tested against the reduced form ARIMA(0,2,2) model.

5 Illustration Using US Real GDP

In this section we illustrate the relationship between the BN decomposition and various UC models using

U.S. postwar quarterly real GDP data from 1947:I through 2007:I.6 We first consider I(1) models and then

I(2) models.

5.1 I(1) Models

Figure 4 shows the log quarterly growth rate in percent along with the first 10 sample autocorrelations. The

first two autocorrelations are clearly non-zero and there appears to be a cyclical pattern in the higher order

autocorrelations. Determining the most appropriate ARIMA(p,1,q) forecasting model for real GDP growth

to compute the BN decomposition is a difficult task (e.g., see Campbell and Mankiw, 1987). Standard model

selection criteria (e.g., AIC and BIC) tend to select low order ARIMA(p, 1, q) models and the resulting BN

cycles tend to be noisy and lack business cycle features. We recommend using the ARIMA(p, 1, q) model

that is the unrestricted reduced form associated with the most general UC model to be considered. This

allows the reduced form model to potentially capture the dynamics implied by the UC models. In addition,

any restrictions imposed by the UC models can be directly evaluated by comparing likelihood values. We

consider the UC-ARIMA(2,1) model (13) as the most general model and use the unrestricted ARIMA(2,1,2)

model to compute the benchmark BN decomposition. To support this choice, we also fit all ARIMA(p, 1, q)

models with p, q ≤ 3 and found that the ARIMA(2,1,2) is preferred by the AIC and the ARIMA(1,1,0) is
preferred by the BIC.

Table 1 shows maximum likelihood (ML) estimates, under the assumption of normally distributed errors,

of the ARIMA(2,1,2) model, of the identified UC-ARMA(2,1) models discussed in subsection 3.3 as well

as the estimated moments γ0, γ1 and γ2 derived from the MA portion of the estimated reduced form

6The data were obtained from the FRED database at the Federal Reserve Bank of St. Louis.
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ARIMA(2,1,2) UC models
Estimate (std err) SSOE MNZ UC0 Proietti

μ 0.3453 (0.0718) - - - -
φ1 1.3649 (0.1452) 1.3649 1.3649 1.4971 1.4851
φ2 -0.7819 (0.1747) -0.7819 -0.7819 -0.5687 -0.5636
θ1 -1.1100 (0.2176) - - - -
θ2 0.6225 (0.2268) - - - -
σ� 0.9049 (0.0413) - - - -
d - - 0.8279 0.8279 0.8309 0.8311
σω - - 1.1118 1.1118 0.5998 0.6710
συ 0.5486 0.5541 0.6293 0.5178
θυ 0.0646 0 0 0.2076
ρωυ - - -1 -0.9487 0 0
γ0 2.1449 - 2.1449 2.1449
γ1 -1.4747 - -1.4747 -1.4747
γ2 0.5097 - 0.5097 0.5097

AR roots 0.8727±0.7192i
MA roots 0.8916±0.9008i

log-likelihood -317.6529 - -317.6529 -317.6529 -319.2908 -319.2572

Table 1: Estimates from the ARIMA(2,1,2) model and the corresponding UC models for U.S. real GDP.

ARIMA(2,1,2) model.7 All of the estimated parameters in the ARIMA(2,1,2) are significantly different from

zero, and the estimated persistence is ψ̂(1) = θ̂(1)/φ̂(1) = 1.229. The SSOE and MNZ (ρwv free and θv = 0)

models have the same likelihood value as the unrestricted reduced form and so are admissible models. In

the SSOE model, ρwv = −1 (since ψ̂(1) > 0) and θ̂v = −1.4789 which implies a non-invertible model for the
cycle. In the MNZ model, ρ̂wv = −0.9487. Although the model from Proietti (2006) (θv free and ρwv = 0)

is just identified by the order condition, the lower likelihood value indicates that restrictions imposed by

the model are not consistent with the unrestricted reduced form. The UC0 model (ρwv = θv = 0) has

the lowest likelihood and imposes one overidentifying restriction. The likelihood ratio statistic for testing

the overidentifying restriction is 3.2758, with a p-value of 0.0703, which is moderate evidence against the

restriction.

A useful diagnostic for evaluating fitted models of the business cycle involves comparing the moments

of the actual data with the moments of simulated data from the fitted models. For example, Figure 4 also

shows simulated data from the fitted ARIMA(2,1,2) model, the UC0 model, and the first ten population

autocorrelations from the models8. The autocorrelations from the ARIMA(2,1,2) match those from the data

whereas those from the UC0 model do not. This provides additional evidence against the UC0 model.

7All models were estimated using S-PLUS 7.0 with S+FinMetrics 2.0 as described in Zivot, Wang and Koopman (2004) and
Zivot and Wang (2006). S+FinMetrics 2.0 utilizes the algorithms in SsfPack developed in Koopman, Shephard, and Doornik
(1999).

8The population autocorrelations from the fitted UC0 model are estimated by averaging the sample autocorrelations from
500 simulated samples.
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The full set of admissible UC-ARMA(2,1) models is illustrated in Figure 3. This set is constructed

by finding all values of ρwv, θv and σv, with σ2w fixed according to (16) and the AR parameters fixed at

the ARIMA(2,1,2) values, such that the moment conditions (15) are satisfied. The figure shows that the

permissible range of correlation values, ρwv, is between about −0.76 and −1. For these values of ρwv, the
signal-to-noise ratio σw/σc varies from about 1.82 to 5.5. The set also shows that there is an invertible SSOE

model with ρwv = −1 and θv ≈ 0.06.
The range of permissible values for ρwv depends on the assumption of a UC-ARMA(2,1) model. Assuming

different dynamics for the cycle will generally imply a different range for ρwv. However, some general results

can be established. The sign of ρwv is related to ψ(1)2 computed from the reduced form ARIMA model.

For example, Lippi and Reichlin (1992) showed that if ρwv = 0 then it must be the case that ψ(1)2 < 1 .

Recently, Nakagura and Zivot (2006) showed that ψ(1)2 ≥ 1 implies ρwv < 0 and that ρwv < −
√
1− V −1

provided V > 1 where V = ψ(1)2σ2�/var(∆yt).

The cyclical component cBNt from the BN decomposition computed from the ARIMA(2,1,2) and the

filtered cyclical estimate ct|t computed from the SSOE and MNZ models are reported in Figure 5. The BN

decomposition is computed using (7) with

αt =

⎡⎢⎢⎢⎢⎣
∆2yt

φ2∆
2yt−1 + θ1�t + θ2�t−1 + θ3�t−2

θ2�t + θ3�t−1

θ3�t

⎤⎥⎥⎥⎥⎦ , T =
⎡⎢⎢⎢⎢⎣
φ1 1 0 0

φ2 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎦
and z0 = (1, 0, 0, 0)0 . The BN cycle is identical to the filtered cycles except for the first observation. The

key difference between the decompositions is that in the MNZ model the cycle is estimated with error.

Accordingly, ct|t is plotted with ±2×SE bands computed from the output of the Kalman filter which shows

considerable uncertainty about the estimated real-time cycle.9

All of the UC models that match the moments of the data have the same filtered estimates, but they

have different smoothed estimates. To illustrate this point, Figure 6 presents smoothed cycle estimates

ct|T from UC models with ρwv = −1, −0.9, and −0.8 that are consistent with the estimated ARIMA(2,1,2)
model. The smoothed estimates from the SSOE model are identical to the filtered estimates since the filtered

estimates are computed with zero mean squared error. The smoothed estimates for models with ρ = −0.9
and ρ = −0.8 are substantially different from the filtered estimates and attribute much more variability to

the cycle. Harvey and Koopman (2000) show that this behavior is due to the asymmetric nature of the

weights in the smoothing algorithm from UC models. Negatively correlated shocks will put more weight on

future observations than on past observations.

BN decomposition is often criticized because the reduced form ARIMA model is not well suited for cap-

9The confidence bands do not take into account sampling uncertainty associated with the estimated model parameters.
Bayesian methods could be used to produce highest posterior density intervals for the filtered cycles that incorporate parameter
uncertainty.
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ARIMA(2,1,2) UC models
True value Estimate Implied UC Est MNZ UC0

μ - 0.0411 - - -
φ1 1.4971 1.6042 1.6042 1.6042 1.5960
φ2 -0.5687 -0.6551 -0.6551 -0.6551 -0.6487
θ1 - -1.3623 - - -
θ2 - 0.3990 - - -
σ� - 0.9721 - - -
d 0.8309 - 0.8090 0.8090 0.8095
σω 0.5998 - 0.7030 0.7030 0.7359
συ 0.6293 - 0.3151 0.4727 0.5266
θυ 0 - 1.6235 0 0
ρωυ 0 - -1 0.2449 0

log-likelihood -334.8434 - -334.8434 -334.8602

Table 2: Estimates from the ARIMA(2,1,2) model and the corresponding UC models on simulated data from
the UC0 model.

turing the subtle dynamics that may exist in the data. Often low order ARIMA models (e.g., ARIMA(0,1,1)

or ARIMA(1,1,0)) are found to be the best fitting models by traditional model selection criteria, and these

models produce simplistic cycles by construction. It is argued (e.g., Harvey and Jaeger, 1993) that struc-

tural UC models with orthogonal components can be tailored to capture business cycle dynamics better than

reduced form ARIMA models. However, an appropriate reduced form ARIMA model can capture the same

type of dynamic behavior as a structural UC-ARMA model. To illustrate this point, we simulated data from

the fitted UC0 model given in column six of Table 1. We then fit the UC0, MNZ, ARIMA(2,1,2) models, and

then computed the filtered cycles from each approach. The estimation results are given in Table 2, and the

extracted cycles are compared in Figure 7. In terms of estimation, the AR parameters from all models are

similar and the estimated correlation from the MNZ model is small and positive. The LR test for ρwv = 0

in the UC model is 0.0336 with a p-value of 0.8546. The top panel of Figure 7 shows that cBNt from the

ARIMA(2,1,2) is very close to ct|t from the UC0 model. The bottom panel of Figure 7 compares cBNt from an

underspecified ARIMA(1,1,0) to ct|t and illustrates the typical empirical result that the BN decomposition

produces small noisy cycle estimates. Several points are worth noting here. First, the fact that the filtered

cycle from the UC0 model is not roughly equal to the BN cycle when applied to U.S. real GDP indicates that

either the restrictions are incorrect or that the UC0 model is misspecified. If the model was correct, they

should be roughly the same. Secondly, imposing restrictions on the parameter space may not be helpful for

a policymaker interested in real-time estimates. If the restrictions were valid, the BN decomposition would

provide the cycle. Finally, contrary to popular belief, the BN decomposition can produce smooth cycles. It

does not produce smooth cycles, however, for the U.S. real GDP data as illustrated by Figure 5.
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ARIMA(0,2,2) UC models
Estimate (std err) HP-ARIMA Single Source Two Source Two Source

θ1 -0.7396 (0.0592) -1.777 - -
θ2 -0.2604 (0.0534) 0.7994 - -
σ� 0.9391 (0.0447) 44.7258 - -
σω - - - 1.1836 1.1836 0.9810
σu - - - 0.0000 0.0000 0.0066
συ - - - 0.2445 0.5541 0.0000
ρωu - - - 1 0 0
ρωυ - - - -1 -0.9 0
ρuυ - - - -1 0 0
γ0 1.4241 9595.93 1.4241 1.4241
γ1 -0.4824 -6396.62 -0.4824 -1.4747
γ2 -0.2296 1599.16 -0.2296 -0.2296

MA roots
1.0000 + 0i
−3.8409 + 0i

1.111±
0.12467i

log-likelihood -328.4879 - -1132.94 -328.4879 -328.4879 -339.3109

Table 3: Estimates from the ARIMA(0,2,2) model and the corresponding UC models for U. S. real GDP.

5.2 I(2) Models

We focus initially on the ARIMA(0,2,2) model because it is the reduced form associated with the local linear

trend model, the HP filter, and some of the BFS and BFT filters. Table 3 shows MLEs of the ARIMA(0,2,2)

an identified UC-ARMA(0,0) model with ρwv = −0.9 and ρwu = ρuv = 0, the local linear trend model, and

implied estimates for some other models. One of the MA roots in the ARIMA(0,2,2) is almost unity which

indicates potential overdifferencing of the data. This is equivalently reflected by the near zero estimate of σu
in the UC-ARMA(0,0) models. Figure 9 shows the combinations of ρwv, ρwu and ρuv in the UC-ARMA(0,0)

model that produce the same likelihood value as the ARIMA(0,2,2) model. The figure shows that the

correlation between the trend and cycle shocks, ρwv, cannot take values higher than about -0.8, whereas

ρwu and ρuv appear not to be restricted. This result explains the lower likelihood value for the local linear

trend model which imposes zero correlation between all pairs of shocks. Column four in Table 3 gives the

ARIMA(0,2,2) model estimates implied by the HP filter restrictions on the local linear trend model. The

restrictions implied by the HP filter are clearly rejected by the data. Figure 8 shows the BN cycle computed

from (22) with

αt =

⎡⎢⎣ ∆yt�t

�t−1

⎤⎥⎦ , T =
⎡⎢⎣ 0 θ1 θ2

0 0 0

0 1 0

⎤⎥⎦
where z = (1, 0, 0, 0)0. The BN cycle is smaller in magnitude and noisier than the corresponding cycle from

the ARIMA(2,1,2) model
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A more realistic model is the ARIMA(2,2,3), which is the reduced form associated with the stochastic

slope UC-ARMA(2,0) and UC-ARMA(2,1) models used by Clark(1987) and Harvey and Jaeger (1993),

respectively. Table 4 reports the MLEs for the ARIMA(2,2,3). As with the ARIMA(0,2,2) model, there is a

near unit moving average root in the ARIMA(2,2,3) model.

In the UC-ARMA(2,1) model, not all of the parameters are identified since q + 2 = 5 > p+ 1 = 3. The

moment conditions from (24) used for identification are

γ0 = 2(1 + φ1 + φ21 − φ1φ2 + φ22)σ
2
w + (1 + φ21 + φ22)σ

2
u + 2(3− 4θv + 3θ2v)σ2v

+2(1 + φ1(φ1 + 1)− φ2(φ1 − φ2))σwu + 2(3 + 3φ1 − φ2 − θv − 3φ1θv + 3φ2θv)σwv
+2(1− φ1(θv − 2)− φ2(1− 2θv))σuv

γ1 = (−(φ1 + 1) + (φ1 − φ2)(φ2 − φ1 − 1))σ2w + (−φ1 + φ1φ2)σ
2
u + (7θv − 4θ2v − 4)σ2v

+((φ1 + 1)(φ2 − 1)− φ1(1 + φ1 − φ2)− φ22)σwu + (2(φ1 − φ2)(θv − 1) + (1− 2θv)
(φ2 − φ1 − 1) + (θv − φ1)− 3)σwv + ((θv − 2)(1− φ2)− 2φ1(1− θv)− θvφ2)σuv

γ2 = (φ1 − φ2 − φ2(φ1 + 1))σ
2
w − φ2σ

2
u + (1− 2θv + θv(θv − 2))σ2v

+(φ1 − 2φ2 − φ1φ2)σwu + (φ1 − 3φ2 + 1 + θv(φ2 − 3− φ1))σwv

+(−φ2 + 1− 2θv − φ1θv)σuv

γ3 = φ2σ
2
w + θvσ

2
v + φ2σwu + (φ2 + θv)σwv + θvσuv

A simple derivation shows that the variance of the shock to the slope does not depend on any of the

covariances.

σ2u = (γ0 + 2(γ1 + γ2 + γ3))/(1− 2φ1 − 2φ2 + 2φ1φ2 + φ21 + φ22)

When the covariances (σwu, σwv, σuv) are given arbitrarily after identifying σu, the three unknowns (σw, σv, θv)

are accordingly determined. Nonlinearity in the system of equations may result in multiple solutions.

For example, fixing (ρwu, ρwv, ρuv) at (1.0,−1.0,−1.0), (1.0,−0.95,−1.0) or (1.0,−0.95,−0.95) in the UC-
ARMA(2,1) model produces the same moments as the ARIMA(2,2,3) model and the resulting filtered esti-

mates ct|t are the same as cBNt . The combinations of the correlations that are admissible are similar to those

given in Figure 9 and are not reported. Whereas ρwu and ρuv are not bounded, ρwv is not allowed to take a

value above −0.75.
In the UC-ARMA(2,0) model, the MA parameter cycle is set to zero so that one of the correlations may

be estimated when the other two correlations are restricted. For example, if σwu = σuv = 0 are imposed,
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ARIMA(2,2,3) UC
Estimate (standard error) Single Source Multi Sources

φ1 1.3535 (0.1490) 1.3535 1.3535
φ2 -0.7677 (0.1714) -0.7677 -0.7677
θ1 -2.0915 (0.2149) - -
θ2 1.6985 (0.4208) - -
θ3 -0.6069 (0.2144) - -
σ� 0.9069 (0.0415) - -
σw - - 1.1280 1.1281
σu - - 0.0001 0.0001
σv - - 0.2213 0.5836
θv - - -1.4263 -
ρwu - - 1 0
ρwv - - -1 -0.9455
ρuv - - -1 0

AR roots 0.8815 ± 0.7249i
MA roots 1.0001, 0.8993 ± 0.9159i

Log likelihood -318.4413 -318.4413 -318.4413

Table 4: Estimates from the ARIMA(2,2,3) model and the corresponding UC models for U. S. real GDP.

the remaining parameters (σ2v, σ
2
w, σ

2
u, σwv)

0 can be calculated from Φ−1γ, where

Φ =

⎡⎢⎢⎢⎢⎣
−6 2(1 + φ1 + φ21 − φ1φ2 + φ22) 1 + φ21 + φ22 2(3 + 3φ1 − φ2)

−4 −1− 2φ1 + φ2 + 2φ1φ2 − φ21 − φ22 −φ1 + φ1φ2 −4− 4φ1 + 3φ2
1 φ1 − 2φ2 − φ1φ2 −φ2 1 + φ1 − 3φ2
0 φ2 0 φ2

⎤⎥⎥⎥⎥⎦

γ =

⎡⎢⎢⎢⎢⎣
σ2�(1 + θ21 + θ22 + θ23)

σ2�(θ1 + θ1θ2 + θ2θ3)

σ2�(θ2 + θ1θ3)

σ2�θ3

⎤⎥⎥⎥⎥⎦
The MLEs of the stochastic slope UC-ARMA(2,0) reported in Table 4 show σ̂u ≈ 0 and ρ̂wv = −0.9455 and
are very close to the MLEs of the MNZ model reported in Table 1. The BN cycle and filtered cycles from

the admissible UC-ARMA(2,1) models are essentially identical to those from the ARIMA(2,1,2) model.

6 Conclusion

The purpose of this paper was to clarify the relationship between the BN decomposition and UC models

with correlated shocks and to understand what information the BN decomposition can provide. The BN
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decomposition does convey some information about the correlation between permanent and transitory shocks.

The BN decomposition also imparts information on the fit of certain UC models and non-model based filters,

whose trends are random walks.

Univariate models have a limited ability to construct good forecasting models to obtain the BN cycle. UC

models and other non-model based filters try to provide additional information by forcing restrictions on the

data. For policymakers interested in real-time estimates of the cycle, placing restrictions on the process may

not be helpful. When the restrictions are valid and there actually is zero correlation between components,

the BN decomposition has the ability to extract a smooth cycle and can provide similar filtered estimates.

Correlation plays an important role in determining smoothed estimates and these smoothed estimates may

not be identified. While Harvey and Koopman (2000) argue against UC models with correlated components

because they may result in odd weighting patterns, the odd weighting patterns are a result of the data and

may indicate misspecification of the model. The disagreement between the filtered UC estimates and the

BN decomposition also provides further evidence along these lines.

Moving to multivariate forecasting models is one way to produce more realistic decompositions using

the BN decomposition. Results in Evans and Reichlin (1994) indicate that better forecasting models will

reduce the variability of the forecast error of the trend. This reduces the variability of the BN trend and

consequently produces smoother cycles. We believe users should focus on developing better forecasting

models using multivariate series that contain more information. Finally, while the BN decomposition has

many uses, we think users should hesitate to interpret the SSOE model as structural. Morley (2006) recently

discussed the economic and statistical implications of the SSOE representation and argued that it is not

plausible for US real GDP.
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Figure 1: BN decomposition of an ARIMA(0,1,1) process with θ = 0.3.
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Figure 2: BN decomposition of an ARIMA(0,1,1) process with θ = −0.3.
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Figure 3: Combinations of θv, σv and ρwv that satisfy the moment equations (15) from an ARIMA(2,1,2)
model for U.S. real GDP.
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Figure 4: Top: U.S. real GDP growth and SACF. Middle: Simulated data from ARIMA(2,1,2) and ACF.
Bottom: Simulated data from UC0 and ACF.
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BN Decomposition from ARIMA(2,1,2)
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Figure 5: BN decomposition for U.S. real GDP. Top: cBNt from ARIMA(2,1,2) model and ct|t from SSOE
model. Bottom: ct|t± 2 SE from MNZ model.
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Smoothed Cycle: Correlation = -0.9
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Figure 6: Smoothed cycles from UC-ARMA(2,1) models for U.S. real GDP.
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BN Cycle from ARIMA(2,1,2) and Filtered Cycle from UC0
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Figure 7: BN cycles, cBNt , and UC0 filtered cycles, ct|t, from models fit to simulated data from the UC0
model.
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Figure 8: BN decomposition from the ARIMA(0,2,2) model for U.S. real GDP.
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Figure 9: Combinations of ρwv, ρwu and ρuv that satisfy the moment equations (28) from an ARIMA(0,2,2)
model for U.S. real GDP.
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