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1. Introduction 

 The most damaging criticism of the hypothesis advanced by Nelson and Plosser 

(1982), that U.S. output contains a unit root, has come through the allowance of structural 

change under the alternative hypothesis of trend stationarity.  This was originally due to 

Perron (1989) and Rappoport and Reichlin (1989) who argued that Nelson and Plosser 

had overstated the frequency of permanent shocks by failing to allow for the possibility of 

a one time structural change.  Perron showed that the real GNP series used by Nelson and 

Plosser is no longer consistent with the unit root hypothesis if a change in level, occurring 

at 1929, is considered.  Perron’s conclusion is that from 1909 to 1970, there is only one 

permanent shock, a negative one, and the rest of the variation in output is transitory 

around a time trend. 

 In Perron (1989), the date of the trend break, 1929, was assumed to be known a 

priori. This drew criticism originally from Christiano (1992) who suggested that Perron’s 

results may be tainted by the assumption that the break date was known.  Using a 

bootstrap procedure, he demonstrated that if the break date is allowed to be data 

dependent, then the critical values are much larger (in absolute value) than those 

tabulated by Perron.  Zivot and Andrews (1992) and Banerjee et al. (1992) derived the 

limiting distribution of the unit root statistic when the break date is endogenized.  Zivot 

and Andrews (1992) demonstrate that Perron’s conclusion that U.S. GDP is stationary 

around a broken time trend still holds once critical values are adjusted to reflect 

estimation of the break date. 

 Since Perron, the literature has been flooded by papers which study the asymptotic 

distribution of unit root and/or trend break statistics under various methods for selecting 

the break date.  This paper adds to the literature by deriving the asymptotic distribution of 

statistics on structural change coefficients, as well as statistics testing the joint null 

hypothesis of a unit root and no structural change.  The latter potentially offer an increase 

in power over statistics which just test the unit root null.  We then apply our results to the 

Maddison (1995) annual U.S. real GDP series, and post-war quarterly chained U.S. real 

GDP. 



 2

 This paper is organized as follows.  Section 2 reviews the literature on testing for unit 

roots and trend breaks.  Section 3 presents the test statistics and derives their asymptotic 

distributions.  Section 4 analyzes finite sample size and power.  Section 5 applies our 

results to U.S. GDP.  Section 6 summarizes and offers concluding remarks. 

2. Testing for Unit Roots and Trend Breaks:  A Brief Review of the Literature 

 Scattered throughout the literature is a plethora of results on the asymptotic 

distribution of unit root and structural change statistics when the break date is 

endogenized.  In this section, we review these results for models which allow for (at 

most) one break in trend, and point out what has yet to be done. We divide the cases into 

trending and non-trending data.   

2.1 Non-trending data  

 For non-trending data, the null hypothesis is a driftless unit root process with or 

without break, and the alternative is a stationary process with a one time change in mean.  

There are two methods of modeling trend breaks in the literature.  The additive outlier 

(AO) approach models the break as an abrupt change, while the innovational outlier (IO) 

approach allows the break to occur gradually. Since most of the empirical work has used 

the (IO) approach, we concentrate on this method.  For a detailed discussion of modeling 

innovational and additive outliers, the reader is referred to Vogelsang and Perron (1994).  

In general, all statistics for non-trending data are asymptotically invariant to a mean shift 

under the null hypothesis.  We thus present the following unit root null hypothesis 

without a break in level: 

  ttt uyy +=
−10   :H  (1) 

where  ;)(*
tt eLu ψ=  );()1()( * LLL ψρψ −=   );()()( 1** LBLAL −

=ψ  ),0(~ 2
σiidet  and 

 )(* LA and  )( LB are pth  and qth  order lag polynomials with roots strictly outside the unit 

circle.  Under the null hypothesis, ρ = 1 and θ = 0. The alternative hypothesis allows for a 

one time change in mean of a stationary process (ρ < 1) and is as follows: 

  , )e)()((   :H t1 ++= tBt TDULay θψ  (2) 

where otherwise; 0 and  if 1)( BtB TtTDU >=  tBTDU )( is the “step dummy” capturing a 

level shift at time TB (the break date). Under the alternative θ represents the immediate 
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change in mean and ψ(1)θ  represents the long run change in mean.  For this model, the 

test regression is: 

  t

k

i
tittBt eycyTDUay ˆˆˆ)ˆ(ˆˆ

ˆ

1
11 ++++= ∑

=

−−
∆ρθ , (3) 

where BT̂  is the estimated break date and k̂  is the estimated lag length. 

 Following the theoretical treatment of Said and Dickey (1984), k lagged differences 

are included in the regression equation to account for serial correlation in the innovation 

sequence.  Said and Dickey prove that if k diverges as T diverges, but at a slower rate, 

then the asymptotic distribution of the ADF test is unaffected.  For unit root tests which 

allow for structural change at an unknown point, there does not exist a proof that such a 

result is valid. In subsequent theoretical derivations, we shall assume that the errors are 

iid which simplifies the presentation of the results. We follow Zivot and Andrews (1992) 

and conjecture that adding k lags to the regression will correct for serial correlation. 

 As another matter, the correct number of lagged terms to include in the regression 

equation is unknown and must be chosen by the researcher.  Choosing k too small results 

in a size bias, while choosing k too large results in a loss of power.  In practice, certain 

data dependent methods for selecting k lead to an increase in power over fixing k as in 

Said and Dickey (1984) (unless of course you happen to choose the correct value of k).  

For standard ADF regressions, Hall (1994) proves that a number of such data based 

procedures leave the asymptotic distribution of the unit root statistic unaffected when the 

error terms follow a pure AR(p) process.  Ng and Perron (1995) extend Hall’s results to 

the ARMA(p,q) case.  Among the methods analyzed are a general to specific (GS) 

strategy and the Schwartz information criterion (SIC).   As long as the maximum lag in 

the selection set is allowed to grow appropriately with the sample size, both methods are 

shown to have zero probability of underfitting as the sample size diverges.  This implies 

that the asymptotic critical values, which assume that k is known, are valid under such 

data dependent methods for selecting k.  While such a result is likely to hold for unit root 

tests with structural change at an unknown point, a proof is apt to be quite involved.  

Again we conjecture that such a result exists, and in the subsequent empirical application, 

we shall employ both GS and SIC.   
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 It should also be noted that for a particular regression, the lag length and break date 

are determined simultaneously.  This will influence the finite sample performance of the 

test statistics.  The appropriate method used to choose TB is context specific.  If rejection 

of the unit root hypothesis is desired, then the break date should be that which minimizes 

the unit root  statistic.  However, if one is just concerned with the dating of structural 

change, then choosing the break date to maximize some function of θ̂   is appropriate. 

 Table 1 presents the relevant statistics from regression (3), and their origin.  Blank 

spaces indicate what has yet to be done.  Perron and Vogelsang (1992) derive the 

asymptotic distribution of the unit root statistic where the break date is chosen to 

minimize the unit root statistic.  This is denoted as 
ρ

tinf . They demonstrate that the AO 

approach is asymptotically equivalent to the IO approach.  They also consider the 

distribution of the unit root statistic when the break is chosen to minimize the one sided t-

test of no structural change.  This statistic is denoted as )inf(, θρ
t . In general, when a dummy 

variable statistic is used to choose the break date, the asymptotic equivalence of unit root 

statistics between the AO and IO approaches does not hold. 

Table 1.  Non-trending data 

∑
=

−−
+∆+++=

k

i
ttittBt eycyTDUay

ˆ

1
11 ˆˆˆ)ˆ(ˆˆ ρθ  

 
Statistic Origin 

ptinf  PV: AO/IO 

),inf(θρt  PV:  AO/IO 

)inf(, ρθWald   

θ
Waldsup  V:  AO  -  P:  AI/IO 

ρθ ,supWald   
PV is Perron and Vogelsang (1992).  V is Vogelsang (1997) 
 

 Incorporating a priori knowledge of the sign of the break date can lead to an increase 

in power.  Perron and Vogelsang demonstrate that )inf(, θρt  has greater power than 

ρ
tinf when the break date is negative.  A similar result holds for )sup(, θρt    when θ > 0. 
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 The literature also contains some distributional results for tests statistics concerning 

structural change coefficients. Perron and Vogelsang (1992) derive the asymptotic 

distribution of the mean shift statistic, but critical values are not reported. Vogelsang 

(1997), modeling the break as an additive outlier, derives the asymptotic distribution of 

the mean-Wald, exp-Wald, and sup-Wald tests of the no structural change null for I(0) 

and I(1) data.  The mean-Wald and exp-Wald tests cannot be used to estimate the break 

date, whereas the sup-Wald test can. These are extensions of the tests considered by 

Andrews (1993), and optimal tests considered by Andrews and Ploberger (1994) for 

deterministically and stochastically trending data.  However, the optimality properties do 

not carry over to trending or integrated data.  Vogelsang just considers the 2-sided Wald 

test that θ = 0.  Also of interest are the 1-sided t-tests that θ = 0, which may lead to higher 

power if the sign of the break date is known a priori. 

 Two statistics in this context have not yet been computed.  The first concerns 

inference on θ when TB is chosen to minimize 
ρ

t .  Second is the Wald test of the joint 

null that ρ = 1 and θ = 0.  We denote this statistic as 
ρθ ,supWald .  This may offer an 

increase in power over the 
ρ

tinf and 
θ

Waldsup  statistics which do not explicitly test a 

subset of the null hypothesis. 

2.2 Trending data  

 For trending data, three different alternative hypotheses have been considered.  The 

first, labeled Model A by Perron (1989) allows for a change in level under the alternative 

hypothesis.   Model B allows for a change in the growth rate under the alternative, and 

Model C allows for both types of structural change.  In general, all statistics for trending 

data are asymptotically invariant to a level shift under the null, but not to a change in 

slope.  Thus, statistics for Model B and Model C will have different limiting distributions 

depending on whether a change in growth is allowed under the null.  However, as pointed 

out by Vogelsang and Perron (1994), for changes in growth of the size typically 

encountered in practice, the no break asymptotics provide a better approximation to the 

finite sample distribution of the unit root statistics.  We will thus present the models 

without a change in level or growth under the null. 

 All three models have the common null hypothesis: 
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  ttt uyy ++=
−10   :H µ , (4) 

where }{ tu obeys the restrictions in (1).  The three alternative hypotheses can be written 

as follows: 

   )eTDULtay   H ttBt
A

1 +++= )()((: θψµ , (5) 

    )eTDTLtay   H ttBt
B
1 +++= )()((: γψµ , (6) 

and 

    )eTDTTDULtay   H ttBtBt
C
1 ++++= )()()((: γθψµ . (7) 

The “ramp” dummy  )( tBTDT is t – TB if t > TB and 0 otherwise, γ is the immediate 

change in growth allowed under the latter two alternatives, and ψ(1)γ is the long run 

change. The corresponding test regressions are: 

  ∑
=

−−
+∆++++=

k

i
ttittBt eycytbTDUay

ˆ

1
11 ˆˆˆˆ)ˆ(ˆˆ ρθ , (8) 

  ∑
=

−−
+∆++++=

k

i
ttittBt eycytbTDTay

ˆ

1
11 ˆˆˆˆ)ˆ(ˆˆ ργ , (9) 

and 

  ∑
=

−−
+∆+++++=

k

i
ttittBtBt eycytbTDTTDUay

ˆ

1
11 ˆˆˆˆ)ˆ(ˆ)ˆ(ˆˆ ργθ . (10) 

 For the sake of clarity, we shall discuss the origin of the statistics for all three models 

separately.  Table 2A contains a description of the Model A statistics. 

Table 2A.  Trending data - Model A 

∑
=

−−
+∆++++=

k

i
ttittBt eycytbTDUay

ˆ

1
11 ˆˆˆˆ)ˆ(ˆˆ ρθ  

Statistic Origin 
At
ρ

inf  ZA:  IO  -  BLS:  IO 
VP:  AO  -  P:  IO 

A
ρ,Wald(θ)

t  BLS:  IO 
VP:  AO  -  P:  IO 

AWald
)inf(, ρθ
  

AWald
θ

sup  BLS:  IO 
AWald
ρθ ,sup   

ZA is Zivot and Andrews (1992).  BLS is Banerjee, Lumsdaine, and Stock (1992).  VP is Vogelsang and Perron (1994).  P is Perron 
(1997). 
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 Choosing the break date to minimize the unit root statistic, Zivot and Andrews 

(1992), Banerjee et al. (1992), and Perron (1997) derive the distribution of unit root 

statistic, 
ρ

tinf , under the no break null with innovational outliers. Modeling the break as 

an additive outlier, Vogelsang and Perron (1994) derive At
ρ

inf  with no break under the 

null.  Vogelsang and Perron (1994) and Perron (1997) also derive the unit root statistic 

when TB is chosen via a statistic on θ̂ .  We will generically refer to this as A
ρ,Wald(θ)

t , even 

though the break date is usually chosen to maximize or minimize the 1-sided t-test that θ 

= 0. 

 Banerjee et al. (1992) derive the Wald test that θ = 0, denoted AWald
θ

sup .  Also of 

interest are the 1-sided t-tests of the same hypothesis.   

 As in the case of non-trending data, neither AWald
)inf(, ρθ
 nor AWald

ρθ ,sup  have yet been 

considered.  The former is appropriate when one performs the Zivot-Andrews unit root 

test, and then wishes to perform inference on θ, conditional on the chosen break date.  As 

mentioned before, the latter may offer an increase in power over either At
ρ

inf  or 

AWald
θ

sup . 

 Table 2B presents analogous results for Model B.  Since they basically mirror Table 

2A, we forgo a discussion. 

Table 2B.  Trending data - Model B 

∑
=

−−
+∆++++=

k

i
ttittBt eycytbTDTay

ˆ

1
11 ˆˆˆˆ)ˆ(ˆˆ ργ  

Statistic Origin 
Bt
ρ

inf  ZA:  IO  -  BLS:  IO 
VP:  AO  -  P:  AO 

B
ρ,Wald(γ)

t  BLS:  IO 
VP:  AO  -  P:  AO 

BWald
)inf(, ργ
  

BWald
γ

sup  BLS:  IO 
BWald
ργ ,
  

ZA is Zivot and Andrews (1992).  BLS is Banerjee, Lumsdaine, and Stock (1992).  VP is Vogelsang and Perron (1994).  P is Perron 
(1997). 
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 Model C results are presented in Table 3C.  Given that there are 2 structural change 

coefficients, there are many more cases to consider.    To conserve space, we shall 

primarily focus on what has not yet been done. Although Vogelsang derives the mean-

Wald, exp-Wald, and sup-Wald tests of the hypothesis that Model C contains no level 

shift or a change in growth, again for both I(0) and I(1) data, the individual 1-sided and 2-

sided tests are of interest. There is also the joint Wald test that θ = γ = 0 when the break 

date minimizes the unit root statistic, CWald
)inf(,, ργθ
. Finally, there is the joint Wald test that 

ρ = 1 and θ = γ = 0.   

 
Table 2C.  Trending data - Model C 

∑
=

−−
+∆+++++=

k

i
ttittBtBt eycytbTDTTDUay

ˆ

1
11 ˆˆˆˆ)ˆ(ˆ)ˆ(ˆˆ ργθ  

Statistic Origin 
 

C
ptinf  

ZA:  IO 
VP:  AO  -  P:  IO 

C
Waldt )(, γρ

 VP:  AO  -  P:  AO 
CWald

)inf(,, ργθ
  

CWald
θ

sup   
CWald
γ

sup   
CWald
γθ ,

sup  V: AO 
CWald

ργθ ,,
sup   

 
 

 In Section 3, we shall catalog the distributions of test statistics for no structural 

change, and derive the distributions of test statistics for the joint null hypothesis that there 

is a unit root without a break in trend. 

3. Asymptotic Distribution of the Test Statistics 

 In this section, we derive the asymptotic distributions of structural change statistics, 

as well as the joint distributions of statistics concerning the largest autoregressive root 

and structural change coefficients.  The latter potentially offer a gain in power over tests 

which do not explicitly test the unit root hypothesis.   In the theorems to follow, we 

restrict the  innovation sequence to be iid, but the results remain valid in the presence of 
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ARMA(p,q) errors as long as k lagged difference terms are included in the regression.  

We consider non-trending and trending data separately.   

3.1 Non-trending data 

 Following Zivot and Andrews (1992) and Banerjee et al. (1992) we specify a no break 

null hypothesis and innovational outliers.  Recall the null hypothesis and test regression: 

  ttt uyy +=
−10   :H , (1)’ 

and 

  ∑
=

−−
++++=

k

i
ttittBt eycyTDUay

ˆ

1
11 ˆˆˆ)ˆ(ˆˆ ∆ρθ . (3)’ 

Let 
T
TB

≡λ  be the break fraction.  For all the results which follow, we assume that λ  

remains constant as ∞→T . 

 We first consider 4 different statistics to test the null hypothesis that θ = 0.  Let 

θ
Waldsup and ||sup

θ
t  be the 2-sided tests where λ is chosen to maximize the Wald 

statistic, and the absolute value of the t-statistic respectively.  Also, let 
θ
tsup  and 

θ
tinf be 

the 1-sided tests which maximize and minimize the t-statistic respectively.  The latter 

should be used if one has a priori knowledge of the sign of θ. 

 Following Zivot and Andrews, we can characterize the asymptotic distributions of 

these statistics in terms of projection residuals.  Let ),(* rDU λ  be the projection residual 

from the continuous time regression: 

  ; ),()(ˆˆ),( *
10 rDUrWrDU λααλ ++=  

where   if 1),( λλ >= rrDU and 0 otherwise, and )(rW is standard Browning motion. 

That is, 10 ˆ and ˆ αα  solve 

  
α

ααλ

 

)(),(  min
1

0

2

10∫ −− drrWrDU . 

 Since we are considering 4 test statistics of the null that θ = 0, it is helpful to 

introduce some simplifying notation.  Let 2
1 )( xxg = , ||)(2 xxg = , and xxg =)(3 .  Also, 
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let )(λ
θ

t denote the t-test for θ = 0 as a function of the break fraction λ.  For example 

[ ])(1 λ
θ

tg  corresponds to the Wald test that θ = 0. We then have the following theorem. 

 

Theorem 3.1.A.  Let }{ ty  be generated under the null hypothesis (1) and let  }{ tu be iid, 

mean 0, with .0 2
∞<< σ   Let Λ  be a closed subset of (0,1).  Then, 

  [ ]

ΛλΛλ

λλλ
θ

∈∈



































⇒ ∫∫

−

                      

)(),(),(      sup     )(   sup   
1

0

*

2/11

0

2* rdWrDUdrrDUgtg ii , 

 

for i=1,2,3, and  

   

ΛλΛλ

λλλ
θ

∈∈





















⇒ ∫∫

−

              

)(),(),(     inf     )(  inf   
1

0

*

2/11

0

2* rdWrDUdrrDUt  

 

as ∞→T , where ⇒  denotes weak convergence in distribution in the sense of Billingsley 

(1968).  The proof of this theorem proceeds along the lines of Zivot and Andrews (1992) 

and is therefore omitted.  

 We also consider the distribution of the step dummy t-statistic when the break date is 

chosen to minimize the unit root statistic.  This is useful in circumstances where the unit 

root statistic is calculated as in Zivot and Andrews (1992), and then one wants to perform 

inference on .θ   Following is the distribution of the Wald test for θ = 0, choosing the 

break date to minimize 
ρ

t .  We denote this statistic as )inf(, ρθ
Wald . 

 

Theorem 3.1.B.  Let }{ ty  be generated under the null hypothesis (1) and let  }{ tu be iid, 

mean 0, with .0 2
∞<< σ   Let Λ  be a closed subset of (0,1).  Then, 

  
21

0

**
11

0

2**
)inf(, )(),(),(    )( 















⇒ ∫∫
−

rdWrDUdrrDUWald λλλ
ρθ

 

where 
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Λλ

λλλ

∈
















= ∫∫
−

      

)(),(),(  minarg
1

0

*
2/11

0

2** rdWrWdrrW  

and the last term is the Perron and Vogelsang (1992) unit root statistic.   

 We now turn to the distribution of the Wald test of the null that θ = 0 and ρ = 1. Let 

ρθ ,supWald  denote this test statistic. Let ))(),,((),(1 rWrDUrX λλ =′ and 1)(2 =rX .  

Then ),(1
* rX λ is the projection residual from the continuous time regression which 

minimizes: 

  

0

21

0
201

 

)(),(  min

α

αλ drrXrX∫ −

. 

We then have the following result: 

 

Theorem 3.1.C.  Let }{ ty  be generated under the null hypothesis (1) and let  }{ tu be iid, 

mean 0, with .0 2
∞<< σ   Let Λ  be a closed subset of (0,1).  Then, 

ΛλΛλ

λλλλλ
ρθ

∈∈
















 ′
′








⇒ ∫∫∫
−

                     

.)(),( ),(),()(),(     sup   )(  sup  
1

0

*
1

1
*
1

1

0

*
1

1

0

*
1, rdWrXdrrXrXrdWrXWald

 

 The asymptotic critical values for the statistics in Theorems 3.1.A – 3.1.C are 

presented in Table 3.  The first row corresponds to the sup-Wald test analyzed by 

Vogelsang (1997) when the data are integrated.  To simulate the asymptotic critical 

values, we generated driftless random walks with N(0,1) errors using the GAUSS rndn 

function.  We set the sample size at 1000 and calculated the finite sample versions of the 

terms in Theorem 3.1.  This was repeated this 50,000 times.  An upper bound on the 

standard errors of the critical values is 0.0022. 

3.2 Trending data 

 We now turn to the analysis of trending data.  Recall the null hypothesis and test 

regressions: 

  ttt uyy ++=
−10   :H µ , (4)’ 
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  ∑
=

−−
+++++=

k

i
ttittBt eycytbTDUay

ˆ

1
11 ˆˆˆˆ)ˆ(ˆˆ ∆ρθ , (8)’ 

  ∑
=

−−
+++++=

k

i
ttittBt eycytbTDTay

ˆ

1
11 ˆˆˆˆ)ˆ(ˆˆ ∆ργ , (9)’ 

and 

  ∑
=

−−
++++++=

k

i
ttittBtBt eycytbTDTTDUay

ˆ

1
11 ˆˆˆˆ)ˆ(ˆ)ˆ(ˆˆ ∆ργθ . (10)’ 

We first consider individual 1-sided and 2-sided tests for in Models A, B, and C. Let 

),( rDU A
λ , ),( rDT B λ , ),( rDU C

λ , and ),( rDT C λ be the projection residuals from the 

following continuous time regressions: 

  

   ),()(ˆˆˆ),( 210 rDUrWrrDU A
λαααλ +++= ,  

   ),()(ˆˆˆ),( 210 rDTrWrrDT B
λαααλ +++= , 

   ),()(ˆ),(ˆˆˆ),( 3210 rDUrWrDTrrDU C
λαλαααλ ++++= , 

and 

   ),()(ˆ),(ˆˆˆ),( 3210 rDTrWrDUrrDT C
λαλαααλ ++++=  

respectively; where   if  ),( λλλ >−= rrrDT and 0 otherwise.  Letting )(λ
θ

At , )(λ
γ

Bt , 

)(λ
θ

Ct , and )(λ
γ

Ct denote 4 t-statistics under consideration, we have the following result. 

 

Theorem 3.2.A.  Let }{ ty  be generated under the null hypothesis (4) and let  }{ tu be iid, 

mean 0, with .0 2
∞<< σ   Let Λ  be a closed subset of (0,1).  Then, 

 

  
[ ]

                       

)(),(),(     sup     )(    sup   
1

0

2/11

0

2

ΛλΛλ

λλλ
θ

∈∈



































⇒ ∫∫

−

rdWrDUdrrDUgtg AA
i

A
i , 
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)(),(),(    inf     )(   inf   
1

0

2/11

0

2

ΛλΛλ

λλλ
θ

∈∈





















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−

rdWrDUdrrDUt AAA

, 

 

  
[ ]
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for i = 1,2,3 and gi (⋅) as in Section 3.1. 
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 Critical values for these statistics are presented in Tables 4, 5, and 6 for Models A, B, 

and C respectively.  The first rows in Tables 4 and 5 correspond to the F-statistics 

computed by Banerjee et al. (1992). 

 We next consider the Wald test for the joint hypothesis that there is neither a level 

shift nor a change in growth in Model C (θ = γ = 0).  Denote this statistic as CWald γθ ,sup . 

 

Let )),(),,((),( rDTrDUrDC
λλλ =′  and ))(,,1()(2 rWrrX C

=′ .  Then ),(* rDC
λ is the 

projection residual from the continuous time regression which minimizes: 

  

α

αλ
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0
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∫ − . 

We then have the following result. 

 

Theorem 3.2.D. Let }{ ty  be generated under the null hypothesis (4) and let  }{ tu be iid, 

mean 0, with .0 2
∞<< σ   Let Λ  be a closed subset of (0,1).  Then, 
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Critical values for this statistic are in the 9th row of Table 6 and correspond to the sup-

Wald test analyzed by Vogelsang (1997) for I(1) data.  

 

  Also reported in the 5th rows of Tables 4 and 5 and the 10th row of Table 6 are 
AWald )inf(,sup

ρθ
, BWald )inf(,sup

ργ
, and CWald )inf(,,sup ργθ  , the Wald tests of no structural 

change when the break is chosen to minimize the unit root statistic.  These distributions 

are derived in the following theorem. 

 

Theorem 3.2.E.  Let }{ ty  be generated under the null hypothesis (4) and let  }{ tu be iid, 

mean 0, with .0 2
∞<< σ   Let Λ  be a closed subset of (0,1).  Then, 
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where the last three terms are the Zivot-Andrews unit root statistics for Models A, B, and 

C respectively.   

 We conclude this section by deriving the limiting distributions for AWald
ρθ ,sup , 

BWald
ργ ,sup , and CWald

ργθ ,,sup ; the tests of the joint null hypothesis of a unit root and no 

structural change.  Let ))(),,((),(1 rWrDUrX A
λλ =′ , ))(),,((),(1 rWrDTrX B

λλ =′ , 

))(),,(),((),(1 rWrDTrDUrX C
λλλ =′ , and ),1()()()( 222 rrXrXrX CBA

=′=′=′ . Let 

),(*
1 rX j

λ denote the projection residual from the continuous time regression of 

),(1 rX j
λ on )(2 rX j for j = 1,2,3.  We then have the following. 
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Theorem 3.2.F. Let }{ ty  be generated under the null hypothesis (4) and let  }{ tu be iid, 

mean 0, with .0 2
∞<< σ   Let Λ  be a closed subset of (0,1).  Then, 
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Critical values for these are reported in the final rows of Tables 4 - 6. 

4. Finite Sample Size and Power 

 In this section, we ascertain the finite sample properties of the statistics presented in 

Section 3, in terms of size and power.  Table 7 presents the empirical size of selected test 

statistics at the 5% and 10% nominal significance levels for sample sizes T=100 and 200.  

Since all statistics are asymptotically invariant to µ, we set it to zero. The number of 

iterations is 5,000 for all simulations to follow. 

 Generally, the asymptotic critical values provide a reasonable approximation to the 

finite sample distributions, for sample sizes as low as 100.  Doubling the sample size only 

results in a slight mitigation of the size distortion. 

 We now turn to the relative power of the joint and individual test statistics.  We 

consider two values for ρ  under the alternative hypothesis; 0.9 and 0.7.  The range of 

γθ  and considered are 0.5, 1, 2, 3.  The last value corresponds to a break 3 times the size 
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of the innovation standard deviation.  We also consider negative values of γθ  and .  The 

results are similar and are available upon request from the authors.   

 Table 6 presents the power for non-trending data at the 5% and 10% significance 

levels.  A few points are in order.  First, the 1-sided test for no structural change has 

higher power than the 2-sided test.  This result corroborates the finding of Vogelsang and 

Perron (1994) and Perron (1997) that imposing a sign for the trend break leads to an 

increase in power. Second 
ρθ ,supW  statistic uniformly dominates 

θ
Wsup and 

θ
tsup  for all 

values of ρθ  and .  However, all statistics are dominated by the 1-sided unit root test.  

This result is analogous to a finding of Dickey (1984).  They demonstrate that in standard 

ADF tests, the t-statistic for the unit root null has more power than F-tests of the joint null 

hypothesis of a  unit root and no time trend.  In practice, if the researcher is interested in 

performing inference on θ , then for non-trending data, the ρθ ,supWald  test should be 

implemented. 

 A different picture emerges for trending data.  Tables 9-11 present size adjusted 

power for Models A, B, and C respectively.  The 1-sided unit root statistic no longer 

uniformly dominates the others in term of power.  For Model A, the test which has the 

highest power depends on ρ.  For ρ = 0.9, and a level shift in the range of 1 to 2 

innovation standard deviations,  the At
θ

sup  test is the clear winner.  However, for ρ = 0.7, 

the AWald
ρθ ,sup  outperforms the At

θ
sup  test.   

 Turning now to Model B, for changes in growth in the range of 0.5 to 1 innovation 

standard deviation, the one sided test , Bt
γ

sup , is the clear winner for both value of T and 

ρ.  There does not appear to be a distinct advantage to performing the BWald
ργ ,sup  test 

over the 1-sided test for structural change or a unit root.  For larger changes in growth, all 

tests perform remarkably well.  But as we shall see in the next section, changes in growth 

this size do not occur is U.S. output. 

5. Application to U. S. GDP 

 As an empirical application, we reconsider the Zivot-Andrews unit root tests on 

annual and quarterly U.S. real GDP analyzed by Murray and Nelson (1998).  Murray and 

Nelson perform the Model A unit root test on the Maddison (1995) annual GDP series 
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(1870-1994), and the Model B unit root test on post-war quarterly chained U.S. GDP 

(1947.1–1997.3). They demonstrate that whether the lag length is selected by the general 

to specific (GS) strategy or the Schwartz information criterion (SIC), the unit root null is 

rejected at the 5% for annual GDP, but not at the 10% level for quarterly GDP.  These 

regressions are presented in Table 12.  Since each test considered in this section chooses 

the same break date for annual and quarterly data (1929 and 1972.2), we present the 

results for each series and lag selection procedure as one regression.  As in Perron (1989) 

and Zivot and Andrews (1992), the maximum lag length considered is 8 for annual data 

and 12 for quarterly data.  For either frequency, GS chooses the maximum lag allowed, 

while SIC chooses only 1. 

 Using the critical values from the 5th row in Tables 4 and 5, we can assess whether or 

not γθ ˆor  ˆ , the step and ramp dummy coefficients, are significant when the break date is 

chosen to minimize 
ρ

t .  (These are the AWald )inf(, ρθ
 and BWald )inf(, ργ

 statistics).  For the 

annual series (Model A), the level shift is significant at the 10% level for GS, but 

insignificant for SIC.  While both methods of lag selection result in rejection of the unit 

root null, GS suggests stationarity around a broken trend, while SIC indicates stationarity 

around a constant trend. 

 To assess whether there has been structural change while not explicitly testing the unit 

root hypothesis, we perform the 1-sided At
θ

inf  test.  This statistic is significant at the 5% 

level for GS, but not significant at the 10% level for SIC.   

 We now turn our attention to the AWald
ρθ ,sup  statistic, which tests the joint null 

hypothesis.  This statistic is significant at the 5% level for both methods of lag selection.  

It thus suggests that GDP is stationary around a broken trend. The disagreement between 
AWald
ρθ ,sup  and At

θ
inf , for SIC, may be due to poor power properties of At

θ
inf  when only 

a subset of the null is violated, i.e. 1<ρ  and 0≠θ . 

 In Section 4 we demonstrated that for level shifts of the size estimated for this series 

(1 to 2 innovation standard deviations), and a non-local autoregressive root (0.7), the  

power of the AWald
ρθ ,sup  statistic dominates the 1-sided tests for structural change, but is 

dominated by the 1-sided Zivot-Andrews unit root test.  Given that none of the statistics 
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have an appreciable finite sample size distortion, these results lead us to conclude that 

annual GDP is stationary around a broken trend. 

  Analogous statistics for quarterly GDP are also presented in Table 12.  For this 

series, which appears to have a unit root, we find that the pre and post break growth rates, 

based on the BWald )inf(, ργ
 statistic, are not statistically different under either method of lag 

selection.  A different picture emerges if we compute the 1-sided Bt
γ

inf  test for a change 

in growth.  Under GS, there is not a statistical difference in growth rates, but the SIC 

results in a rejection of the null at the 10% level. 

 Turning to the BW
ργ ,sup , for both methods of lag selection the joint test corroborates 

the Zivot-Andrews unit root test.  Neither is significant at the 10% level.   

 We demonstrated in Section 4 that for the small changes in growth (less that 1 

innovation standard deviation) that this series appears to exhibit, the 1-sided tests for 

structural change uniformly dominate all other statistics in terms of power.  Since both 

methods of lag selection lead to different outcomes for the Bt
γ

inf  test, we can conclude 

that there is a unit root, but we are uncertain as to whether the rate of growth has changed 

in the postwar period. 

6. Summary and Concluding Remarks 

 The purpose of this paper has been to fill in the gaps in the literature concerning the 

asymptotic distributions of test statistics for a unit root and/or structural change.  We 

derive 1 and 2-sided tests for the null of no structural change as well as joint tests of the 

hypothesis that a time series is integrated without structural change.  The motivation for 

the latter is the potential increase in power over tests which do not explicitly test the unit 

root hypothesis.   

 For Model A, no clear winner emerges.  For level shifts of the size estimated for U.S. 

real GDP, the joint test has higher power than individual tests for non-local 

autoregressive roots.  However, the situation is reversed for a local root.  For Model B, 

the 1-sided tests for structural change dominate the joint tests for small changes in 

growth, regardless of the size of the autoregressive root.   
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 We apply the tests derived here to annual and quarterly U.S. real GDP.  Almost all 

tests agree that the 1870-1994 annual GDP series is stationary around a broken time trend 

with a change in level occurring at 1929.  While all tests indicate that the 1947.1-1997.3 

quarterly GDP series has a unit root, there is not a consensus as to whether or not the 

growth rate began to slow in 1972.2. 
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