11 Escola de Séries
 Temporais e Econometria

Analysis of High Frequency Financial Time Series: Methods, Models and Software

Eric Zivot
Associate Professor and Gary Waterman Distinguished Scholar, Department of Economics
Adjunct Associate Professor, Department of Finance University of Washington

August 1, 2005

Agenda

- Lecture 1
- Introduction to high frequency data
- Lecture 2
- Realized variance measures: theory
- Lecture 3
- Realized variance measures: empirical analysis

Data Sources

- Much of the published empirical analysis of RV has been based on high frequency data from two sources:
- Olsen and Associates proprietary FX data set for foreign exchange
- www.olsendata.com
- The NYSE Trades and Quotation (TAQ) data for equity
- www.nyse.com/taq

Olsen FX Data

- Historical data made available for use in three conferences on the statistical analysis of high frequency data: HFDF-1993, HFDF-1996, and HF-2000.
- The HFDF-2000 data is the most commonly used data set
- spot exchange rates sampled every 5 minutes for the \$, DM, CHF, BP, Yen over the period December 1, 1986 through June 30, 1999.
- All interbank bid/ask indicative quotes for the exchange rates displayed on the Reuters FXFX screen.
- Highly liquid market: 2000-4000 observations per day per currency
- Outlier filtered log-price at each 5-minute tick is interpolated from the average of bid and ask quotes for the two closest ticks, and 5 -minute cc return is difference in the log-price.

Olsen FX Data

- Data cleaning prior to computation of RV measures:
- 5 -minute return data is restricted to eliminate nontrading periods, weekends, holidays, and lapses of the Reuters data feed.
- The slow weekend period from Friday 21:05 GMT until Sunday 21:00 GMT is eliminated from the sample.
- Holidays removed: Christmas (December 24-26), New Year's (December 31- January 2), July 4th, Good Friday, Easter Monday, Memorial Day, Labor Day, and Thanksgiving and the day after.
- Days that contain long strings of zero or constant returns (caused by data feed problems) are eliminated.

Empirical Analysis of FX Returns

Author	Series	Sample	Days, T	m
AB 1998	DM/\$, Y/\$	$87-93$	260	288
AB 1998	DM/\$, Y/\$	$87-93$	260	48
ABDL 2000	DM/\$, Y/\$	$86-96$	2,445	288
ABDL 2001	DM/\$, Y/\$	$86-96$	2,449	288
ABDL 2003	DM/\$, Y/\$	$86-99$	3,045	48
ABDM 2005	DM/\$, Y/\$	$89-99$	3,045	48
BNS 2001	DM/\$	$86-96$	2,449	various
BNS 2002	DM/\$	$86-96$	2,449	288
8/8/2005				

Distribution of RV

- ABDL (2001): "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association.
- BNS (2001): "Estimating Quadratic Variation Using Realized Variance," Journal of Applied Econometrics.

Summary Statistics for Daily RV Measures, $\mathrm{m}=228$

	RV^{\prime}	RV_{Y}	RVOL_{D}	RV0L L_{y}	RLVOL ${ }_{\text {D }}$	RLVOLY	RCOV	RCOR
Nean	. 52	. 538	. 679	. 684	-449	-413	243	433
Variance	. 234	.272	. 067	. 070	. 120	. 123	. 073	. 028
Slemeess	3.71	5.57	1.68	1.87	. 345	264	3.78	. 203
Kurtosis	24.1	66.5	7.78	10.4	3.26	3.53	25.3	2.72

Unconditional Distributions: m=288

Unconditional Distributions: $\mathrm{m}=288$

ch

Correlation Matrix for Daily RV Measures

	RV $_{Y}$	RVOL $_{D}$	RVOL $_{Y}$	RLVOL $_{D}$	RLVOL $_{Y}$	RCOV	RCOR
$R V_{D}$.539	.061	.552	.860	.512	.806	.341
RV $_{Y}$	1.00	.546	.945	.514	.825	.757	.234
RVOL $_{D}$		1.00	.592	.965	.578	.793	.383
RVOL $_{Y}$			1.00	.589	.959	.760	.281
RLVOL $_{D}$				1.00	.604	.720	.389
RLVOL $_{Y}$					1.00	.684	.294
RCOV						1.00	.590

"Correlation-in-Volatility" Effect

Accuracy of RV Measures: $95 \% \mathrm{Cl}$ from BNS Asymptotic theory

[^0]Time Series of Daily RVOL: m=228

Time Series of Daily RCOR: $\mathrm{m}=228$

U

Long Memory Behavior of RV Measures

A stationary process y_{t} has long memory, or long range dependence, if its autocorrelation function decays slowly at a hyperbolic rate:

$$
\begin{aligned}
& \rho_{k} \rightarrow C_{\rho} \cdot k^{-\alpha}, \text { as } k \rightarrow \infty \\
& \alpha \in(0,1)
\end{aligned}
$$

- A long memory process y_{t} can be modeled parametrically by extending an integrated process to a fractionally integrated process:
$(1-L)^{d}\left(y_{t}-\mu\right)=u_{t}, u_{t} \sim I(0)$
$0<d<0.5$: stationary long memory
$0.5 \leq d<1$: nonstationary long memory

Estimating d

- Nonparametric estimation
- Geweke-Porter-Hudak (GPH) logperiodogram regression
- Local Whittle estimator
- Phillips-Kim modified GPH estimator
- Andrews-Guggenberger biased corrected GPH estimator
- Parametric estimation
- ARFIMA(p,d,q) model with normal errors

GPH Estimated of d

$R V_{D}$	$R V_{Y}$	$R_{V O L}$	RVOL $_{Y}$	$R_{2 V O L}$	$R L V O L_{Y}$	RCOV	RCOR
$\hat{d} .356$.339	.381	.428	.420	.455	.334	.413

Note: Multivariate estimation of common d using (RLVOL_{D}, RLVOL $_{Y}, \mathrm{RLVOL}_{D Y}$) is 0.4

Temporal Aggregation and Scaling Laws

- The fractional differencing parameter d is invariant under temporal aggregation
- If x_{t} is fractionally integrated with parameter d then

$$
\begin{aligned}
& \operatorname{var}\left(\left[x_{t}\right]_{h}\right)=c \cdot h^{2 d+1} \\
& {\left[x_{t}\right]_{h}=\sum_{j=1}^{h} x_{h(t-1)+j}} \\
& \Rightarrow \ln \left(\operatorname{var}\left(\left[x_{t}\right]_{h}\right)\right) \propto(2 d+1) \ln (h)
\end{aligned}
$$

Temporal Aggregation and Scaling Laws

Distribution of Returns Standardized by RV

- ABDL (2000): "Exchange Rate Returns Standardized by Realized Volatility Are (Nearly) Gaussian," Multinational Finance Journal

Stochastic Volatility Model

- Assume daily returns r_{t} may be decomposed following a standard conditional volatility model

$$
\begin{aligned}
& r_{t}=\sigma_{t} \varepsilon_{t} \\
& \sigma_{t}=\text { latent volatility } \\
& \varepsilon_{t} \sim \text { iid }(0,1) \\
& \Rightarrow E\left[r_{t}^{2}\right]=\sigma_{t}^{2}
\end{aligned}
$$

Standardized Returns

- Compute returns standardized by estimates of conditional volatility

$$
\begin{aligned}
& \hat{\varepsilon}_{t}=\frac{r_{t}}{\hat{\sigma}_{t}} \\
& \hat{\sigma}_{t}=R V O L_{c}, m=288 \\
& \hat{\sigma}_{t}=\hat{\sigma}_{t}^{G A R C H(1,1)} \\
& \operatorname{GARCH}(1,1): \sigma_{t}^{2}=w+\alpha r_{t-1}^{2}+\beta \sigma_{t-1}^{2}
\end{aligned}
$$

Multivariate Standardized Returns

- Standardized returns based RCOV

$$
\binom{\hat{\varepsilon}_{D, t}}{\hat{\varepsilon}_{Y, t}}=R \operatorname{COV}_{t}^{-1 / 2}\binom{r_{D, t}}{r_{Y, t}}
$$

$R C O V_{t}^{1 / 2}=$ Cholesky factor of $R C O V_{t}$

Comparison of Volatility Forecasts

- Squared returns are unbiased but very noisy
- $\operatorname{GARCH}(1,1)$ forecasts are smoother than RV forecasts; do not utilize information between time $t-1$ and t (exponentially weighted average of past returns)
- RV forecasts make exclusive use of information between time $t-1$ and t; better forecast of time t volatility

Summary Statistics

	r_{t}		$\frac{r_{t}}{\hat{\sigma}_{A}^{\text {GTRCH}}}$	$\frac{r_{t}}{\mathrm{RVOL}}$	
	DM / S	Y / S	DM / S	Y / S	$\mathrm{DM} / \$$

Distribution of Daily Returns

Distribution of Standardized Returns

RV

DM/S Return Quantik

Yens Return cuantle

Scatterplot of Daily Returns

Scatterplot or Standardized Returns

RCOV

Source: ABDL (2000)

SACF of Squared Returns

Conclusions

- Daily returns standardized by RV measures are nearly Gaussian
- Supports diffusion model for returns
- Alternative to copula methods for characterizing multivariate distributions
- Advantages for value-at-risk computation
- RV provides superior volatility forecasts

Modeling and Forecasting RV

- ABDL (2003): "Modeling and Forecasting Realized Volatility," Econometrica

Traditional Conditional Volatility Models

- Normal GARCH(1,1)

$$
\begin{aligned}
& r_{t}=\sigma_{t} \varepsilon_{t}, \varepsilon_{t} \sim \operatorname{iid} N(0,1) \\
& \sigma_{t}^{2}=w+\alpha r_{t-1}^{2}+\beta \sigma_{t-1}^{2}
\end{aligned}
$$

- Log-Normal SV model

$$
r_{t}=\sigma_{t} \varepsilon_{t}, \varepsilon_{t} \sim \text { iid } N(0,1)
$$

$$
\ln \sigma_{t}^{2}=\delta+\phi \ln \sigma_{t-1}^{2}+\sigma_{u} u_{t}, \mathrm{u}_{t} \sim \operatorname{iid} N(0,1)
$$

$$
E\left[\varepsilon_{t} u_{t}\right]=0
$$

Advantages of Using RV

- RV provides an observable estimate of latent volatility
- Standard time series models (e.g. ARIMA) may be used to model and forecast RV
- Multivariate time series models may be used model and forecast RCOV, RCOR

Trivariate System of Exchange Rates

$$
\begin{aligned}
& y_{t}=\left(\begin{array}{l}
R L V O L_{D / \S, t} \\
R L V O L_{Y / s, t} \\
R L V O L_{Y / D, t}
\end{array}\right), m=48 \\
& R C O V_{D / \S, Y / \$}=\frac{1}{2}\left(R V_{D / \S, t}+R V_{Y / \S, t}-R V_{Y / D, t}\right)
\end{aligned}
$$

- Fit models for y_{t} in sample: 12/1/86-12/1/96
- Forecast y_{t} out-of-sample: 12/2/96 - 6/30/99

SACF of Daily DM/\$ RLVOL: m=48

SACF of Daily Yen/DM RLVOL: m=48

FI-VAR(5) Model (VAR-RV)

$$
\begin{aligned}
& \Phi(L)(1-L)^{0.4}\left(y_{t}-\mu\right)=\varepsilon_{t} \\
& \varepsilon_{t} \sim \text { iid } N(0, \Omega) \\
& \Phi(L)=I_{3}-\Phi_{1} L-\cdots-\Phi_{5} L^{5}
\end{aligned}
$$

Alternative Models

- VAR-ABS: $\operatorname{VAR}(5)$ fit to $\left|r_{t}\right|$
- AR-RV: univariate $A R(5)$ fit to $(1-\mathrm{L})^{0.4} \mathrm{RLVOL}_{\mathrm{i}, \mathrm{t}}$
- Daily $\operatorname{GARCH}(1,1)$: normal-GARCH(1,1) fit to daily returns $\mathrm{r}_{\mathrm{i}, \mathrm{t}}$
- Daily RiskMetrics: exponentially weighted moving average model for $\mathrm{r}_{\mathrm{i}, \mathrm{t}}{ }^{2}$ with $\lambda=0.94$
- Daily FIEGARCH $(1,1)$: univariate fractionally integrated exponential $\operatorname{GARCH}(1,1)$ fit to $r_{i, t}$
- Intra-day FIEGARCH deseason/filter: univariate fractionally integrated exponential GARCH(1,1) fit to 30minute filtered and deseasonalized returns $r_{i, t+\Delta}$.

Forecast Evaluation

$R V O L_{i, t}=b_{0}+b_{1} R \hat{V} O L_{i, t}^{V A R-R V}+b_{2} R \hat{V} O L_{i, t}^{\text {model }}+$ error $_{t}$
$R \hat{V} O L_{i, t}^{V A R-R V}=1$-day ahead forecast from RV-VAR
$R \hat{V} O L_{i, t}^{\text {model }}=1$-day ahead forecast from alternative model
$H_{0}: b_{0}=0, b_{1}=1, b_{2}=0$

Findings

- RV-VAR is consistently best forecasting model in-sample and out-of-sample: highest R^{2} from forecast evaluation regressions.
- Rarely reject $\mathrm{H}_{0}: \mathrm{b}_{0}=0, b_{1}=1, b_{2}=0$ for RVVAR model
- RV-AR is close to RV-VAR

Forecasts of Daily RVOL: VAR-RV vs. GARCH(1.1)

NYSE TAQ Data

- Intra-day trade and quotation information for all securities listed on NYSE, AMEX, and NASDAQ.
- The most active period for equity markets is during the trading hours of the NYSE between 9:30 a.m. EST until 4:00 p.m. EST.
- Not as liquid as FX markets

NYSE TAQ Data

- Equity returns are generally subject to more pronounced market microstructure effects (e.g., negative first order serial correlation caused by bid-ask bounce effects) than FX data. As a result, equity returns are often filtered to remove these microstructure effects prior to the construction of RV measures.
- A common filtering method involves estimating an MA(1) or AR(1) model to the returns, and then constructing the filtered returns as the residuals from the estimated model.

Empirical Analysis of TAQ Data

- Andersen, Bollerslev, Diebold, Ebens (2001): "The Distribution of Realized Stock Return Volatility," Journal of Financial Economics
- Analyze 30 Dow Jones Industrial Average Stocks over the period 1/2/93-5/29/98
- Restrict analysis to NYSE exchange hours
- T=1,336; m=79 5-minute returns

Summary of Findings

- Results for equity returns are similar to those for FX returns
- RLVOL, RCOR are approximately Gaussian
- RV measures exhibit long memory
- Daily returns standardized by RVOL are nearly Gaussian
- Little evidence of leverage effect
- Evidence of factor structure in multivariate system of RV measures

Distribution of Daily RLVOL: Alcoa

ub

Time Series of Daily RLVOL: Alcoa

Time Series of Daily RCOR: Alcoa, Exxon

Source: ABDE (2001)

Evidence of Factor Structure

$\mathrm{RCOR}_{\text {Alcoa }, i}$

Evidence of Factor Structure

Directions for Future Research

- Continued development of methods for exploiting the volatility information in highfrequency data
- Volatility modeling and forecasting in the high-dimensional multivariate environments of practical financial economic relevance

[^0]: Source: BNS (2002)

