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Agenda

• Lecture 1
– Introduction to high frequency data

• Lecture 2
– Realized variance measures: theory

• Lecture 3
– Realized variance measures: empirical 

analysis
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Data Sources

• Much of the published empirical analysis 
of RV has been based on high frequency 
data from two sources:
– Olsen and Associates proprietary FX data 

set for foreign exchange
•www.olsendata.com

– The NYSE Trades and Quotation (TAQ) 
data for equity

• www.nyse.com/taq
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Olsen FX Data
• Historical data made available for use in three 

conferences on the statistical analysis of high frequency 
data:  HFDF-1993, HFDF-1996, and HF-2000.

• The HFDF-2000 data is the most commonly used data 
set
– spot exchange rates sampled every 5 minutes for the $, DM, 

CHF, BP, Yen over the period December 1, 1986 through June 
30, 1999.

– All interbank bid/ask indicative quotes for the exchange rates 
displayed on the Reuters FXFX screen.

– Highly liquid market: 2000-4000 observations per day per 
currency

– Outlier filtered log-price at each 5-minute tick is interpolated from 
the average of bid and ask quotes for the two closest ticks, and
5-minute cc return is difference in the log-price.
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Olsen FX Data
• Data cleaning prior to computation of RV 

measures:
– 5-minute return data is restricted to eliminate non-

trading periods, weekends, holidays, and lapses of the 
Reuters data feed.

– The slow weekend period from Friday 21:05 GMT until 
Sunday 21:00 GMT is eliminated from the sample.

– Holidays removed: Christmas (December 24-26), New 
Year's (December 31- January 2), July 4th, Good 
Friday, Easter Monday, Memorial Day, Labor Day, and 
Thanksgiving and the day after.

– Days that contain long strings of zero or constant 
returns (caused by data feed problems) are eliminated.
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Empirical Analysis of FX Returns

2882,44986-96DM/$BNS 2002
various2,44986-96DM/$BNS 2001
483,04589-99DM/$, Y/$ABDM 2005
483,04586-99DM/$, Y/$ABDL 2003
2882,44986-96DM/$, Y/$ABDL 2001
2882,44586-96DM/$, Y/$ABDL 2000
4826087-93DM/$, Y/$AB 1998
28826087-93DM/$, Y/$AB 1998
mDays, TSampleSeriesAuthor
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Distribution of RV

• ABDL (2001): “The Distribution of Realized 
Exchange Rate Volatility,” Journal of the 
American Statistical Association.

• BNS (2001): “Estimating Quadratic 
Variation Using Realized Variance,” 
Journal of Applied Econometrics.
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Summary Statistics for Daily RV Measures, 
m=228

GaussianNon-Gaussian
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Unconditional Distributions: m=288

Source: ABDL 2001
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Unconditional Distributions: m=288

Source: ABDL 2001



8/8/2005

6

8/8/2005 11

Correlation Matrix for Daily RV Measures
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“Correlation-in-Volatility” Effect

Source: ABDL (2001)
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Accuracy of RV Measures: 95% CI from BNS 
Asymptotic theory

Source: BNS (2002)
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Time Series of Daily RVOL: m=228

Source: ABDL (2001)
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Time Series of Daily RCOR: m=228

Source: ABDL (2001)

8/8/2005 16

SACF of Daily RV Measures: m=228

Source: ABDL (2001)
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Long Memory Behavior of RV Measures

A stationary process yt has long memory, or 
long range dependence, if its autocorrelation 
function decays slowly at a hyperbolic rate:
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Fractionally Differenced Processes

• A long memory process yt can be modeled 
parametrically by extending an integrated 
process to a fractionally integrated process:

(1 ) ( ) ,  ~ (0)
0 0.5 :  stationary long memory
0.5 1:  nonstationary long memory

d
t t tL y u u I

d
d

µ− − =
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Estimating d

• Nonparametric estimation
– Geweke-Porter-Hudak (GPH) log-

periodogram regression
– Local Whittle estimator
– Phillips-Kim modified GPH estimator
– Andrews-Guggenberger biased corrected 

GPH estimator
• Parametric estimation

– ARFIMA(p,d,q) model with normal errors
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GPH Estimated of d

Note: Multivariate estimation of common d 
using (RLVOLD, RLVOLY, RLVOLDY) is 0.4
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Temporal Aggregation and Scaling Laws

• The fractional differencing parameter d is 
invariant under temporal aggregation

• If xt is fractionally integrated with parameter 
d then
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Temporal Aggregation and Estimated of d

GPH Estimates of d
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Temporal Aggregation and Scaling Laws

Source: ABDL (2001)

RV RLVOL
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Distribution of Returns 
Standardized by RV

• ABDL (2000): “Exchange Rate Returns 
Standardized by Realized Volatility Are 
(Nearly) Gaussian,” Multinational Finance 
Journal
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Stochastic Volatility Model

• Assume daily returns rt may be decomposed 
following a standard conditional volatility 
model

2 2
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Standardized Returns

• Compute returns standardized by estimates 
of conditional volatility

(1,1)

2 2 2
1 1

ˆ
ˆ

ˆ ,  288
ˆ ˆ

GARCH(1,1): 

t
t

t

t t
GARCH

t t

t t t

r

RVOL m

w r

ε
σ

σ

σ σ

σ α βσ− −

=

= =

=

= + +



8/8/2005

14

8/8/2005 27

Multivariate Standardized Returns

• Standardized returns based RCOV
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RV, m=48

GARCH(1,1)

Squared returns Forecasts of daily σt
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Comparison of Volatility Forecasts

• Squared returns are unbiased but very 
noisy

• GARCH(1,1) forecasts are smoother than 
RV forecasts; do not utilize information 
between time t-1 and t (exponentially 
weighted average of past returns)

• RV forecasts make exclusive use of 
information between time t-1 and t; better 
forecast of time t volatility
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Summary Statistics
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Distribution of Daily Returns

Source: ABDL (2000)
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Distribution of Standardized Returns

Source: ABDL (2000)

RV

RCOV
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Scatterplot of Daily Returns

Source: ABDL (2000)
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Scatterplot or Standardized Returns

Source: ABDL (2000)

RV

RCOV
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SACF of Squared Returns

RAW

RV

RCOV

DM/$ Yen/$ DM/$, Yen/$
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Conclusions

• Daily returns standardized by RV 
measures are nearly Gaussian

• Supports diffusion model for returns
• Alternative to copula methods for 

characterizing multivariate distributions
• Advantages for value-at-risk computation
• RV provides superior volatility forecasts
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Modeling and Forecasting RV

• ABDL (2003): “Modeling and Forecasting 
Realized Volatility,” Econometrica
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Traditional Conditional Volatility Models

• Normal GARCH(1,1)

• Log-Normal SV model
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Advantages of Using RV

• RV provides an observable estimate of 
latent volatility

• Standard time series models (e.g. ARIMA) 
may be used to model and forecast RV

• Multivariate time series models may be 
used model and forecast RCOV, RCOR
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Trivariate System of Exchange Rates

• Fit models for yt in sample: 12/1/86-12/1/96 
• Forecast yt out-of-sample: 12/2/96 – 6/30/99
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SACF of Daily DM/$ RLVOL: m=48

Source: ABDL (2003)

0.4(1 ) ( )it iL y µ− −
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SACF of Daily Yen/$ RLVOL: m=48

0.4(1 ) ( )it iL y µ− −
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SACF of Daily Yen/DM RLVOL: m=48

Source: ABDL (2003)

0.4(1 ) ( )it iL y µ− −

8/8/2005 44

FI-VAR(5) Model (VAR-RV)
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Alternative Models
• VAR-ABS: VAR(5) fit to |rt|
• AR-RV: univariate AR(5) fit to (1-L)0.4RLVOLi,t
• Daily GARCH(1,1): normal-GARCH(1,1) fit to daily 

returns ri,t
• Daily RiskMetrics: exponentially weighted moving 

average model for ri,t² with λ=0.94
• Daily FIEGARCH(1,1): univariate fractionally integrated 

exponential GARCH(1,1) fit to ri,t
• Intra-day FIEGARCH deseason/filter: univariate

fractionally integrated exponential GARCH(1,1) fit to 30-
minute filtered and deseasonalized returns ri,t+∆.
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Forecast Evaluation
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Findings

• RV-VAR is consistently best forecasting 
model in-sample and out-of-sample: 
highest R2 from forecast evaluation 
regressions.

• Rarely reject H0: b0=0, b1=1, b2=0 for RV-
VAR model

• RV-AR is close to RV-VAR
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Forecasts of Daily RVOL: VAR-RV vs. 
GARCH(1,1)
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NYSE TAQ Data

• Intra-day trade and quotation information 
for all securities listed on NYSE, AMEX, 
and NASDAQ. 

• The most active period for equity markets 
is during the trading hours of the NYSE 
between 9:30 a.m. EST until 4:00 p.m. 
EST.  

• Not as liquid as FX markets
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NYSE TAQ Data
• Equity returns are generally subject to more 

pronounced market microstructure effects (e.g., 
negative first order serial correlation caused by 
bid-ask bounce effects) than FX data. As a 
result, equity returns are often filtered to remove 
these microstructure effects prior to the 
construction of RV measures.

• A common filtering method involves estimating 
an MA(1) or AR(1) model to the returns, and 
then constructing the filtered returns as the 
residuals from the estimated model.
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Empirical Analysis of TAQ Data

• Andersen, Bollerslev, Diebold, Ebens
(2001): “The Distribution of Realized Stock 
Return Volatility,” Journal of Financial 
Economics
– Analyze 30 Dow Jones Industrial Average 

Stocks over the period 1/2/93 – 5/29/98
– Restrict analysis to NYSE exchange hours
– T=1,336; m=79 5-minute returns
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Summary of Findings

• Results for equity returns are similar to 
those for FX returns
– RLVOL, RCOR are approximately Gaussian
– RV measures exhibit long memory
– Daily returns standardized by RVOL are 

nearly Gaussian
• Little evidence of leverage effect
• Evidence of factor structure in multivariate 

system of RV measures
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Distribution of Daily RLVOL: Alcoa

Source: ABDE (2001)

Solid line: RLVOL

Dashed line: normal density
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Distribution of Daily RCOR: Alcoa,Exxon

Source: ABDE (2001)

Solid line: RCOR
Dashed line: normal density
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Time Series of Daily RLVOL: Alcoa

Source: ABDE (2001)
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Time Series of Daily RCOR: Alcoa, Exxon

Source: ABDE (2001)
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Distribution of Daily Standardized Returns 
for Alcoa

Solid line: returns/RVOL
Dashed line: normal density
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Evidence for Factor Structure

RLVOLAlcoa

RLVOLExxon
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Evidence of Factor Structure

RCORAlcoa,i

RLVOLAlcoa
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Evidence of Factor Structure

Average RCORAlcoa,I

i≠Alcoa, Exxon

Average RCORExxon,I i≠Alcoa, Exxon
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Directions for Future Research

• Continued development of methods for 
exploiting the volatility information in high-
frequency data

• Volatility modeling and forecasting in the 
high-dimensional multivariate 
environments of practical financial 
economic relevance


