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Abstract

We combine the efficient method of moments with appropriate algorithms from the optimal

filtering and signal extraction literature to study a collection of models for the U.S. short rate.

Our models include two continuous time stochastic volatility models and two regime switching

models, which provided the best fit in previous work that examined a larger collection of models.

The continuous time stochastic volatility models fall into the class of nonlinear, non-Gaussian

state space models for which we apply particle filtering and smoothing algorithms. Our results

demonstrate the effectiveness of the particle filter for continuous time processes. Our analy-

sis also provides an alternative and complementary approach to the reprojection technique of

Gallant and Tauchen (1998) for studying the dynamics of volatility.
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1 Introduction

The efficient method of moments (EMM) of Gallant and Tauchen (1996) has proven to be a flexible

method for estimating structural time series models. A major advantage of EMM is its ease of

implementation relative to other methodologies. This is particularly true for more challenging

models in finance such as discrete and continuous time stochastic volatility models. While there is

a sizeable literature that uses EMM to estimate parameters of volatility models, little attention has

been paid within this literature to estimating the latent volatility after estimating the parameters.

To solve this problem, Gallant and Tauchen (1998) added a reprojection step to EMM that com-

putes the conditional volatility of the one-step ahead predictive density of the time series. Instead

of adopting this strategy, we combine EMM with appropriate algorithms from the literature on

optimal filtering and signal extraction.1 Specifically, we first estimate the parameters of candidate

volatility models for the U.S. short rate using EMM. With the parameter estimates in hand, we

then use optimal filtering and smoothing algorithms to infer the unobserved state variables that

include the volatilities. We show how the one-step ahead predicted, filtered and smoothed estimates

can be used to compare and evaluate models.

We consider four models from Gu and Zivot (2006), who performed an exhaustive comparison of

univariate models for the U.S. short rate. In their study, a two-factor and a three-factor stochastic

volatility (SV) model and several regime-switching (RS) models passed the EMM specification test

at a 5% significance level. The continuous time SV models specify returns as a nonlinear function

of volatility. We apply particle filtering and smoothing algorithms to these models. Particle filters

were introduced by Gordon et. al. (1993) to estimate state variables in nonlinear, non-Gaussian

state space models. They were first considered for discrete time SV models by Kim et. al. (1998)

and more recently for diffusion-driven models by Johannes et. al. (2006) and Fearnhead et. al.

(2006). The second set of models we consider are regime switching models whose latent states are

discrete valued. In this case, the optimal filter is the discrete state hidden Markov model (HMM)

filter first developed by Baum and coauthors, see Baum and Petrie (1966) and Baum et. al. (1970).

The importance of recovering the latent volatility through filtering and smoothing is two-fold.

First, forecasting future volatility is critical for asset pricing, portfolio management, and risk man-
1Chib et. al. (2002) also proposed using particle filters as an alternative to Gallant and Tauchen’s reprojection

step for discrete time SV models. In this paper, we also consider particle smoothing, maximum a posteriori sequence
estimation, as well as discrete-state methods.
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agement. Filtering algorithms provide a convenient method to make forecasts because the one-step

ahead predictive density of the state variable is computed as a by-product. Second, examining

the filtered and smoothed volatilities for a given model provides complementary information for

the specification tests that are available with EMM. EMM compares and ranks different model

specifications based on an omnibus test statistic.

Although EMM is known to be efficient for many types of models, Monte Carlo studies for RS

models in Gu and Zivot (2006) showed that misspecified structural models may pass the EMM

specification test. This implies that ranking models using p-values alone is not enough to compare

models, especially non-nested models. Estimates of the corresponding volatility can help provide

more insight about the relative fit of the models. A successful model should not only provide a good

fit to the data (implying a higher p-value from EMM), but also present reasonable volatilities that

reflect the observed data and the underlying macroeconomic forces in the economy. This filtering

examination may play a crucial role when EMM specification tests provide less information for

distinguishing between models that have similar fitting performances or have similar p-values.

The remainder of this paper is organized as follows. Section 2 describes the models that we

consider in this paper and our motivation for choosing them. A description of the particle filtering

and HMM filtering algorithms needed to estimate the latent state variables is provided in Section 3.

Section 4 briefly summarizes the EMM methodology and the parameter estimation results. Section

5 discusses the filtered and smoothed estimates for our models and section 6 concludes.

2 Models for the U.S. short rate

We consider two continuous time SV models and two discrete time RS models from Gu and Zivot

(2006). In a study that compared a large number of volatility models, their work indicated that

each of these models provided a good fit for the U.S. short rate by passing the EMM specification

test.

2.1 Continuous time stochastic volatility models

We consider two continuous time diffusions
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drt = (φ0 − φ1rt) dt+ rγ
t exp

(
xt

2

)
dW1t = κ(µ− rt)dt+ rγ

t exp
(
xt

2

)
dW1t (1)

dxt = (ω0 + ω1xt)dt+ ξdW2t (2)

and

drt = φ1 (µt − rt) dt+ rγ
t exp

(
xt

2

)
dW1t = κ(µt − rt)dt+ rγ

t exp
(
xt

2

)
dW1t (3)

dxt = (ω0 + ω1xt)dt+ ξdW2t (4)

dµt = (υ0 + υ1µt)dt+ ςdW3t (5)

where rt is the short rate at time t and dW1t, dW2t, and dW3t are independent standard Brownian

motions. The two-factor and three-factor SV models (hereafter, the SV2 and SV3 model) are

extensions of the CKLS model from Chan et. al. (1992). The conditional mean and variance

within the CKLS depend on the level of the series, which is the key characteristic of the model.

Specifically, rt mean-reverts towards the long-run level µ, with the speed of mean reversion given

by κ, while γ captures the influence of the level of the series on the conditional variance, called

the level effect. In the spirit of Taylor (1986, 1994), the SV models introduce additional latent

factors on top of the CKLS model. The SV2 model (1) allows the log-volatility of the short rate

xt to follow a mean reverting process. The SV3 model (3) introduces another factor allowing the

long-run mean to vary over time. The sensitivity of shocks to the log-volatility and to the long-run

mean are measured by ξ and ς, respectively.

2.2 Regime switching models

We also consider two successful RS models

∆rt = φ0 − φ1rt−1 + σiεt (6)

and

∆rt = φ0 − φ1rt−1 + σir
γ
t−1εt (7)
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where the regime indicator is i = 1, 2. The latent states are governed by a first-order Markov

process with a matrix of transition probabilities

P =

 p11 1− p11

1− p22 p22


The entries in the matrix pij are the probabilities of transitioning from regime i to regime j.

The simple RS-in-σ model of (6) is a regime switching version of the discrete time Ornstein-

Uhlenbeck (OU) process. The dynamics are assumed to be mean reverting, but regime switching

is allowed for the conditional variance. Volatility shocks are regime-dependent in order to ac-

commodate time-varying volatility. Built upon the generalized CKLS process, the RS-in-σ+level

model of (7) incorporates the level effect as well as the RS-in-volatility effect to accommodate its

time-varying behavior and conditional heteroskedasticity. Specifically, the sensitivity of volatility

to the level of the rate is measured by γ, and the conditional volatility switches between two very

persistent regimes.

3 Filtering and smoothing algorithms

This section reviews algorithms needed to estimate the latent state variables in the four models of

Section 2. Section 3.4 provides details on how to implement a particle filter for the SV3 model.

3.1 General filtering and smoothing framework

State space models provide a convenient framework for analyzing the evolution of a dynamic system

by formulating it into two models called the transition and measurement equations. The state

variable xt is Markovian and carries with it information about the dynamics of the system. It

evolves through time via the transition equation

xt = ft (xt−1, vt) (8)

The measurement equation then relates the state variable to the observations on the system

yt = gt (xt, εt) (9)
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where vt and εt are i.i.d. random variables with known probability density functions. The functions

ft (·) and gt (·) are possibly nonlinear but known.

Associated with (8) and (9) are the transition p (xt|xt−1) and measurement densities p (yt|xt)

which are determined by the density of vt and εt. In general, the state variable xt can be either

discrete-valued, continuous-valued or a mixture of the two. All four models in our paper require

(9) to be expanded to

yt = gt (xt, yt−1, εt) (10)

which technically takes them outside of the class of hidden Markov models.2 However, this does not

change any of the algorithms in this paper. For simplicity, we assume that the states are continuous

and that (9) will suffice; see, Cappé et. al. (2005) for a general framework that covers all settings

at once.

All relevant information about the unobservable or hidden states {xj}T
j=0 given observations

up to and including T , {yj}T
j=1, can be obtained from the joint posterior distribution p (x0:T |y1:T )

of the state variables. Estimating recursively in time three of its marginal densities is the main

goal of the forecasting, optimal filtering, and signal extraction literature. The first marginal is the

one-step ahead predictive density of the state

p (xt|y1:t−1) = p (xt|y1, ..., yt−1)

which uses information up until time t− 1 to make a one period forecast of the state. The second

marginal is the filtering distribution

p (xt|y1:t) = p (xt|y1, ..., yt)

which carries contemporaneous information. Finally, the smoothing distribution uses all the infor-

mation in the sample to estimate past realizations of the state

p (xt|y1:T ) = p (xt|y1, ..., yT )
2A hidden Markov model requires that yt is independent conditional on xt which is not satisfied by (10).
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Obtaining the filtering density consists of two steps: prediction and update. The prediction

step computes the one-step ahead predictive density of the state variable at time t based on time

t− 1 information using the Chapman-Kolmogorov equation

p (xt | y1:t−1) =
∫
p (xt | xt−1, y1:t−1) p (xt−1 | y1:t−1) dxt−1

=
∫
p (xt | xt−1) p (xt−1 | y1:t−1) dxt−1 (11)

where p (xt | xt−1) is the transition density from above. When the measurement yt becomes available

at time t, the update step combines (11) with the full information (or data-augmented) likelihood

to compute the posterior density for the current state via Bayes’ rule

p (xt|y1:t) =
p (yt | xt) p (xt | y1:t−1)

p (yt | y1:t−1)
(12)

where the denominator of (12) is the normalizing constant

p (yt | y1:t−1) =
∫
p (yt | xt) p (xt | y1:t−1) dxt (13)

Optimal filters, i.e. algorithms that are the exact solutions to the recursions (11) and (12), are

analytically available in only three known cases. One is the Kalman filter, which computes the

marginal distributions exactly when the functions ft (·) and gt (·) are linear and both vt and εt are

Gaussian. The optimal filter can also be calculated when the state space is discrete and consists of

a finite number of states. In this case, the model is known as a discrete state hidden Markov model

(HMM) and the filter is the HMM filter, which we review in section 3.5 below.

The source of the problem in nonlinear, non-Gaussian settings is the insoluble integral in (13)

that is needed to compute the one-step ahead predictive density of the observed series. The Kalman

filter computes this density recursively to form the likelihood function via the prediction error

decomposition; see, e.g. Durbin and Koopman (2001). This is also the density that Gallant and

Tauchens’ (1998) reprojection technique recovers after estimating the parameters of the structural

model. In other words, their reprojection step works backwards and computes a Monte Carlo

estimate of p (yt | y1:t−1); the density that would have resulted in their parameter estimates.
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3.2 Particle filters

The assumptions needed above to compute an optimal filter may not hold in situations of practical

interest; for example, many dynamic systems are better modeled as nonlinear and/or non-Gaussian.

Therefore, enormous efforts have been devoted to approximating the filtering and smoothing dis-

tributions when it is impossible to evaluate them analytically. We focus on particle filters and

smoothers in this paper, which have shown to be reliable; see, e.g. Doucet et. al. (2001), Cappé et.

al. (2005), and Cappé et. al. (2007) for more detailed reviews. Robert and Casella (2004) provides

a general introduction to importance sampling and sequential importance sampling.

3.2.1 Particle filtering via sequential importance sampling with resampling

Particle filters are based on a Monte Carlo simulation method known as importance sampling.

They use importance sampling to approximate the three marginal distributions sequentially using

a set of weighted samples. Computation of the weights and drawing of the random samples can

be illustrated as follows. Suppose there exists a probability density of interest called the target

density π (x) from which it is impossible to directly draw samples but that can be evaluated up

to a constant of proportionality. The main idea behind importance sampling is to draw random

samples from a distribution other than π (x) and reweight each draw so that it is approximately an

i.i.d. realization from π (x).

TakingN random draws from a proposal density q (x), called the importance density, the realized

sample
{
xi

}N
i=1 gets reweighted by calculating importance weights

wi ∝ π
(
xi

)
q (xi)

for each draw. After normalizing the importance weights
∑N

i=1w
i = 1, the approximation to the

density is given by

π (x) ≈
N∑

i=1

wiδ
(
x− xi

)

where δ (·) denotes the Dirac mass. This weighted approximation of π (x) converges to the true

density as N →∞.

Therefore, the collection of points
{
xi

t, w
i
t

}N
i=1 called particles characterizes the marginal density
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p (xt|y1:t), where
{
xi

t

}N
i=1 represent points on the support of the density and the associated weights{

wi
t

}N
i=1 are the probability masses at those points. At each iteration, the posterior density at t

will be approximated as

p (xt|y1:t) ≈
N∑

i=1

wi
tδ

(
xt − xi

t

)

With the addition of a new observation, the next posterior density can be approximated by taking

the existing particles that were simulated in the past and moving them to a new position on the

support of the next density. Using previously simulated particles, transforms a basic importance

sampling algorithm into a sequential importance sampling (SIS) algorithm. The new set of particles

will then require a new set of importance weights to accurately approximate the new density.

If the sample xi
t was drawn from an importance density q

(
xt|y1:t, x

i
t−1

)
, then the importance

weights at any point in time are

wi ∝ p
(
xi

t|y1:t
)

q
(
xi

t|y1:t, xi
t−1

) (14)

which is the ratio of the target density over the importance density. In practice, the importance

weights can be updated recursively to avoid calculating the numerator at each iteration. The

numerator in (14) can be rewritten as

p
(
xi

t|y1:t

)
=

p
(
yt | xi

t

)
p

(
xi

t | y1:t−1
)

p (yt | y1:t−1)

=
p

(
yt | xi

t

)
p

(
xi

t | xi
t−1, y1:t−1

)
p

(
xi

t−1 | y1:t−1
)

p (yt | y1:t−1)
(15)

∝ p
(
yt | xi

t

)
p

(
xi

t | xi
t−1

)
p

(
xi

t−1 | y1:t−1

)

Substituting (15) into (14), the equation for updating the importance weights recursively is

wi ∝
p

(
yt | xi

t

)
p

(
xi

t | xi
t−1

)
p

(
xi

t−1 | y1:t−1
)

q
(
xi

t|yt, xi
t−1

)
q

(
xi

t−1|y1:t−1
)

= wi
t−1

p
(
yt | xi

t

)
p

(
xi

t | xi
t−1

)
q

(
xi

t|yt, xi
t−1

) (16)
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Unfortunately, after a few iterations of the algorithm, the majority of the probability mass will be

allocated to only a few particles and the collection of particles will be a poor representation of the

density. This phenomenon is known as degeneracy in the literature. In order to solve this problem,

Gordon et. al. (1993) introduced a resampling step to the SIS algorithm which replicates better

particles and eliminates particles with small probability mass. The addition of the resampling step

to the SIS algorithm creates the SISR algorithm, provided as algorithm 1 in the appendix.

The resampling step copies “better” particles at each iteration in order to explore the support

of the next posterior density. The simplest resampling algorithm is multinomial resampling, which

corresponds to drawing new particles from a multinomial distribution with probabilities equal to the

normalized importance weights. Improvements on this method have been made and are reviewed

in Cappé et. al. (2005). It is not optimal to resample at each iteration as resampling increases the

amount of Monte Carlo variation introduced into the estimates. Instead, it should be conducted

only when the variance of the importance weights grows. Liu and Chen (1998) introduced a measure

called the effective sample size (ESS), defined as

ESS =
1∑N

i=1

(
wi

t

)2 (17)

to randomly determine when to resample. Criterion other than the ESS can also be used, see Cappé

et. al. (2005) for details.

The most important part of any particle filtering algorithm is the choice of the importance

density. Ideally, the researcher should choose an importance density that approximates the target

density as closely as possible. This will keep the variance of the importance weights low. A

convenient choice used by many authors is the transition density of the state variables which is the

prior density in a Bayesian framework

q
(
xt|xi

t−1, y1:t

)
= p

(
xt|xi

t−1

)
(18)

Substituting (18) into (16) leads to a particularly simple update of the importance weights

wi
t ∝ wi

t−1p
(
yt|xi

t

)
(19)

If the particles are resampled at every iteration, the weight update simplifies further to wi
t ∝
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p
(
yt|xi

t

)
. This is the original particle filtering algorithm of Gordon et. al. (1993) known as the

bootstrap filter.

Although the transition density of the state variables is convenient, it does not incorporate the

current observation into the importance density. The particle filtering literature includes the con-

cept of a conditionally optimal importance density, q
(
xt|xi

t−1, yt
)
, which will minimize the variance

of the importance weights. This density can only be computed analytically in special cases. Many

sub-optimal approximations to it using local linearization techniques have been derived, see Doucet

et. al. (2001). Finding an importance density that uses yt in a computationally efficient manner

can be challenging. The auxiliary particle filter (APF) of Pitt and Shephard (1999) is a popular

alternative. They suggested incorporating yt by sampling from an expanded importance density

q (xt, j|y1:t) that admits an approximation to the conditionally optimal density as a marginal. This

technique will improve a standard particle filter when the signal to noise ratio is large. The current

observation will have more information about the current state than the previous state. However,

the APF can degrade a particle filter if the variance of the transition density is small relative to

the observation noise. For the U.S. short rate series, we found that the APF works well because

the series’ mean volatility is relatively low, making the observations highly informative. We discuss

this further in section 3.4.

3.3 Particle smoothers

Calculation of the marginal smoothing density p (xt|y1:T ) is a separate challenge in nonlinear, non-

Gaussian state space models. Bayesian estimation of SV models via MCMC automatically delivers

smoothed estimates of volatility as a by-product. This is not the case for EMM. The optimal filtering

literature has demonstrated that the smoothing density can be calculated recursively based upon

two separate principles: two-filter formula smoothing and backwards Markovian smoothing; see, e.g.

Cappé et. al. (2005) for theoretical derivations. Both methods were developed in the 1960-1970’s

for the linear Gaussian state space model and their counterparts exist for particle methods.

Kitagawa (1996) proposed the first particle smoothing algorithm based upon two-filter formula

smoothing. The method requires continually resampling past particles at each iteration which over

time reduces the number of distinct particles that can represent the marginal smoothing density.

Kitagawa and Sato (2001) suggesting truncating the lag length on the resampling step to make it

operational. Consequently, this smoother is only valid for fixed lag smoothing.
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Doucet et. al. (2000) developed a backwards Markovian particle smoother that is probabilisti-

cally equivalent to the Kalman smoothing approach most common in economics. We apply it in this

paper as it is particularly simple to implement, see algorithm 2 in the appendix. This algorithm

runs a particle filter forward storing the particles’ locations and weights. Then, it runs backward

in time calculating each marginal. The algorithm can be computationally time intensive because

it is an O
(
N2

)
operation. Recent research in computing methods has demonstrated how to lower

this time dramatically; see, Klass et. al. (2006) who apply N -body methods to particle smoothers.

Another drawback of this smoother concerns the fact that particle locations are simulated only

on the forward pass, which fixes the support of the marginal smoothing density. Briers et. al.

(2004) and Klass et. al. (2006) have developed a new two-filter formula particle smoother, also

an O
(
N2

)
operation, that simulates new particle locations on a backward filtering pass. This

smoother unfortunately cannot be applied to the SV2 and SV3 models due to the lagged value

of yt−1 in the measurement equation when the SDE is discretized. Finally, another attractive ap-

proach for calculating the marginal smoothing density is provided by Godsill et. al. (2004), who

invented a nonlinear, non-Gaussian equivalent of a simulation smoother. A simulation smoother

takes random draws from the sequence of marginal smoothing densities after having run a filter for-

ward. Averaging over many series of draws then provides a Monte Carlo estimate of the smoothing

distributions.

3.4 Implementation for the SV3 model

In this section, we describe how to implement the SISR particle filter for the SV3 model. Choosing

an importance density is the first step in implementing a particle filter. We experimented with

several different importance densities for this model within the SISR and APF algorithms. We

concluded that the APF was reliable, simple to implement, and computationally efficient.

For the first step in the APF, we set First, we need to know the transition densities p (xt|xt−1)

associated with the transition equations (4) and (5). The transition density of an OU process driven

by Brownian motion is a normal distribution and can be simulated exactly without discretization

error.3 Given values from the previous time step for xt and µt, the next values are simulated

forward as
3Glasserman (2004) is a reference for these results.
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xt+1 = exp
(
ω1dt

ndt

)
xt −

ω0

ω1

(
1− exp

(
ω1dt

ndt

))
+

√
ξ

−2ω1

(
1− exp

(
2ω1dt

ndt

))
Z1,t+1

µt+1 = exp
(
υ1dt

ndt

)
µt −

υ0

υ1

(
1− exp

(
υ1dt

ndt

))
+

√
ς

−2υ1

(
1− exp

(
2υ1dt

ndt

))
Z2,t+1

with Zi,t+1 ∼ N (0, 1). The value of dt is determined by the frequency of the data which is 1/52 for

our weekly data set. The parameter ndt is the number of additional time steps that are simulated

between each observation. In our work, we simulate an additional 25 time steps.

With this choice of the importance density, the importance weights reduce to computing the

conditional likelihood p (yt|xt). The likelihood for this model conditional on the simulated values of

xt and µt reduces to the transition density of (3) in a model with no latent variables. The transition

density of the CKLS model is unfortunately unknown. A possible solution is to approximate the

density with a normal distribution after discretizing the SDE with an Euler or Milstein scheme.

The density is then evaluated as

p (yt|xt) = N
(
yt−1 + κ {µt − yt−1} dt, exp (xt) y

2γ
t−1dt

)

Alternatively, the estimated value of γ in the SV3 model is near 0.5 making it close to a CIR process.

The transition density of the CIR process is known to be a noncentral chi-square distribution.

We also implemented particle filters with alternative importance densities. In our simulations,

we found that the APF performed significantly better than a SISR algorithm using the transition

density as a proposal and moderately better than a SISR algorithm with the Kalman filter approx-

imation of Harvey et. al. (1994) as proposal. We also experimented with the approximation to the

conditionally optimal proposal described in Cappé et. al. (2005). The latter may be slightly more

efficient for a fixed number of particles but not necessarily for a fixed computational time because

it requires calling a mode finding algorithm for each particle at each iteration. Another one of our

goals is to describe methods that a user of EMM can code reliably. More elaborate particle filters

can easily be designed. We note two in particular that are relevant here. Markov chain Monte

Carlo steps can be included as in Gilks and Berzuini (2001). And, Doucet et. al. (2006) have

recently described a block sampling approach, which may provide significant efficiency gains.

There exists other work on using particle filters to estimate continuous time stochastic volatil-
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ity models or continuous time models in general. Johannes et. al. (2006) have recently used an

algorithm similar to ours to estimate stochastic volatility models with jumps. Their algorithm

is essentially the bootstrap filter with a proposal density based on an Euler discretization of the

transition equation. In addition, Johannes et. al. (2006) simulate artificial observations between

observed data that they then use to compute additional importance weights. Fearnhead et. al.

(2006) proposed an original particle filtering algorithm for partially observed diffusions based on

recent advances in the simulation of diffusions. They use results from Beskos et. al. (2005) and

Beskos et. al. (2006) who have developed methods for simulating specific classes of diffusions

without discretization error. Finally, Rimmer et. al. (2005) use particle filters to compute ML esti-

mates for the parameters of a diffusion measured in noise. Their article offers additional advice on

building importance densities. The relative performance of these continuous time particle filtering

algorithms has yet to be determined and is an important area of future research.

3.5 The Hidden Markov Model Filter and Smoother

In section 4 and 5, we estimate the RS models (6) and (7) that have state variables taking on

discrete values and evolve over time according to a first-order Markov transition matrix. In this

case, the optimal filter and smoother can be computed analytically as in Baum and Petrie (1966).

Technically, our models are RS models and not HMMs because the current observation depends

upon past observations as in (10). This means that conditional on the state variable the current

observation is not independent like a true HMM. Hamilton’s (1989) algorithm is slightly different

than Baum and Petries’ (1966) because his model had lagged state variables in the measurement

equation. As our models do not have lagged state variables in the measurement equation, the filter

and smoother can still be appropriately computed using the HMM filter and smoother.

The recursion for the HMM filter follows a two-step procedure with prediction

p (xt|y1:t−1) =
K∑

j=1

p (xt = j|y1:t−1)

p (xt = j|y1:t−1) =
K∑

i=1

p (xt−1 = i|y1:t−1) pij

and update
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p (xt|y1:t) =
K∑

j=1

p (xt = j|y1:t)

p (xt = j|y1:t) =
p (xt = j|y1:t−1) p (yt|xt = j)∑K

k=1 p (xt = k|y1:t−1) p (yt|xt = k)
(20)

Here, there are K possible states and as above pij is the probability of transitioning from state i

to state j.4 The HMM smoothing algorithm based upon the two-filter formula smoothing principle

follows as

p
(
xt|T = i|yt:T

)
=

∑K
j=1 qijp (yt+1|xt+1 = j) p

(
xt+1|T = j|yt:T

)
∑K

k=1 p (xt = k|y1:t−1) p (yt|xt = k)

p (xt = j|y1:T ) =
p (xt = j|y1:t) p

(
xt|T = j|yt:T

)
∑K

k=1 p (xt = k|y1:t) p
(
xt|T = k|yt:T

)
3.5.1 Viterbi Algorithm

We also implement the Viterbi (1967) algorithm for this set of models, given as algorithm 3 in the

appendix. This is a dynamic programming algorithm that computes the maximum a posteriori

(MAP) estimator of the sequence of state variables. That is, it computes the joint sequence of

states x1:T that maximizes the conditional probability of the data p (x1:T |y1:T ). This algorithm an-

swers a fundamentally different question than a smoothing algorithm which computes the marginal

distribution of an individual state p (xt|y1:T ). The MAP estimator is rarely used in the economics

literature, even when its output is easier to interpret. The Viterbi algorithm is provided as algorithm

3.

Although it was originally derived for discrete state models, it can also be calculated for the

SV2 and SV3 models by particle methods; see, e.g. Godsill et. al. (2001) and Klass et. al. (2006).

We apply this method for the sake of completeness. Note that the conditional mean of the marginal

p (xt|y1:T ) remains the minimum MSE estimator, while the MAP estimator may be preferable and

noticably different in settings of multi-modality where the mean exists in a lower probability region

between the modes.
4Hamilton’s algorithm includes an additional sum in the denominator of (20) to account for lagged state variables.
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4 EMM estimation results

In this section, the EMM methodology is briefly described and estimation results for fitting the

U.S. short rate are summarized.

4.1 EMM methodology

The theory of EMM was developed in Gallant and Tauchen (1996) and was extended to non-

Markovian data with latent variables in Gallant and Long (1997). Gallant and Tauchen (2001) and

Zivot and Wang (2006) provide overviews of the methodology in more detail. The basic procedure

of EMM estimation consists of two steps. First, the empirical conditional density of the observed

time series is estimated by a seminonparametric (SNP) series expansion. This SNP expansion has

a VAR-(G)ARCH Gaussian density as its leading term, and departures from the Gaussian leading

term are captured by a Hermite polynomial expansion. This step is accomplished by projecting

the data onto a SNP model and is therefore called the projection step. Second, a GMM-type

objective function is constructed using the score functions (from the log-likelihood of the SNP

density) as moments. The scores are evaluated using data simulated from a given structural model

and the objective function is minimized with respect to the parameters underlying the structural

model. This step extracts structural parameters from the data by minimizing the χ2 criterion and

is therefore called the estimation step.

4.2 Data

Our empirical work uses weekly observations of the annualized yield on the 3-month U.S. T-bill over

the period January 1954 to September 2004, forming 2468 observations. The data was constructed

from a daily series available from the U.S. Federal Reserve, where the rates are calculated as

unweighted averages of closing bid rates quoted by at least five dealers in the secondary market.

The rates are posted on a bank discount basis, but converted to continuously compounded yields

prior to analysis. Wednesday data are used because it results in the smallest number of missing

observations. The raw data are plotted in Figure 1 and descriptive statistics are given in Table 1.

The data set is similar to Gallant and Tauchens’ (1998) and has been extended for five additional

years; a time period that featured reduced volatility and a lower level. The basic stylized facts are:

near non-stationary behavior (slow mean reversion), large changes and small changes are clustered
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together (volatility clustering), the volatility increases with the level (level effect), and positive

skewness and excess kurtosis (non-Gaussian distribution).

4.3 EMM estimation results for the SV models

The preferred SNP model for describing the short rate data is an AR(1)-GARCH(1,1)-Kz(7) model

and the EMM estimation results for the two SV models are reported in Table 2. This is slightly

different than the SNP model fit by Gallant and Tauchen (1998), who use an AR(1)-ARCH(4)-

Kz(?)−Kx(?). Gu and Zivot (2006) report that the CKLS model without additional latent factors

gets rejected easily. On the other hand, the SV2 model and the SV3 model were not rejected at

the 10% level, implying that the introduction of additional stochastic factor(s) is important for

explaining the behavior of the U.S. short rate. The SV3 model was even favored over the SV2

model; the fit improved further when adding a stochastic mean.

Strong mean reverting behavior was confirmed for both models with similar reverting trend,

measured by φ0/φ1 or υ0/υ1, around 2.5%. This estimate is lower than in previously published

work, partially due to the incorporation of a longer data series after 1989. In addition, the implied

log-volatility process for both models and the reverting mean process for the SV3 model are highly

persistent. The conditional volatility is sensitive to the level of the rates for both models; the level

effect estimates, γ, are significantly in excess of zero. Specifically, γ is at 0.66 and 0.51 for the

SV2 and SV3 model, respectively; both estimates are well below unity. Adjusted t-ratios of all

individual elements of the score vector are well below 2.0 for the accepted SV2 and SV3 model,

implying that both models have no difficulties in capturing the volatility clustering that exists in

the data.

4.4 EMM estimation results for the regime-switching models

The EMM estimation results for the two RS models are provided in Table 2. The p-value for the

RS-in-σ model is slightly higher than 5%, providing mild evidence in support of the model. The

RS-in-σ+level model, with a p-value of 0.29, shows significant improvement over the RS-in-σ model

by incorporating the level effect. It fits even better than the SV3 model, in which both the level

effect and SV effect are implemented in the underlying structural model.

Both RS models exhibit strong mean reversion with the long-run reverting means estimated

higher than those of the SV models. A low-volatility and a high-volatility regime are identified with
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highly persistent transition probabilities; both probabilities exceed 0.90. The transition probability

of staying in the high-volatility regime is estimated to be smaller than in previous work, e.g. Smith

(2002). Lastly, the estimated conditional volatility in the RS-in-σ+level model is sensitive to the

level of the short rate series. The magnitude of the level effect is much lower than unity but very

similar to what is found in the multi-factor SV models.

5 Filtering and smoothing results

5.1 Results for the SV models

Figures 2 and 3 display the one-step ahead predicted, filtered, smoothed, and MAP estimates of

the volatility from the SV2 model using the APF algorithm described in section 3.4. We used

N = 2000 particles and the systematic resampling algorithm of Carpenter et. al. (1999). For

the SV2 model, the filtered and smoothed volatility follow similar paths. Moreover, a number

of high-volatility periods coincide with the historical business cycles and important events from

1954 to 2004. Specifically, the volatility process has two spikes in the late 1950’s and early 1960’s,

corresponding to the two short recessions during 8/1957-4/1958 and 4/1960-2/1961. After the

second spike, the volatilities decrease and keep historically low until the mid-1960’s. The short

rate experienced another period of high volatility during the 1970’s when stagflation hit the U.S.

economy. Critical macroeconomic events include the energy crisis from 1973 to 1975 due to the

onset of an oil embargo by OPEC, and the monetary experiment that was conducted by the Federal

Reserve during 1979-82 when its policy shifted away from targeting the federal funds rate. The

volatility appears relatively stable since the mid-1980’s. Two significant spikes in the volatility are

due to the stock market crash of October 19th, 1987 and the terrorist attack on September 11th,

2001.

Figure 4 provides the predicted, filtered, and smoothed estimates of the volatility and time-

varying mean for the SV3 model. Although the SV3 model fits the data better than the SV2 model

based on the results from EMM, the filtered and smoothed volatilities from both models share

similar paths. The estimated volatilities from the SV3 model during the high-volatility periods are

slightly higher than those from the SV2 model; for example, during the periods of the monetary

experiment and the market crash of October 19th, 1987.

The filtered estimates of the time-varying mean µt in the SV3 model are heavily revised when
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compared to the smoothed estimates. Specifically, the filtered estimates are consistently lower

than the smoothed estimates. For example, the U.S. economy experienced an unprecented period

of economic growth in the late 1990’s. During this time, the volatilities of the short rate were

enduringly low but the reverting means kept increasing. When this period of growth was ended

by the terrorist attack on Sept. 11th, 2001, the short rate became more volatile while its mean

dropped significantly as the Fed reacted to world events.

5.2 Results for the regime switching models

We apply the HMM filter and smoother and the Viterbi algorithm to our regime switching models

(6) and (7). The results are shown in Figures 6 and 7 for the RS-in-σ and RS-in-σ+level models,

respectively. The panels display the filtered and smoothed probabilities from the HMM algorithm

and finally the sequence of joint states from the Viterbi algorithm. Although the RS-in-σ+level

model fits the data better than the RS-in-σ model based on the p-value from EMM, our filtering

and smoothing results provide evidence that the RS-in-σ model better reflects the business cycles

and important events that may cause strong shifts in the behavior of interest rates.

For both the RS-in-σ+ and RS-in-σ+level models, the estimated switching probability is noisy

using the information up to the current state, but improves greatly when all the data gets incorpo-

rated; see the smoothed probabilities and the joint sequence of states. The MAP estimator implies

that there are twelve high-volatility regimes from 1954-2004. Specifically, the second and third

high-volatility regimes correspond to the two short recessions during 8/1957 - 5/1958 and 4/1960

- 2/1961; the following three high-volatility regimes appear in the early 1970s when recession and

inflation ocurred simultaneously, and the seventh regime may result from the 1973 energy crisis.

The eighth and ninth regimes correspond to the period of the monetary experiment that was con-

ducted by the U.S. Federal Reserve during 1979-82. Afterwards, the U.S. economy experienced a

long low-volatility period in the 1990’s with strong growth. Our estimation successfully captures

two abnormal events that interrupted it: one is the stock market crash of October 19th, 1987; the

other is the terrorist attack on Sept. 11th, 2001.

Figure 7 depicts the filtered and smoothed probabilities as well as the joint sequence of states

for the RS-in-σ+level model that accounts for the level effect of the interest rate. From this model,

more high volatility regimes have been identified and the estimated indicator switches between

regimes much more frequently than the simpler RS-in-σ+ model. Consequently, the estimated
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switching probability is still noisy even using all the available information. In addition, the esti-

mated switching probabilities are in less agreement with the NBER business cycle dates and other

important historical events. This is the case even when the RS-in-σ+level model provided the

highest p-value of all the volatility models we considered. Specifically, the RS-in-σ+level model

indicates that the interest rate stays in the high-volatility regime most of the time during 1954-1963,

but the change of the real interest rate is relatively low during that period.

Two volatile periods, corresponding to the short recessions late in the 1950’s and early 1960’s,

are not clearly identified. Moreover, the two high-volatility regimes, can be easily observed from the

time series of the change in the data. Several additional high-volatility regimes are also identified,

although they only lasted short periods of time. The well-known period of the monetary experiment

during 1979-1982 appears to expand to 1985 according to the estimated regimes obtained from

this model. Additional high-volatility regimes are also implied during the 1990’s, although the

U.S. economy and the short rate are relatively stable during that period. Based on all the above

evidence, our estimation results show that the RS-in-σ+level model over-fits the historical data.

6 Conclusion

Recovering the latent volatility through filtering and smoothing is important for forecasting future

volatility and providing complementary information on model selection. While there is a sizeable

literature that uses EMM to estimate the parameters of volatility models, estimating the volatility

has not been widely explored within this literature. In this paper, we evaluate the performance of

a variety of volatility models in terms of the filtered and smoothed estimates of the latent processes

using appropriate algorithms from the optimal filtering and signal extraction literature. For the

continuous time SV models, the estimated volatilities follow similar dynamic paths. In addition,

the filtered and smoothed volatilities from either model can resemble the historical business cycles

and important events during 1954 to 2004. For the discrete time RS models, the estimated high-

volatility regimes from the RS-in-σ model are similar to the high-volatility periods in the SV2/SV3

model. We also find that the estimated switching probabilities from the RS-in-σ+level model are

in less agreement with the historical business cycle and important events than from the RS-in-σ

model. The former model provided the best fitting performance across all the models considered

during EMM estimation. Our results indicate an over-fit of the time series for the RS-in-σ+level
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model.
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Algorithms

Algorithm 1 Sequential Importance Sampling with Resampling (SISR)
1. Initialization: for i = 1, ..., N
• Draw xi

0 from its stationary distribution.

Iterate steps 2 and 3 for t = 1, ..., T .

2. Sampling: for i = 1, ..., N
• Draw xi

t from q
(
xt | xi

t−1, y1:t
)
.

• Calculate the importance weights wi
t using (16).

3. Resampling: for i = 1, ..., N
• Normalize the importance weights: ŵi

t = wi
t∑N

i=1
wi

t

.

• Calculate the effective sample size using (17).
• If N̂eff < Nthresh resample the particles using one of the resampling algorithms.
• If the particles were resampled, set their weights equal.

Algorithm 2 Forward-Backward Particle Smoother
1. Forward filtering: for t = 1, ...., T .
• Run a particle filtering algorithm forward and save

{
xi

t, w
i
t

}N
i=1.

2. Initialization: at t = T .
• Set wi

T |T = wi
T for i = 1, ..., N .

3. Backward smoothing: for t = T − 1, ...., 1.
• For i = 1, ..., N compute smoothed weights:

wi
t|T = wi

t

 N∑
j=1

wi
t+1|T

p
(
xj

t+1 | xi
t

)
∑N

k=1w
k
t p

(
xj

t+1 | xk
t

)

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Algorithm 3 Viterbi Algorithm
1. Initialization: for t = 0 and for i = 1, ...,K.
• Set δ0 (i) = log (pii) where p is the stationary distribution of the Markov transition matrix.

2. Forward recursion: t = 1, ...., T and for j = 1, ...,K.
• Set δt (j) = maxi∈{1,...,K} [δt−1 (i) + log p (xt = j|xt−1 = i)] + log p (yt|xt = j).
• Set ψt (j) = maxi∈{1,...,K} [δt−1 (i) + log p (xt = j|xt−1 = i)].

3. Backward initialization: at t = T
• Set x̂T = maxi∈{1,...,K} [δT (i)].

4. Backward recursion: t = T − 1, ...., 1.
• Set x̂t = ψt (x̂t+1).

Tables

Panel (A)
Sample quantiles Min: 0.6 1Q: 3.18 Median: 4.99 3Q: 6.67 Max: 17.01
Sample moments Mean: 5.246 Std. Dev.: 2.849 Skewness: 1.065 Kurtosis: 4.712

Panel (B)
Sample quantiles Min: -2.47 1Q: -0.07 Median: 0 3Q: 0.077 Max: 2.22
Sample moments Mean: 1.5e-4 Std. Dev.: 0.237 Skewness: -0.522 Kurtosis: 24.81

Table 1: Descriptive statistics for the raw data (A) and the differenced series (B).

26



Parameter SV2 SV3 RS-in-σ RS-in-σ+level

φ0
0.8428

(0.2669)
-

0.2580
(0.0336)

0.1769
(0.5818)

-φ1
−0.2956
(0.1816)

−1.0947
(0.8463)

−0.0284
(0.1640)

−0.0283
(0.2976)

φ0/φ1 2.8512 - 9.0845 6.2070

γ
0.6659

(0.1163)
0.5167

(0.0755)
-

0.5076
(0.1266)

σ1 - -
0.1472

(0.0628)
0.0389

(0.0914)

σ2 - -
0.4613

(0.0566)
0.1400

(0.0874)

ω0
−0.5912
(0.5122)

−1.4491
(0.3003)

- -

ω1
−0.5629
(0.1983)

−0.9250
(0.1990)

- -

ξ
1.7765

(0.0474)
2.5433

(0.0959)
- -

υ0 -
2.5494

(0.7520)
- -

υ1 -
−0.9801
(16.5030)

- -

ς -
0.4715

(2.1440)
- -

p11 - - 0.98 0.98
p22 - - 0.91 0.89
χ2 10.35 5.55 11.01 6.53

p-value 0.1107 0.2357 0.0881 0.2916
d.o.f. 6 4 6 5

Table 2: Estimates with standard errors for the SV2, SV3, RS-in-σ, and RS-in-σ+level models.
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Figure 1: U.S. 3 month T-bill rate with NBER recession dates. Top: raw series. Bottom: First
differenced series.
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Figure 2: Estimates of conditional volatility from the SV2 model using the SISR algorithm. Top:
one-step-ahead prediction. Middle: filtered.
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Figure 3: Smoothed and MAP estimates of conditional volatility from the SV2 model. Top: SISR
smoother MAP. Bottom: SISR-MAP estimator.
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Figure 4: Estimates of volatility from the SV3 model using the SISR algorithm. Top: one-step-
ahead prediction. Middle: filtered. Bottom: smoothed.
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Figure 5: Estimates of the time-varying mean state variable µt from the SV3 model using the SISR
algorithm. Top: one-step-ahead prediction. Middle: filtered. Bottom: smoothed.
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Figure 6: Estimates of the probabilities and states from the RS-in-σ model. Top: filtered proba-
bilities. Middle: smoothed probabilities. Bottom: MAP estimate.
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Figure 7: Estimates of the probabilities and states from the RS-in-σ+level model. Top: filtered
probabilities. Middle: smoothed probabilities. Bottom: MAP estimate.
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