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Asymmetric Leverage Effects and News Impact

• In the basic GARCH model, since only squared residuals 2− enter the
conditional variance equation, the signs of the residuals or shocks have no
effect on conditional volatility.

• A stylized fact of financial volatility is that bad news (negative shocks)
tends to have a larger impact on volatility than good news (positive shocks).
That is, volatility tends to be higher in a falling market than in a rising
market. Black (1976) attributed this effect to the fact that bad news tends
to drive down the stock price, thus increasing the leverage (i.e., the debt-
equity ratio) of the stock and causing the stock to be more volatile. Based
on this conjecture, the asymmetric news impact on volatility is commonly
referred to as the “leverage effect”.



Testing for Asymmetric Effects on Conditional Volatility

• A simple diagnostic for uncovering possible asymmetric leverage effects
is the sample correlation between 2 and −1 A negative value of this
correlation provides some evidence for potential leverage effects.

• Other simple diagnostics result from estimating the following test regres-
sion

̂2 = 0 + 1̂−1 + 

where ̂−1 is a variable constructed from ̂−1 and the sign of ̂−1 A
significant value of 1 indicates evidence for asymmetric effects on condi-
tional volatility.



• Let −−1 denote a dummy variable equal to unity when ̂−1 is negative,
and zero otherwise. Engle and Ng consider three tests for asymmetry.

— Setting ̂−1 = −−1 gives the Sign Bias test;

— Setting ̂−1 = −−1̂−1 gives the Negative Size Bias test;

— Setting ̂−1 = +−1̂−1 gives the Positive Size Bias test.



EGARCH Model

Define  = ln(2 ) and  =  where  ∼  (0 1) Nelson’s exponential
GARCH model is then

 = 0 +
X

=1


|−|+ −

−
+

X
=1

−

• Variance is always positive because 2 = exp()

• Total effect of positive shocks (good news) to −

(1 + )|−|



• Total effect of negative shocks (bad news) to −

(1− )|−|

• Leverage effect implies that   0

• EGARCH is covariance stationary provided (1) =
P
=1   1 Here,

(1) is called the persistence.



Remark: The EGARCH model in the rugarch package is specified slightly dif-
ferently

 = 0 +
X

=1

(− +  (|−|−[|−|)) +
X

=1

−

•  captures the sign effect: leverage effect ⇒   0

•  captures the size effect: bigger  implies a larger leverage effect. Hence,
  0



TGARCH/GJR Model

Zakoian’s threshold GARCH (aka GJR - Glosten, Jagannathan, and Runkle)
model is

2 = 0 +
X

=1


2
− +

X
=1

−
2
− +

X
=1


2
−

− =

(
1 if −  0
0 if − ≥ 0

• When − is positive, the total effects are 2−

• when − is negative, the total effects are ( + )
2
−



• Leverage effect implies that   0

• TGARCH/GJR is covariance stationary provided the persistenceP
=1(+

2) +
P
=1   1



PGARCH Model (aka APARCH)

Ding, Granger and Engle’s power GARCH model for   0

 = 0 +
X

=1

(|−|− −)
 +

X
=1



−

• Leverage effect implies that   0 (if −  0 and   0 then
−−  0 so negative returns increase  )

•  = 2 gives a regular GARCH model with leverage effects

•  = 1 gives a model for  and is more robust to outliers than when  = 2



•  can be fixed at a particular value or estimated by mle

• Condition for stationarity is complicated (see rugarch package documen-
tation) and depends on  and 



News Impact Curve

Engle and Ng propose the use of the news impact curve to evaluate asymmetric
GARCH models:

The news impact curve is the functional relationship between condi-
tional variance at time  and the shock term (error term) at time −1,
holding constant the information dated − 2 and earlier, and with all
lagged conditional variance evaluated at the level of the unconditional
variance.

News impact curves can be easily constructed for all types of GARCH models.



Forecasts from Asymmetric GARCH(1,1) Models

• Consider the TGARCH(1,1) model at time 

2 = 0 + 1
2
−1 + 1−1

2
−1 + 1

2
−1

 = 1 if   0; 0 otherwise

• Assume that  has a symmetric distribution about zero. The forecast for
 + 1 based on information at time  is

[2+1| ] = 0 + 1
2
 + 1

2
 + 1

2
 

where it assumed that 2   and 
2
 are known. Hence, the TGARCH(1,1)

forecast for +1 will be different than the GARCH(1,1) forecast if  = 1
(  0).



• The forecast at  + 2 is

[2+2| ] = 0 + 1[
2
+1| ] + 1[+1

2
+1| ] + 1[

2
+1| ]

= 0 +
µ
1
2
+ 1 + 1

¶
[2+1| ]

which follows since +1 is independent of 2+1 and  has a symmetric
distribution about zero:

[+1
2
+1| ] = [+1| ][2+1| ] =

1

2
[2+1| ]

Notice that the asymmetric impact of leverage is present even if  = 0

• By recursive substitution for the forecast at  +  is

[2+| ] = 0 +
µ
1
2
+ 1 + 1

¶−1
[2+1| ]

which is similar to the GARCH(1,1) forecast.



• The mean reverting form is

[2+| ]− ̄2 =
µ
1
2
+ 1 + 1

¶−1 ³
[2+| ]− ̄2

´
where ̄2 = 0(1− 1

2 − 1 − 1) is the long run variance.

• Forecasting algorithms for + in the PGARCH(1  1) and for ln2+
in the EGARCH(1,1) follow in a similar manner.



GARCH Models with Non-Normal Errors

In the GARCH model with normal errors,  =  and  ∼  (0 1)

• Often the estimated standardized residuals ̂ = ̂
̂
from a GARCH model

with normal errors still has fat and/or asymmetric tails. This suggests
using a standardized fat-tailed and/or asymmetric error distribution for 
instead of (0 1).

• The most common fat-tailed error distributions for fitting GARCH models
are: the Student’s t distribution; the double exponential distribution; and
the generalized error distribution. Another fat-tailed distribution imple-
mented in rugarch is the generalized hyperbolic distribution.



• The most common standardized fat-tailed and asymmetric distribution is
the skewed-t. Another fat-tailed and asymmetric distribution implemented
in rugarch is the generalized hyperbolic skew Student distribution.



GARCH with Student-t errors (most common non-normal GARCH model)

Let  be Student-t random variable degrees of freedom parameter  and scale
parameter  Then

() =
Γ[( + 1)2]

()12Γ(2)


−12


[1 + 2 ()]
(+1)2

var() =


 − 2
   2

If  in the GARCH model is Student-t with [2 |−1] = 2 then set

 =
2 ( − 2)



to create a standardized Student-t distribution for 



Generalized Error Distribution

Nelson suggested using the generalized error distribution (GED) with parameter
  0 If  is distributed GED with parameter  then

() =
 exp[−(12)||]
 · 2(+1)Γ(1)

where

 =

"
2−2Γ(1)

Γ(3)

#12

•  = 2 gives the normal distribution

• 0    2 gives a distribution with fatter tails than normal



•   2 gives a distribution with thinner tails than normal

•  = 1 gives the double exponential distribution

() =
1√
2
−
√
2||



Skewed Student-t Distribution

There are several definitions of the Skewed Student-t distribution (e.g. Azzalini
and Capitanio, Fernandez and Steel, etc.). In their scaled form (mean zero and
unit variance), all versions have

• degrees of freedom parameter   0 controlling tail-thickness relative to
normal

• skew (asymmetry) parameter  such that   0 gives negative skew (long
left tail) and   0 gives long right tail.



Long Memory GARCH Models

• If returns follow a GARCH( ) model, then the autocorrelations of the
squared and absolute returns should decay exponentially.

• However, the SACF of 2 and || often appear to decay much more slowly.
This is evidence of so-called long memory behavior.

• Formally, a stationary process has long memory or long range dependence
if its autocorrelation function behaves like

()→ 
2−1 as →∞

where  is a positive constant, and  is a real number between 0 and 12
Thus the autocorrelation function of a long memory process decays slowly
at a hyperbolic rate.



Long Memory GARCH Models

• Long memory behavior can be built into the conditional variance equation
in a variety of ways

— Bollerslev’s fractionally integrated GARCH model (FIGARCH)

— Engle’s two component GARCH model

• Estimation of long memory GARCH models is very difficult and it is seldom
used in practice (academics love it because it is complicated)



Integrated GARCH Model

2 = 0 + 1
2
−1 + 1

2
−1

• The high persistence often observed in fitted GARCH(1,1) models sug-
gests that volatility might be nonstationary implying that 1 + 1 = 1, in
which case the GARCH(1,1) model becomes the integrated GARCH(1,1)
or IGARCH(1,1) model.

• In the IGARCH(1,1) model the unconditional variance is not finite and so
the model does not exhibit volatility mean reversion. However, it can be
shown that the model is strictly stationary provided [ln(12 +1)]  0

• IGARCH(1,1) is equivalent to the riskMetrics EWMA model when 0 = 0,
1 = 1−  and 1 =  where  = 094



• Diebold and Lopez (1996) argued against the IGARCH specification for
modeling highly persistent volatility processes for two reasons.

— First, they argue that unconditional variance should be finite

— Second, they argue that the observed convergence toward normality of
aggregated returns is inconsistent with the IGARCH model.

— Third, they argue that observed IGARCH behavior may result from mis-
specification of the conditional variance function. For example, ignored
structural breaks or regime switching in the unconditional variance can
result in IGARCH behavior.



Evaluating Volatility Predictions

• GARCH models are often judged by their out-of-sample forecasting ability

• This forecasting ability can be measured using

— traditional forecast error metrics such as MSE

— Specific economic considerations such as value-at-risk violations, option
pricing accuracy, or portfolio performance.



• Out-of-sample forecasts for use in model comparison are typically computed
using one of two methods.

— Recursive forecasts: An initial sample using data from  = 1      is
used to estimate the models, and −step ahead out-of-sample forecasts
are produced starting at time  The sample is increased by one, the
models are re-estimated, and −step ahead forecasts are produced
starting at  + 1

— Rolling forecasts. An initial sample using data from  = 1      is
used to determine a window width  to estimate the models, and
to form −step ahead out-of-sample forecasts starting at time 

Then the window is moved ahead one time period, the models are
re-estimated using data from  = 2      + 1 and −step ahead
out-of-sample forecasts are produced starting at time  + 1



Traditional Forecast Evaluation Statistics

• Let [
2
+| ] denote the −step ahead forecast of 2+ at time 

from GARCH model  using either recursive or rolling methods

• Define the corresponding forecast error as +| = [
2
+| ] −

2+

• Common forecast evaluation statistics

MSE =
1



+X
=+1

2+|MAE =
1



+X
=+1

¯̄̄
+|

¯̄̄


MAPE =
1



+X
=+1

¯̄̄
+|

¯̄̄
+





• The model which produces the smallest values of the forecast evaluation
statistics is judged to be the best model.

• Of course, the forecast evaluation statistics are random variables and a for-
mal statistical procedure should be used to determine if one model exhibits
superior predictive performance.



Diebold-Mariano Tests for Predictive Accuracy

• Let {1+|}++1  and {2+|}
+
+1 denote forecast errors from two

different GARCH models.

• The accuracy of each forecast is measured by a particular loss function
(+| )  = 1 2.

— squared error loss function: (+| ) =
³
+|

´2
; absolute

error loss function (+| ) =
¯̄̄
+|

¯̄̄


• The Diebold-Mariano (DM) test is based on the loss differential

+ = (1+| )− (2+| )



• The null of equal predictive accuracy is 0 : [+] = 0

• The DM test statistic is

S =
̄³ davar(̄)´12 ̄ = −1

+X
=+1

+

• DM recommend using the Newey-West estimate for davar(̄) because the
sample of loss differentials {+}++1 are serially correlated for   1.

• Under the null of equal predictive accuracy,

S ∼ (0 1)



Hence, the DM statistic can be used to test if a given forecast evalua-
tion statistic (e.g. MSE1) for one model is statistically different from the
forecast evaluation statistic for another model (e.g. MSE2).



Mincer-Zarnowitz Forecasting Regression

• Forecasts are also often judged using the forecasting regression

2+ = + [
2
+| ] + +

• Unbiased forecasts have  = 0 and  = 1 and accurate forecasts have
high regression 2 values.

• In practice, the forecasting regression suffers from an errors-in-variables
problem when estimated GARCH parameters are used to form[

2
+| ]

and this creates a downward bias in the estimate of  As a result, attention
is more often focused on the 2.



Fundamental Problem with Evaluating Volatility Forecasts

• An important practical problem with applying forecast evaluations to volatil-
ity models is that the −step ahead volatility 2+ is not directly observ-
able.

• Typically, 2+ (or just the squared return) is used to proxy 2+ since

[2+| ] = [2+
2
+| ] = [2+| ]

• 2+ is a very noisy proxy for 
2
+ since var(

2
+) = [4+](−1)

where  is the fourth moment of  and this causes problems for the
interpretation of the forecast evaluation metrics.



• Many empirical papers have evaluated the forecasting accuracy of compet-
ing GARCH models using 2+ as a proxy for 

2
+ Poon (2005) gave a

comprehensive survey.

— The typical findings are that the forecasting evaluation statistics tend
to be large, the forecasting regressions tend to be slightly biased, and
the regression 2 values tend to be very low (typically below 0.1).

— In general, asymmetric GARCH models tend to have the lowest forecast
evaluation statistics. The overall conclusion, however, is that GARCH
models do not forecast very well.



• Andersen and Bollerslev (1998) provided an explanation for the apparent
poor forecasting performance of GARCH models when 2+ is used as a
proxy for 2+

• For the GARCH(1,1) model in which  has finite kurtosis , they showed
that the population 2 value in the forecasting regression with  = 1 is
equal to

2 =
21

1− 21 − 211


and is bounded from above by 1 Assuming  ∼ (0 1), this upper
bound is 13 With a fat-tailed distribution for  the upper bound is
smaller.

• Hence, very low 2 values are to be expected even if the true model is a
GARCH(1,1).



• Moreover, Hansen and Lund (2004) found that the substitution of 2+
for 2+ in the evaluation of GARCH models using the DM statistic can
result in inferior models being chosen as the best with probability one.
These results indicate that extreme care must be used when interpreting
forecast evaluation statistics and tests based on 2+



Using Realized Variance to Evaluate Volatility Forecasts

• If high frequency intraday data are available, then instead of using 2+ to
proxy 2+ Andersen and Bollerslev (1998) suggested using the so-called
realized variance

 
+ =

X
=1

2+

where {+1     +} denote the squared intraday returns at sam-
pling frequency 1 for day  + 

— For example, if prices are sampled every 5 minutes and trading takes
place 24 hours per day then there are  = 288 5-minute intervals per
trading day.



• Under certain conditions,  
+ is a consistent estimate of 

2
+ as

 → ∞ As a result,  
+ is a much less noisy estimate of 

2
+

than 2+ and so forecast evaluations based on 

+ are expected to

be much more accurate than those based on 2+

— For example, in evaluating GARCH(1,1) forecasts for the Deutschemark-
US daily exchange rate, Andersen and Bollerslev reported 2 values of
0047 0331 and 0479 using 2+1 

24
+1 and 

288
+1 respectively.


