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Reading

• FMUND, chapter 4 (section 7)

• MFTS, chapter 14 (section 4.3), 21 (section 7.4), 23 (section 4.2)

• APDVP, chapter 11



Estimation Techniques for SV Models

• Likelihood function

• Estimation methods



Standard SV Model

rt = μ+ σtut

ln(σt)− α = φ(ln(σt−1 − α) + ηt, |φ| < 1Ã
ut
ηt

!
∼ iid N

ÃÃ
0
0

!
,

Ã
1 0
0 σ2η

!!
or

rt = μ+ exp(wt/2)ut, wt = ln(σ
2
t ) = 2 ln(σt)

wt − αw = φ(wt−1 − αw) + ηw,t, ηw,t ∼ iid N(0, σ2ηw)Ã
ut
ηw,t

!
∼ iid N

ÃÃ
0
0

!
,

Ã
1 0
0 σ2ηw

!!



Typicall, μ is first estimated using

μ̂ =
1

n

nX
t=1

rt

and the SV model is fit to the demeaned returns

yt = rt − μ̂

The parameters to be estimated are then

θ = (α, φ, σ2η)
0 or (α, φ, β2)0, β2 = σ2η(1− φ2)

θw = (αw, φ, σ
2
ηw
)0 or (αw, φ, β2w)

0, β2 = σ2ηw(1− φ2)



Likelihood Function

{r1, . . . , rn} = sample of observed returns from SV model

The likelihood function for {r1, . . . , rn} given θ is

L(r1, . . . , rn|θ) =
Z
· · ·

Z
f(r1, . . . , rn|σ1, . . . , σn; θ)f(σ1, . . . , σn)dσ1 · · · dσn

cannot be evaluated analytically. However,

f(r1, . . . , rn|σ1, . . . , σn; θ) = Πn
i=1f(ri|σi; θ)

f(ri|σi) = N(μ, σ2i )

and f(σ1, . . . , σn) can be evaluated using the fact that lnσt follows a Gaussian
AR(1) model.



• Method of moments

• Generalized method of moments (GMM)

• Quasi-MLE from state space model

• Simulated MLE

• Indirect Inference

• Bayesian MCMC



Method of Moments

Idea: Estimate parameters by matching population moments to sample mo-
ments

Population parameters: α, β2, φ

Population moments

E[|rt − μ|] = E[at] =
q
2/π

µ
α+

1

2
β2
¶

var(rt) = exp(2α+ 2β2)

kurt(rt) = 3 exp(4β2)



Method of moment estimators for α and β using var(rt) and kurt(rt) :

β̂
2
=

1

4
ln

Ã dkurt(rt)
3

!

α̂ =
ln(dvar(rt))

2
− β̂

2

Problem: dkurt(rt) is very sensitive to outliers



Method moment estimators for α and β using E[|rt − μ|] and var(rt) :

α̂ = ln

⎛⎜⎝ πā2

2
qdvar(rt)

⎞⎟⎠
β̂ = ln

Ã
2dvar(rt)
πā2

!
where

ā =
1

n

nX
t=1

|rt − r̄|, r = 1

n

nX
t=1

rt

• No simple method of moments estimator for φ

• Note: Method of moment estimators are not unique



Review of GMM Estimation

Idea: GMM optimally combines moment conditions to estimate population
parameters

Let {wt} be a covariance stationary and ergodic vector process representing the
underlying data. Let the p×1 vector θ denote the population parameters. The
moment conditions g(wt, θ) are K ≥ p possibly nonlinear functions satisfying

E[g(wt,θ0)] = 0

where θ0 represent the true parameter vector.



Global identification of θ0 requires that

E[g(wt,θ0)] = 0

E[g(wt,θ)] 6= 0 for θ 6= θ0

Local Identification requires that the K × p matrix

G = E

"
∂g(wt,θ0)

∂θ0

#
has full column rank p.



The sample moment condition for an arbitrary θ is

gn(θ) = n−1
nX
t=1

g(wt,θ)

If K = p, then θ0 is apparently just identified and the GMM objective function
is

J(θ) = ngn(θ)
0gn(θ)

which does not depend on a weight matrix.

The corresponding GMM estimator is then

θ̂ = argmin
θ

J(θ)

and satisfies gn(θ̂) = 0.



If K > p, then θ0 is apparently overidentified.

Let Ŵ denote a K×K symmetric and p.d. weight matrix, possibly dependent
on the data, such that Ŵ

p→W as n→∞ withW symmetric and p.d.

The GMM estimator of θ0, denoted θ̂(Ŵ), is defined as

θ̂(Ŵ) = argmin
θ

J(θ,Ŵ) = ngn(θ)
0Ŵgn(θ)

The first order conditions are

∂J(θ̂(Ŵ),Ŵ)

∂θ
= 2Gn(θ̂(Ŵ))0Ŵgn(θ̂(Ŵ)) = 0

Gn(θ̂(Ŵ)) =
∂gn(θ̂(Ŵ))

∂θ0



Asymptotic Properties of Nonlinear GMM

Under standard regularity conditions, it can be shown that

θ̂(Ŵ)
p→ θ0

√
n
³
θ̂(Ŵ)− θ0

´
d→ N(0, avar(θ̂(Ŵ)))

where

avar(θ̂(Ŵ)) = (G0WG)−1G0WSWG(G0WG)−1

G = E

"
∂g(wt,θ0)

∂θ0

#
, S = avar(

√
ngn(θ0))



The efficient GMM estimator uses a weight matrix W that minimizes
avar(θ̂(Ŵ)). Hansen (1982) showed that the optimal weight matrix is
W = S−1. In this case,

avar(θ̂(S−1)) = (G0S−1G)−1

If {gt(wt,θ0)} is an ergodic stationary MDS then

S = E[gt(wt,θ0)gt(wt,θ0)
0].

A consistent estimator of S takes the form

ŜHC = n−1
nX
t=1

gt(wt, θ̂)gt(wt, θ̂)
0, θ̂

p→θ0



If {gt(wt, θ0)} is a mean-zero serially correlated ergodic-stationary process
then

S = LRV = Γ0 + 2
∞X
j=1

(Γj + Γ0j)

Γj = E[gt(wt,θ0)gt(wt−j,θ0)
0]

and a consistent estimator has the form

ŜHAC = Γ̂0(θ̂)+
n−1X
j=1

k

Ã
j

q(n)

!
(Γ̂j(θ̂) + Γ̂0j(θ̂))

Γ̂j(θ̂) =
1

n

nX
t=j+1

gt(wt, θ̂)gt−j(wt−jθ̂)
0

θ̂
p→θ0



The efficient GMM estimator may be computed using

• two-step procedure

• iterated procedure

• continuous updating procedure.



Application to log-normal SV model

Consider the alternative parameterization of the simple log-normal stochastic
volatility (SV) model assuming μ = 0 :

rt = σtut = exp(wt/2)ut, t = 1, . . . , n

wt = lnσ
2
t = ω + φwt−1 + ηw,t

(ut, ηw,t)
0 ∼ iid N(0, diag(1, σ2ηw))
θw = (ω, φ, σηw)

0

For 0 < φ < 1 and σηw ≥ 0, the series rt is strictly stationary and ergodic,
and unconditional moments of all orders exist.



The GMM estimation of the SV model is surveyed in Andersen and Sorensen
(1996).

They recommended using moment conditions for GMM estimation based on
lower-order moments of rt, since higher-order moments tend to exhibit erratic
finite sample behavior.

They considered a GMM estimation based on (subsets) of 24 moments con-
sidered by Jacquier, Polson, and Rossi (1994). To describe these moment
conditions, first define

αw =
ω

1− φ
, β2w =

σ2ηw
1− φ2



The moment conditions, which follow from properties of the log-normal distri-
bution and the Gaussian AR(1) model, are expressed as

E[|rt|] = (2/π)1/2E[σt]

E[r2t ] = E[σ2t ]

E[|r3t |] = 2
q
2/πE[σ3t ]

E[r4t ] = 3E[σ4t ]

E[|rtrt−j|] = (2/π)E[σtσt−j], j = 1, . . . , 10
E[r2t r

2
t−j] = E[σ2t σ

2
t−j], j = 1, . . . , 10

where for any positive integer j and positive constants p and s,

E[σpt ] = exp

Ã
pαw

2
+
p2β2w
8

!

E[σptσ
s
t−j] = E[σpt ]E[σ

s
t ] exp

Ã
psφjβ2w
4

!



Let

wt = (|rt|, r2t , |r3t |, r4t , |rtrt−1|, . . . ,
|rtrt−10|, r2t r2t−1, . . . , r2t r2t−10)0

and define the 24× 1 vector

g(wt,θw) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|rt|− (2/π)1/2 exp
µ
αw
2 +

β2w
8

¶
r2t − exp

µ
αw +

β2w
2

¶
...

r2t r
2
t−10 − exp

µ
αw +

β2w
2

¶2
exp

³
φ10β2w

´

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Then, E[g(wt,θw)] = 0 is the population moment condition used for the
GMM estimation of the model parameters θw = (αw, φ, β2w)

0.

Since the elements of wt are serially correlated, the efficient weight matrix S =
avar(ḡ) must be estimated using an HAC estimator.



Review of Linear Gaussian State Space Models

State Space Models

Defn: A state space model for an N−dimensional time series yt consists of a
measurement equation relating the observed data to an m− dimensional state
vector αt, and a Markovian transition equation that describes the evolution of
the state vector over time.



The measurement equation has the form

yt
N×1

= Zt
(N×m)

αt
(m×1)

+ dt
N×1

+ εt
N×1

, t = 1, . . . , T

εt ∼ iid N(0,Ht)

The transition equation for the state vector αt is the first order Markov process

αt
m×1

= Tt
(m×m)

αt−1
(m×1)

+ ct
m×1

+ Rt
(m×g)

ηt
(g×1)

t = 1, . . . , T

ηt ∼ iid N(0,Qt)



For most applications, it is assumed that the measurement equation errors εt
are independent of the transition equation errors

E[εtη
0
s] = 0 for all s, t = 1, . . . , T

The state space representation is completed by specifying the behavior of the
initial state

α0 ∼ N(a0,P0)

E[εta
0
0] = 0, E[ηta

0
0] = 0 for t = 1, . . . , T

The matrices Zt,dt,Ht,Tt, ct,Rt and Qt are called the system matrices, and
contain non-random elements. If these matrices do not depend deterministically
on t the state space system is called time invariant.

Note: If yt is covariance stationary, then the state space system will be time
invariant.



Initial State Distribution for Covariance Stationary Models

If the state space model is covariance stationary, then the state vector αt is
covariance stationary. The unconditional mean of αt, a0, may be determined
using

E[αt] = TE[αt−1] + c = TE[αt] + c

Solving for E[αt], assuming T is invertible, gives

a0 = E[αt] = (Im −T)−1c

Similarly, var(α0) may be determined using

P0 = var(αt) = Tvar(αt)T
0 +Rvar(ηt)R

0

= TP0T
0 +RQR0



Then,

vec(P0) = vec(TP0T
0) + vec(RQR0)

= (T⊗T)vec(P0) + vec(RQR0)

which implies that

vec(P0) = (Im2 −T⊗T)−1vec(RQR0)



Example: Unobserved component AR(2) model

yt = μ+ ct

ct = φ1ct−1 + φ2ct−2 + ηt, ηt ∼ σ2

The state vector is αt = (ct, ct−1)0, which is unobservable, and the transition
equation is Ã

ct
ct−1

!
=

Ã
φ1 φ2
1 0

!Ã
ct−1
ct−2

!
+

Ã
1
0

!
ηt

so that

T =

Ã
φ1 φ2
1 0

!
, R =

Ã
1
0

!
, Q = σ2

This representation has measurement equation matrices

Zt = (1, 0), dt = μ, εt = 0,Ht = 0



Distribution of initial state

α0 ∼ N(a0,P0)

Here αt = (ct, ct−1)0 is stationary and has mean zero

a0 = E[αt] = 0

For the state variance, solve

vec(P0) = (I4 −T⊗T)−1vec(RQR0)



Simple algebra gives

I4 −T⊗T =

⎛⎜⎜⎜⎝
1− φ22 −φ1φ2 −φ1φ2 −φ22
−φ1 1 −φ2 0
−φ1 −φ2 1 0
−1 0 0 1

⎞⎟⎟⎟⎠

vec(RQR0) =

⎛⎜⎜⎜⎝
σ2

0
0
0

⎞⎟⎟⎟⎠
and so

vec(P0) =

⎛⎜⎜⎜⎝
1− φ22 −φ1φ2 −φ1φ2 −φ22
−φ1 1 −φ2 0
−φ1 −φ2 1 0
−1 0 0 1

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎜⎝

σ2

0
0
0

⎞⎟⎟⎟⎠



The Kalman Filter

The Kalman filter is a set of recursion equations for determining the optimal
estimates of the state vector αt given information available at time t, It. The
filter consists of two sets of equations:

1. Prediction equations

2. Updating equations

To describe the filter, let

at = E[αt|It] = optimal estimator of αt based on It
Pt = E[(αt − at)(αt − at)0|It] = MSE matrix of at



Prediction Equations

Given at−1 and Pt−1 at time t− 1, the optimal predictor of αt and its asso-
ciated MSE matrix are

at|t−1 = E[αt|It−1] = Ttat−1 + ct
Pt|t−1 = E[(αt − at−1)(αt − at−1)0|It−1]

= TtPt−1T
0
t−1 +RtQtR

0
t

The corresponding optimal predictor of yt give information at t− 1 is

yt|t−1 = Ztat|t−1 + dt

The prediction error and its MSE matrix are

vt = yt − yt|t−1 = yt − Ztat|t−1 − dt
= Zt(αt − at|t−1) + εt

E[vtv
0
t] = Ft = ZtPt|t−1Z

0
t +Ht



These are the components that are required to form the prediction error de-
composition of the log-likelihood function.



Updating Equations

When new observations yt become available, the optimal predictor at|t−1 and
its MSE matrix are updated using

at = at|t−1 +Pt|t−1Z
0
tF
−1
t (yt − Ztat|t−1 − dt)

= at|t−1 +Pt|t−1Z
0
tF
−1
t vt

Pt = Pt|t−1 −Pt|t−1ZtF−1t ZtPt|t−1

The value at is referred to as the filtered estimate of αt and Pt is the MSE
matrix of this estimate. It is the optimal estimate of αt given information
available at time t.



Prediction Error Decomposition

Let θ denote the parameters of the state space model. These parameters are
embedded in the system matrices. For the state space model with a fixed
value of θ, the Kalman Filter produces the prediction errors, vt(θ), and the
prediction error variances, Ft(θ), from the prediction equations. The prediction
error decomposition of the log-likelihood function follows immediately:

lnL(θ|y) = −NT

2
ln(2π)− 1

2

TX
t=1

ln |Ft(θ)|

−1
2

TX
t=1

v0t(θ)F
−1
t (θ)vt(θ)



State Space Representation of Log-Normal AR(1) SV model

Parameterization 1: let yt = rt − μ.

yt = σtut

lnσt = ω + φ lnσt−1 + ηt

Then

ln |yt| = lnσt + ln |ut|
E[ln |ut|] = −0.63518, var(ln |ut|) = π2/8

The measurement equation is

ln |yt| = −0.6358 + lnσt + ξt, ξt ∼ iid (0, π2/8)

The transition equation is

lnσt = ω + φ lnσt−1 + ηt, ηt ∼ iid N(0, σ2η)



State space parameters

αt = lnσt = state variable

Zt = 1, dt = −0.63518, T = φ

a0 = ω/(1− φ), P0 = σ2η/(1− φ2)



Parameterization 2:

rt = exp(wt/2)ut,

wt = ω + φwt−1 + ηw,t

Then

ln r2t = wt + lnu
2
t

E[lnu2t ] = −1.27, var(lnu2t ) = π2/2

The measurement equation is

ln r2t = −1.27 +wt + ζt, ζt ∼ iid (0, π2/2)

The transition equation is

wt = ω + φwt−1 + ηw,t, ηw,t ∼ iid N(0, σ2ηw)



State space parameters

αt = lnσt = state variable

Zt = 1, dt = −1.27, T = φ

a0 = ω/(1− φ), P0 = σ2ηw/(1− φ2)



Complications

• ξt and ζt are not Gaussian random variables

• Kalman filter only provided minimum MSE linear estimators of state space
parameters and state variables

• Quasi-MLE can be performed from prediction error decomposition of Gaussian
log-likelihood

• Must use “sandwich asymptotic variance” for valid standard errors

• rt ≈ 0⇒ ln |rt| and ln r2t ≈ −∞ which causes numerical problems



Transformation to improve numerical stability (Breidt and Carriquiry, 1996)

xt = ln(r2t + s)− s

r2t + s

s = dvar(rt)× 0.02



Log-Normal AR(1) SV Model with Student-t Errors

yt = σtut = σt, ut ∼ iid St(v), v > 2

ln(σt)− α = φ(ln(σt−1 − α) + ηt, ηt ∼ iid N(0, σ2η)

ut is independent of ηt for all t

Since

ut =
√
ωtvt

vt ∼ iid N(0, 1)

(v − 2)ω−1t ∼ χ2v

It follows that

ln |yt| = lnσt +
1

2
lnωt + ln |vt| = μξ(v) + lnσt + ξ∗t

ξ∗t = ξt − μξ(v),

E[ξt] = μξ(v) =

var(ξ∗t ) = σ2ξ(v) =


