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Abstract
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1 Introduction
One of the main priorities of traders and portfolio managers is to analyze the
risk of their prospective p&l. In general, the p&l can be expressed as the product
of a vector of risk factors F times the respective exposures b, which represent
the practitioner’s decision variables:

Π = b0F. (1)

This formulation is very general. Indeed, it includes the case where F ≡ ∆P
represents the price change of a set of securities (or asset classes) and b ≡ w
represents the respective portfolio weights. It also covers, among others, APT-
like linear factor models with systematic and idiosyncratic components; the
carry-duration-convexity approximation of bond trading; and the theta-delta-
gamma-vega approximation routinely used on derivatives desks2.
The risk of a position is assessed in terms of measures such as the standard

deviation, the value at risk, and the expected shortfall. For such measures, risk
can be expressed as the sum of the contributions from each of the factors F, see
below for a review and references.
However, managers often need to analyze risk according to new factors eF

that are combinations of the preexisting factors F. When the new factors eF
span the risk of the whole market, there exists only one way to decompose risk
according to the contributions from the new factors. Similarly, the risk contribu-
tion analysis is straightforward when the new factors eF represent aggregations
of the original factors F: for instance, the contributions from all the securities
in a given industry are summed into one industry-specific contribution.
Nevertheless, practitioners typically are interested in the risk contributions

from only a partial set of new factors eF that does not span the whole market risk.
Computing the risk contributions in this case is not trivial, because, as it turns
out, the exposures eb to the newly introduced factors are not well defined. Fur-
thermore, even upon solving this problem, from an implementation perspective
it is impossible to pursue different ad-hoc solutions for different cases, especially
when arbitrary combinations of aggregations and partial specifications for the
new factors are involved.
Here we propose a unified framework to deal with the above issues. On the

one hand, we determine the most natural definition for the risk contributions
under partial-factor specifications. To this aim, we draw on the risk attribution
literature, see references below: the "natural" exposures eb are the regression
coefficients of the p&l Π on the incomplete set of new factors eF. On the other
hand, we show how factor aggregation, partial-factor specification and full-factor
specification are instances of the same process. Therefore, we can define and
implement one routine that handles any possible scenario.
In Section 2 we review the main results regarding the decomposition of risk

into its contributions from each of the original factors F. In Section 3 we review

2 In principle this approach also covers full repricing by adding higher order derivatives in
the Taylor expansion of the p&l.
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the risk decomposition process in the straightforward case where the new risk
factors eF represent aggregations of the original factors F: in this setting, risk
contributions are defined by a bottom-up aggregation rule. In Section 4 we study
the risk decomposition process in the less trivial case where the new risk factorseF fully span the risk in the market. In this setting, risk contributions are defined
by a simple transformation rule. In Section 5 we tackle the problem of computing
risk contributions from newly defined risk factors eF that do not span the whole
market risk. In this setting, risk contributions are defined by regression analysis.
In Section 6 we show how these seemingly different approaches are indeed one
and the same. In Section 7 we conclude, presenting a routine to compute in
practice risk contributions in any scenarios. To support intuition we illustrate
every step of our discussion by means of a real-life example.

2 Risk contributions: a review
This section quickly summarizes results that were introduced by Litterman
(1996) and Garman (1997) and then further developed by Tasche (1999), Mina
(2002), Hallerbach (2003), Zhang and Rachev (2004), Scherer (2004). See also
Meucci (2005) for a detailed review.
The p&l (1) is a function of the exposures b. Therefore, the risk of the

portfolio must also be a function R(b) of the exposures. The most popular
measure of risk is the standard deviation of the p&l, also known as tracking
error for benchmark-driven allocations:

R (b) ≡
p
b0Cov {F}b. (2)

Alternative measures are the value at risk (VaR):

R(b) ≡ Q−b0F (c) , (3)

where QX denotes the quantile of the random variable X and c is the confidence
level, typically set as c ≈ 99%; and the expected shortfall (ES), also known as
conditional value at risk:

R (b) ≡ E {−b0F|− b0F ≥ Q−b0F (c)} . (4)

All these measures are homogeneous: R(b) doubles if we double the expo-
sures b. Hence the following identity holds:

R (b) ≡
NX
n=1

bn
∂R (b)
∂bn

, (5)

where N is the dimension of the market F. In other words, total risk can be
expressed as the sum of the contributions from each factor, where the generic n-
th contribution is the product of the "per-unit" marginal contribution ∂R/∂bn
and the "amount" of the n-th factor in the portfolio, as represented by the
exposure bn.
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If we measure risk by the volatility (2), the partial derivatives that appear
in (5) read:

∂R (b)
∂b

=
Cov {F}bp
b0Cov {F}b

, (6)

If we measure risk in terms of the VaR (3) we can express the partial derivatives
as in Hallerbach (2003), Gourieroux, Laurent, and Scaillet (2000), Tasche (2002)
as conditional expectations:

∂R (b)
∂b

≡ −E {F|− b0F ≡ Q−b0F (c)} . (7)

Similarly, also when risk is measured by the ES (4) the partial derivatives can
be expressed as conditional expectations:

∂R (b)
∂b

≡ −E {F|− b0F ≥ Q−b0F (c)} . (8)

In an elliptical market, the derivatives (6)-(8), and therefore the risk contri-
butions (5), can be computed analytically. In fully general, highly non-normal
markets we can represent the joint distribution of F in terms of a J ×N panel
F of Monte Carlo simulations: the generic j-th row represents a joint scenario
for the factors and the generic n-th column represents the marginal distribution
of the n-th factor. Generating F is often a simple task even under very complex
joint distributional assumptions for the factors. Then the covariance in (6) can
be approximated by the sample covariance of F . As for the VaR, the expecta-
tions in (7) can be approximated as in Mausser (2003), see also Epperlein and
Smillie (2006) and Meucci, Gan, Lazanas, and Phelps (2007):

∂R (b)
∂b

≈ −k0cSb. (9)

In this expression Sb is a J × N panel, whose generic j-th column is the j-th
column of the panel F , sorted as the order statistics of the J-dimensional vector
−Fb; and kc is a smoothing kernel, peaked around the rescaled confidence level
cJ . Similarly, for the ES we can approximate the expectations in (8) as

∂R (b)
∂b

≈ −q0cSb, (10)

where qc is a step function that jumps from 0 to 1/cJ at the rescaled confidence
level cJ of the ES.

To illustrate, we consider a portfolio of US government bonds. The p&l of
this portfolio is well described in the form (1) by a quadratic duration-convexity
approximation. More explicitly, there exist N ≡ 7 factors, namely the changes
of six key-rates of the Treasury yield curve (6-month, 2,5,10,20 and 30 year)
and an average quadratic term for the convexity:

F ≡
¡
∆y6m,∆y2y,∆y5y,∆y10y,∆y20y,∆y30y,∆y

2
¢0
, (11)
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Figure 1: Contributions to portfolio risk from a pre-specified set of factors

where

∆y2 ≡ 1
6

¡
∆y26m +∆y

2
2y +∆y

2
5y +∆y

2
10y +∆y

2
20y +∆y

2
30y

¢
. (12)

The exposures b are the respective key rate durations and the average convexity.
In our example, on a specific day these sensitivities read:

b6m b2y b5y b10y b20y b30y by2
0.091 0.752 1.059 1.516 1.223 0.266 0.481

(13)

where we assume that the p&l is represented as a return and measured in basis
points.

We estimate the joint distribution of the six rate changes from a dataset
of monthly realizations over a time span of ten years. In particular, in a two-
step approach, we first fit each rate to a different Student t distribution: the
location parameters are null, the degrees of freedom are 3, 4, 5, 7, 10 and
15 respectively, and the dispersion parameters can be implied from (14) below.
Then we fit the joint structure to a normal copula, whose correlation matrix can
also be implied from (14) below. From the estimated distribution we generate
a J ×N panel F of J ≡ 106 Monte Carlo simulations. The first N − 1 columns
are generated according to the above marginal-copula decomposition; the last
column is computed deterministically from the first N − 1 columns as in (12).
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We compute the covariance in (6) as the sample covariance of the panel:

Cov {F} ∆y6m ∆y2y ∆y5y ∆y10y ∆y20y ∆y30y ∆y2

∆y6m 593 555 440 311 226 206 0
∆y2y · 904 862 669 508 464 0
∆y5y · · 942 787 622 577 0
∆y10y · · · 729 609 574 0
∆y20y · · · · 543 516 0
∆y30y · · · · · 498 0
∆y2 · · · · · · 29

(14)

Given the exposures (13) and the per-unit contributions (6) we can compute the
total volatility and the contributions from each factor. Similarly, we compute
the VaR sensitivities (9) and hence the VaR and the contributions from each
factor. Finally, we compute the ES sensitivities (10) and hence the ES and the
contributions from each factor. We display these contributions in Figure 1 and
we report them below:

Total C6m C2y C5y C10y C20y C30y Cx

SDev 126 1.2 20.3 31.8 40.4 27.0 5.5 0.1
VaR 320 3.2 53.1 83.0 102.5 66.3 13.3 -1.9
ES 406 4.3 73.6 109.6 127.5 79.2 15.5 -3.8

(15)

Notice that the VaR ≈ 320 b.p. and the ES ≈ 406 b.p. are not consistent
with a normal assumption with standard deviation ≈ 126 b.p., where VaR ≈
294 b.p. and ES ≈ 337 b.p. Furthermore, notice from Figure 1 that the rela-
tive importance of the different contributions changes for different measures, a
consequence of the non-elliptical joint distribution of the factors.

3 Risk contributions from aggregate factors
When the number of risk factors in (1) is large, practitioners tend to analyze
risk at an aggregate level. Formally we consider K buckets N1, . . . , NK that
exhaustively and mutually exclusively span all the N factors F.

In our example, we might be interested in K ≡ 3 buckets: the short end of
the curve, represented by the 6m, 2y and 5y key rates; the long end of the curve,
represented by the 10y, 20y and 30y key rates; and the convexity. Therefore the
buckets read:

N1 ≡ {1, 2, 3} , N2 ≡ {4, 5, 6} , N3 ≡ {7} . (16)

It seems natural to define the contribution to risk eCk from the generic k-th
bucket as the sum of the individual contributions from each factor in the bucket.
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From (5) we obtain: eCk ≡
X
n∈Nk

∂R (b)
∂bn

bn. (17)

In our example, by adding the entries in (15) we obtain the contributions to
risk from each bucket:

Total eC1 eC2 eC3
SDev 126 53.3 72.9 0.1
VaR 320 139.4 182.0 -1.9
ES 406 187.6 222.2 -3.8

(18)

Apparently, the intuitive rule (17) bears no connection with the problem
of computing the risk contributions from combining the original factors F into
newly defined factors eF. As we see in Section 6, this is not the case.
4 Risk contributions from a full set of new fac-

tors
In addition to aggregating the risk of the building blocks F, practitioners typ-
ically need to rearrange these sources of risk into new risk factors eF that are
linear combinations of the original factors:

eF ≡ PF. (19)

In this expression each row of the "pick" matrix P represents a linear combina-
tion that defines the respective new factor.
In this section we assume that the new factors completely span the risk in

the market. In other words, we assume that the pick matrix P is invertible.
To compute the exposures eb to the new factors we can write the p&l (1) as
Π = b0P−1PF ≡ eb0eF. Therefore

eb ≡ P0−1b. (20)

The per-unit risk contributions from the new factors are also a simple transfor-
mation of the per-unit risk contributions from the original factors. Indeed, as
we show in a technical appendix available upon request:

∂R
∂eb = P

∂R
∂b
. (21)

With (20) and (21) it is immediate to compute the risk contribution from the
generic k-th new factor as the product of the per-unit marginal contribution
∂R/∂ebk times the respective exposure ebk.
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Figure 2: Contributions to portfolio risk from an exhaustive set of new factors

For instance, suppose that the portfolio manager is interested in the exposure
to the forward curve, as proxied by the difference between adjacent key rates.
In this case the pick matrix reads:

P ∆y6m ∆y2y ∆y5y ∆y10y ∆y20y ∆y30y ∆y2eF1 1 0 0 0 0 0 0eF2 -1 1 0 0 0 0 0eF3 0 -1 1 0 0 0 0eF4 0 0 -1 1 0 0 0eF5 0 0 0 -1 1 0 0eF6 0 0 0 0 -1 1 0eF7 0 0 0 0 0 0 1

(22)

Applying (20)-(21) to the numbers computed in Section 2 we obtain the contri-
butions to risk due to the forward factors:

Total eC1 eC2 eC3 eC4 eC5 eC6 eC7
SDev 126 67.6 63.4 12.6 -10.1 -6.9 -0.4 0.1
VaR 320 174.0 169.5 31.5 -32.5 -20.0 -1.2 -1.9
ES 406 234.4 241.5 22.8 -58.2 -28.9 -1.7 -3.8

(23)

In Figure 2 we display these contributions. Again, a simple check shows that
the normal, or even elliptical assumption, is not viable.
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5 Risk contributions from a partial set of new
factors

In general, the number N of the risk factors F that drive the p&l (1) is large.
In this case, practitioners typically only wish to aggregate risk as discussed in
Section 3, or focus on a small set K ≤ N of important user-defined factors eF,
or consider a combination of the two approaches. To tackle this problem, we
generalize the factor specification (19) as follows:eF ≡ PF, (24)

where the pick matrix P, which we can assume to have full rank, has now only
K ≤ N independent rows.

To illustrate, assume that the portfolio manager is interested in the risk
contributions from the first three principal movements of the curve. We perform
the principal component decomposition of the first six north-west entries of
the matrix (14) and with the eigenvectors corresponding to the three largest
eigenvalues we build the three rows of the pick matrix:

P ∆y6m ∆y2y ∆y5y ∆y10y ∆y20y ∆y30y ∆y2eF1 0.28 0.48 0.51 0.44 0.36 0.34 0eF2 -0.71 -0.38 0.0 0.28 0.36 0.37 0eF3 -0.59 0.41 .46 -0.1 -0.33 -0.41 0

(25)

As in Litterman and Scheinkman (1991) the factor eF1 corresponds approxi-
mately to a parallel shift; the factor eF2 corresponds to a steepening/flattening;
and the factor eF3 corresponds to a butterfly twist of the curve.
The new factors eF drive the randomness in the p&l through some exposureseb. However, these exposures are not defined unequivocally. Different choices

for the exposures give rise to different residuals in the p&l:

Π = eb0eF+ �. (26)

Consequently, different choices for eb lead to different contributions from the
factors eF.
We can see this phenomenon in our example. Consider the first factor in (11),

namely the 6m key rate change. The contribution due to this factor depends on
the remaining factors, i.e. it depends on the definition of the residual. Indeed,
when the remaining factors are the other key rates the contribution of the 6m
key rate is minimal, see Figure 1. However, when the remaining factors are the
forward rates the contribution of the 6m key rate is large, see Figure 2.

To define the "best" exposures we turn to risk attribution techniques, pio-
neered by Sharpe (1992) and later studied and applied in a variety of contexts,
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see e.g. Fung and Hsieh (1997) and Brown and Goetzmann (2003). Much like in
(26), in risk attribution the p&l is expressed as a linear combination of factors,
where the exposures eb are set to minimize the variance of the regression resid-
ual, i.e. to best explain the p&l. As we show in a technical appendix available
upon request, the solution eb is the standard regression coefficienteb ≡ (PCov {F}P0)−1PCov {F}b, (27)

which decorrelates the new factors eF from the residual �3 . With this specific
choice of exposures we can compute the risk contribution eCk from the generic
k-th factor eFk as the product of the exposure ebk times the respective per-unit
contribution ∂R/∂ebk, which can be computed easily in terms of the original
per-unit contributions ∂R/∂b. Indeed, a few algebraic manipulations detailed
in the technical appendix show that (21) holds true even when the matrix P is
not invertible:

∂R
∂eb = P

∂R
∂b
. (28)

In our example, when risk is measured in terms of the volatility, we obtain
the following contributions:

Total eC1 eC2 eC3 residual
SDev 126 123.9 2.1 0.1 0.1
VaR 320 316.3 3.5 1.0 -1.2
ES 406 407.4 -1.1 2.6 -2.9

(29)

As expected, a long-only portfolio of bonds is mainly exposed to parallel shifts.
In other words, the portfolio duration is an accurate representation of the port-
folio risk. The effect of curve flattening and curve twisting is of orders of mag-
nitude smaller than the parallel shift. Notice that the multiple sorting involved
in the direct computation of the sensitivities (9) and (10) is a costly operation.
Using (28) we only need to compute this operation once for a given portfolio.

6 A generalized framework
We have discussed above three apparently different problems for risk attribution:
aggregation, accounted for by means of the simple aggregation rule (17); full
factor specification, covered by the transformation rules (20)-(21); and partial
factor specification, solved by the regression approach (27)-(28). Since any
combination of the above problems might arise in day-by-day applications, from
an implementation perspective it is not clear how to solve the risk attribution
process in a non-ad-hoc way. However, as it turns out, all the above problems,
as well as any combinations thereof, can be cast in a unified framework that is
also computationally straightforward.

3This is not true for very thick-tailed distributions such as the Cauchy, for which the
regression coefficient is not defined
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Regarding the full-factor specification, when P is invertible the regression
solution (27) trivially becomes (20). Therefore the full-factor specification rep-
resents a special case of the regression approach.
As far as the aggregation rule (17) is concerned, we can express the p&l (1)

in terms of new bucket-specific factors as follows:

Π =
KX
k=1

ebk eFk. (30)

In this expression the exposures are trivially defined as eb ≡ 1, a vector of ones,
and the new factors are defined as the portfolio-weighted sum of all the original
factors in a given bucket: eFk ≡ X

n∈Nk

Fnbn. (31)

This set of factors corresponds to a pick matrix in the partial factor specification
(24) which is defined entry-wise as:

Pnk ≡
½

bn if the factor Fn is in the k-th bucket
0 otherwise.

(32)

Notice that in (30) the p&l is fully described by the new factors. In other
words, eb ≡ 1 minimizes the residual, which is null. Hence, eb ≡ 1 represents the
regression solution for the partial factor specification defined by the pick matrix
(32) and the aggregation rule (17) coincides with the product of the per-unit
marginal contribution ∂R/∂ebk times the respective trivial exposure ebk ≡ 1.
Therefore, both full-factor specification and factor aggregation can be cast

within the partial factor framework, which is solved by means of regression
analysis.

7 Conclusions
We presented a unified approach to compute the contributions to risk from
generic user-defined factors which are aggregations and/or linear combinations
of the risk factors that drive the p&l. The algorithm to implement this approach
proceeds as follows:

• Start with the p&l Π as a function of given factors F and their exposures
b as in (1); and the risk-contribution analysis in term of those factors as
in (5).

• Determine new factors eF as linear combinations of the existing factors. In
particular, if considering risk aggregations, the respective linear combina-
tions are defined as in (32).

• Stack the coefficients of these linear combinations to form the pick matrix
P in (24). If the rank of P is not full, delete the redundant rows (and thus
the respective factors) until the rank of P is full.
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• Compute the exposures eb of the new factors as in (27).
• Compute the per-unit contributions to risk from the new factors ∂R/∂eb
as in (28).

• Compute the contribution to risk from the generic k-th factor as the prod-
uct of the k-th entry of eb times the k-th entry of ∂R/∂eb.

The above routine can be easily coded and all the computations can be
performed in a fraction of a second.

Acknowledgments: the author is grateful to Robert Durie, An-
thony Lazanas, Antonio Silva and two anonymous referees for their
feedback
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A Appendix

A.1 Formulas for per-unit contributions

Let us complete the partial factor specification (24) by means of N−K ancillary
factors bF ≡ bPF defined by a matrix bP such that

P ≡
µ
PbP
¶

(33)

is invertible. In this scenario the new exposures eb follow from (20) as the first
K entries of the vector P

0−1
b, whereas the remaining N −K entries bb of the

vector P
0−1
b combine with the ancillary factors bF to give rise to a residual

� ≡ bb0bF in (26), which reads:
Π ≡ eb0eF+ bb0bF. (34)

Then

R = eb0 ∂R
∂eb + bb0 ∂R∂bb . (35)

Recalling that Ã ebbb
!
≡ P0−1b, (36)

from the chain rule of calculus we obtain:Ã
∂R/∂eb
∂R/∂bb

!
=

µ
PbP
¶
∂R
∂b
. (37)

In particular
∂R
∂eb = P

∂R
∂b
. (38)

A.2 Formulas for optimal exposures

First we derive the expression of the regression coefficients. Imposing that the
residual be uncorrelated with the factors (24) we obtain:

0 = Cov
neF,Π− eF0ebo (39)

= Cov
neF,Πo− CovneFo eb

= Cov {PF,F0b}− Cov {PF} eb
= PCov {F}b−PCov {F}P0eb.

Therefore eb = (PCov {F}P0)−1PCov {F}b. (40)
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Now we show that the regression solution (40) can be obtain by factor com-
pletion as in (33). Consider the principal component factorization of the factor
covariance:

Cov {F} ≡ EΛ1/2Λ1/2E, (41)

where E is the orthogonal matrix of the eigenvectors and Λ is the diagonal
matrix of the positive eigenvalues.
Define bP in (33) as follows:

bP ≡ nul³PEΛ1/2´0Λ−1/2E0, (42)

where nul (A) is any matrix in the null space of the generic K ×N matrix A,
i.e. any N × (N −K) matrix such that

nul (A)
0
A0 = 0(N−K)×K . (43)

We want to prove that eF ≡ PF and bF ≡ bPF are uncorrelated. In other
words, we want to prove that the following matrix is block diagonal:

Cov
©
PF

ª
=

µ
PbP
¶
Cov {F}

³
P0, bP0´ (44)

=

Ã
PCov {F}P0 PCov {F} bP0bPCov {F}P0 bPCov {F} bP0

!

Indeed using (42) and (43) we obtain:

bPCov {F}P0 = nul
³
PEΛ1/2

´0
Λ−1/2E0EΛ1/2Λ1/2E0P0 (45)

= nul
³
PEΛ1/2

´0
Λ1/2E0P0 = 0

The proof that the contributions to risk are not affected by a specific choice of
representative in nul (A) follows as in Meucci (2006).
Notice that the role of bP is not apparent in (40) because bP as defined in

(42) is in turn a function of Cov {F} and P.
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