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On the Financial Interpretation of Risk Contribution 
 

Abstract 

 There are lingering questions in the financial industry regarding the concepts of 

risk contribution and risk budgeting. The questions stem from both the simple belief that 

risks are non-additive and a lack of financial intuition behind mathematical definitions of 

these concepts. This paper demonstrates that these questions are misguided, by both 

providing and analyzing risk contribution’s financial interpretation. 

 The interpretation is based on expected contribution to potential losses of a 

portfolio. We show risk contribution, defined through either standard deviation or value 

at risk (VaR), is closely linked to the expected contribution to the losses. In a sense, risk 

contribution or risk budgeting can be regarded as loss contribution or loss budgeting. We 

also provide empirical evidences of this interpretation using asset allocation portfolios of 

stocks and bonds.  

Our results should dispel any doubts toward the validity of the risk contribution 

concept. In the case of VaR contribution, our use of Cornish-Fisher expansion method 

provides practitioners an efficient way to calculate risk contributions or risk budgets of 

portfolios with non-normal underlying returns. 

 

      

 

 

 

 
 



On the Financial Interpretation of Risk Contribution 
 

1.    Introduction 

The concepts of risk contribution1 and percentage contribution to risk are widely 

used in both risk management and risk budget practices, in the areas of asset allocation as 

well as active portfolio management (Litterman 1996, Lee & Lam 2001, Wander et al, 

2002, Winkelmann 2004). For instance, it is a cornerstone of portable alpha strategy 

(Arnott 2002, Kung & Pohlman 2004). Despite their ubiquitous presence, however, 

questions have remained regarding their validity. For instance, Sharpe (2002) correctly 

argues that a mere mathematical decomposition of risk does not necessarily qualify as 

risk contribution. The argument is sensible because, risk contribution is often defined, 

with little economic justification, through a mathematical calculation involving marginal 

contribution to risk – partial derivative of risk with respect to underlying security 

weights. Sharpe (2002) further suggests rejecting the concept of risk contribution 

altogether, based on the fact that, risk in terms of either standard deviation or value at risk 

(VaR), is non-additive. Chow & Kritzman (2001) express a similar critical view toward 

risk budgeting while emphasizing the usefulness of marginal contribution to VaR because 

of its clear financial interpretation.  

The primary reason for such lingering doubts toward the concept of risk 

contribution and its usefulness in both risk management and risk budgeting might be due 

to the fact that, the financial industry as a whole, has yet firmly grasped its financial 

interpretation beyond the initial mathematical definition. For example, Grinold and Kahn 

                                                 
1 Risk contribution is often also called risk decomposition, or risk budget, among other names. Dividing the 
risk contribution by the total risk yields relative contribution or percentage contribution to risk. These are 
definitions we adhere to in this paper.  



(1999) interpret it as “relative marginal contribution to risk.” However, their 

interpretation is simply a recast of the definition for marginal contribution to risk. Earlier, 

Litterman (1996) also interpret risk contribution in terms of marginal analysis. 

Does risk contribution have an independent, intuitive financial interpretation? Do 

risk budgets add up to 100%? In this paper we answer these questions by revealing an 

intuitive financial interpretation for the risk contribution. We shall present analytic 

results, empirical examples, and recent academic research on this important topic.  

 

2.    Loss Contribution and Loss Budgets 

We arrive at the interpretation by considering loss contribution and percentage 

contribution to loss. One of the common pressing questions facing portfolio managers is: 

In the event of a sizable loss to a portfolio, what are the likely contributions to the loss 

from the portfolio’s underlying components?  The answer to this question turns out to be 

consistent with the risk contribution as currently defined. 

The answer is provided to us by the statistical theory of conditional expectation of 

underlying securities returns, given the total portfolio return equal to the loss. We first 

assume all security returns are normally distributed and use standard deviation as the risk 

measure. Later in the paper, we shall use VaR when the normality assumption is relaxed.  

2.1    Conditional expectation with normal distribution 

For simplicity, we work with an existing portfolio consisted of just two securities, 

with weights 1w  and 2w  respectively. We also assume their return volatilities 1σ , 2σ  and 

correlation ρ . Then the standard deviation of the portfolio return is 

2121
2
2

2
2

2
1

2
1 2 σσρσσσ wwww ++= .    (1) 



The percentage contribution to risk2 is given as the weight times the marginal 

contribution to risk  
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Note 121 =+ pp . Also note 0=ip  when 0=iw . As a matter of fact, Equation (2) gives 

rise to an alternative interpretation of the percentage contribution ip  – it is the ratio of 

the covariance between component return of security i and the portfolio return, to the 

total variance of the portfolio. Therefore, it is the beta of the component return against the 

portfolio, and naturally the sum of the betas is unity. This beta-interpretation is more 

appealing since it is not necessarily associated with the marginal contribution. But 

nevertheless, it still does not lend itself explicitly to an economic reason. 

 To connect the beta-interpretation to an economic interpretation, we need to 

consider the notion of loss contribution. Suppose the portfolio suffered a loss of size L. 

What are the expected percentage contributions to the loss from the two securities? In 

statistical terms, it is ( )1 1 2 2| /
i i i

c E w r w r w r L L= + = , 2,1=i , i.e., the expected 

contribution from the two securities divided by the loss L.  By the theory of conditional 

distribution3 (see Appendix A for details), we have 

                                                 
2 From this point on, we will only consider the percentage contribution, because the two measures are 
linearly dependent. 
3 The conditional expectation of a normal variable equals to the unconditional mean plus its beta to the 
given variable, in this case, the total portfolio return, times the difference between the given variable and its 
unconditional mean.  
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We have assumed the unconditional expected returns of two securities are 1 2 and µ µ , 

respectively. In the equation, 1p  and 2p  are percentage contributions to risk, or beta, as 

defined in Equation (2). It is easy to see 12121 =+=+ ppcc , since 12 DD −= . In 

Equation (3), we have defined terms 1 2 and D D , which we discuss at length later in the 

paper. 

 Hence, Equation (3) shows the expected percentage contributions to loss bear 

close relationship to the percentage contributions to risk. In fact, there are three instances 

in which the two become identical.  

2.2    Three special cases 

 First, if 1 2 and µ µ  are both zero, then 012 == DD , implying 11 pc =  and 22 pc =  

for any loss L. Therefore percentage contribution to risk perfectly explains the expected 

percentage contribution to loss. This case applies to short investment horizons where we 

can assume the expected returns are zero. In practice, much risk management analyses 

are indeed done over one-day or one-week horizon.  

The second case is when one security has zero weight; therefore its contribution 

to risk is zero. Consequently, 012 == DD . This is a trivial case in which the remaining 

security accounts for one hundred percent of risk as well as one hundred percent of loss. 

However, this loss contribution remains approximately true if the security weight is small 

and the loss L is relatively large compared to 1D , 2D .  



 The third and more interesting case arises when 02211121 =−= µµ wpwpD , or 

equivalently 
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Equation (4) is the first order condition of marginal utility for an optimal mean-variance 

portfolio. Therefore, it implies that for optimal portfolios, percentage contribution to risk 

is equivalent to expected percentage contribution to portfolio’s total expected return. In 

other words, risk budgets become the budgets of expected return. Sharpe (2002) discusses 

this property at length and he suggests that “risk-budgeting and –monitoring systems, are 

best viewed in terms of a budget of implied expected excess return and deviation from 

the budget.” However, this equivalency is only true for mean-variance optimal portfolios.  

For a real world portfolio, which might not be optimal in the mean-variance sense, our 

interpretation of percentage contribution to risk still allows managers to estimate the 

likely contribution to a given loss.  

In fact, an additional benefit of Equation (3) is it allows us to estimate the impact 

of portfolios’ sub-optimality measured by sDi ' on the percentage contribution to loss. 

For instance, if the allocation to security 1 is more than the mean-variance optimal 

weight, then 1 2 1 1 1 2 2 0D p w p wµ µ= − < . This is because when the weight 1w  increases 

from the optimal weight, the increase in its risk contribution dominates its increase in the 

expected return contribution. Therefore, for a given loss L (<0), the percentage 

contribution to loss 1c  will be greater than the percentage contribution to risk 1p , 

because 1D L  is positive.    



 We further note that, when the loss L far exceeds the quantity sDi ', then 11 pc ≅  

and 22 pc ≈ . This observation is very relevant during financial crises when portfolio 

losses could be significantly higher than the expected returns. Consequently, loss 

contribution would be well captured by risk contribution. On the contrary, during quiet 

periods when portfolio losses are relatively small, loss contribution, or simply ex post 

return attribution, is unlikely to bear any relationship to risk contribution at all!  But as 

we demonstrated above, these small loss events should not be used as reasons to dismiss 

the usefulness of risk contribution.  

 In summary, percentage contribution to risk can be interpreted as percentage 

contribution to a given loss of the total portfolio. The two are identical when expected 

returns are zeros or when the portfolio is mean-variance optimal. In other cases, the 

interpretation is appropriate when the given loss is large compared to the value of sDi ', 

which measure the portfolio’s deviation from mean-variance optimality.   

 

3.    Ex Post Analyses of a Balanced Portfolio 

 In this section, we compare our theoretical predictions with actual results of a 

balanced portfolio investing 60% in S&P 500 index and 40% in Ibbotson’s long-term 

government bond index. The monthly returns span from January 1926 to June 2004. 

Table 1 gives statistics of monthly return indices, as well as returns of the balanced 

portfolio. The monthly average returns of stocks and bonds are 0.98% and 0.46% 

respectively, the monthly standard deviations are 5.61% and 2.27%, and their correlation 

is 0.14. The balanced portfolio has an average return of 0.78% and a standard deviation 

of 3.61%. By Equation (2), the percentage contributions to risk are 90.3% from stocks 



and only 9.7% from bonds. Therefore, a typical balanced portfolio might be balanced in 

terms of asset allocation but it is highly unbalanced in terms of risk allocation.  

 Table 1 also shows the higher moments of returns. While skewness is close to 

zeros for all three return series, the excess kurtosis is significantly positive, which raises 

question about the normality of the returns. As a first step, we nevertheless use normality 

assumption and standard deviation in our analysis. Later in the paper we shall take into 

account of the higher moments when analyzing VaR contribution. 

Table 1 Monthly return statistics of indices and the balanced portfolio  

S&P 500 US LT Gvt 60/40 Portfolio
Avg Return 0.98% 0.46% 0.78%
Stdev 5.61% 2.27% 3.61%
Skewness 0.39 0.66 0.40
Kurtosis 9.58 5.09 7.64
Corr w/ S&P 500 1.00 0.14 0.97  

3.1 Contribution to losses 

 Table 2 shows the predicted percentage contributions to loss together with the 

realized values for the balanced portfolio, for losses above 3% and in several bins4. In 

each bin, we only report contribution from stocks5. Since Equation (3) only gives the 

expectation for a point loss, we use the midpoint of each bin to calculate the predicted 

percentage contribution. 

 As the loss increases, the predicted 1c  decreases from 93.5% to 91.3%, 

approaching percentage contribution 1p , i.e. 90.3%. For this particular portfolio, the range 

of 1c  is narrow because 1D  is small at –0.11% and the losses under consideration all 

                                                 
4 We consider losses of the size close to and beyond the standard deviation of the portfolio. 
5 Since the two percentage contributions add up to 100%, the bond contributions are omitted. Furthermore, 
the standard deviation of bonds’ contribution equals to that of stocks. 



exceed 3%. For this reason, we could have used the percentage contribution 1p  for all the 

losses considered. Table 2 shows the predicted value agrees with the realized 1c  on 

average. But it fails to capture the ascending trend of the realized values. This is 

especially true for the last bin where the range of the loss is –19% to –8%, in which the 

predicted value is roughly 91% while the realized value is above 102%. We have made 

the range of this bin much wider because there are only a few historical losses with these 

sizes – the column N denotes the number of data points in each bin and it gets less as the 

loss increases. We can postulate two possible reasons for the poor accuracy of the 

predicted 1c  at the tail end. One is we simply don’t have enough data points, which might 

also explain the low value of the realized 1c  in the loss bin from –8% to –7%. The other 

is the stock returns have fat tails. The latter is certainly consistent with the fact that the 

realized 1c  for the stocks is higher than the predicted value based on normality 

assumption. In the next section, where we take into account the high moments of the 

return distribution, the prediction would indeed improve.  

Table 2 Comparison of average and standard deviation of percentage contribution 

to loss from stocks of a 60/40 portfolio  

Loss Predicted c 1 Realized c 1 N Predicted Std Realized Std
-4% to -3% 93.5% 89.8% 45 28.0% 26.1%
-5% to -4% 92.8% 92.7% 23 21.0% 20.7%
-6% to -5% 92.3% 88.1% 11 16.8% 16.1%
-7% to -6% 92.0% 99.5% 9 14.0% 18.7%
-8% to -7% 91.8% 90.1% 8 12.0% 18.6%
-19% to -8% 91.3% 102.4% 12 10.5% 12.3%  

The last two columns of Table 2 compare the predicted and realized standard 

deviations of the percentage contribution (see Appendix A). When the losses are capped 



at –6%, the two values are quite close. As the losses grow more severe, again, the 

predicted values underestimate the realized ones, possibly due to stocks’ excess kurtosis.       

3.2    Variation of D1 for Asset Allocation Portfolios  

 For the 60/40 balanced portfolio risk contribution and loss contribution show little 

difference because the value of 1D  is small compared to the standard deviation. It is 

worth exploring whether this is true for other asset allocation portfolios. We thus deviate 

from our main theme to study other stock/bond portfolios. Figure 1 plots the ratio of 1D  

to portfolio standard deviation, against stock weight in asset allocation portfolios. There 

are three points at which 01 =D . As we explained above, when the stock weight is at 

either 0% or 100%, 1D  is zero. The third point corresponds to the mean-variance optimal 

portfolio in which the stock weight is roughly 25%. When the stock weight is between 

0% and 25%, 1D  is positive but the ratio is always less then 2%. When the stock weight 

is between 25% and 100%, 1D  is negative and the ratio varies between 0% and -3%. 

Figure 1   The value of D1 over standard deviation for asset allocation portfolios     
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 Therefore, it is true that 1D  is quite small compared to standard deviation for all 

stock/bond portfolios. We conclude one can substitute risk contribution for loss 

contribution with little error, provided the loss is greater than one standard deviation. 

Thus, the financial interpretation of risk contribution or risk budget is accurately reflected 

for these asset allocation portfolios. 

 

4.    Percentage Contribution to VaR 

 In this section, we extend the same financial interpretation to VaR contribution. 

VaR, representing loss with a given cumulative probability, is a general risk measure that 

can be used for portfolios with any kind of return distributions. For a portfolio with 

normal distribution, VaR is simply expected return plus a constant multiple of standard 

deviation. For a non-normal distribution, a ( )%1 α−  VaR is defined through the 

following equation 

( ) ( )�
∞−

==≤
VaR

VaRProb αdrrpr , 

where ( )rp  is the probability density of the return distribution and α  is the cumulative 

probability of loss, typically set at 5% or 1%. 

4.1    Contribution to losses 

 We address two questions regarding VaR. First, can we define percentage 

contribution to risk in terms of VaR? If we can, the follow-up question is can we extend 

the same financial interpretation to the percentage contribution to VaR?  

The answer to both questions is yes. First, because VaR is a linear homogeneous 

function of weights (Litterman 1996, Hallerbach 2002), it is mathematically true that 
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Therefore one can define VaR contributions as weights time marginal contribution to 

VaR. Dividing Equation (5) by VaR leads to percentage contribution to VaR. Second, it 

can be proven mathematically (Hallerbach 2002, also see Appendix B for an alternative 

proof) that the VaR contribution given by Equation (5) is exactly the expected 

contribution to a loss whose size equals to VaR. Thus, VaR contribution can be 

interpreted as loss contribution. 

 While contributions to risk in terms of both standard deviation and VaR have the 

same financial interpretation, there are several subtle differences. First, in the case of 

standard deviation under normality assumption, percentage contributions to risk spi '  are 

independent of losses. We have shown under some circumstances, they approximate loss 

contributions with sufficient accuracy regardless of the loss size. However, the 

interpretation of contribution to VaR is rather restrictive – it only applies to the loss that 

exactly equals VaR. VaR contribution changes when VaR changes. Therefore, for losses 

of different sizes, one must recalculate its VaR contribution.  The second difference is 

their computational complexity. Whilst risk contribution based on standard deviation is 

easy to calculate, it is a daunting task to calculate risk contribution to VaR because 

analytic expressions are rarely available for VaR as functions of weights. Even when 

there is an analytic expression, calculating its partial derivative with respect to weights 

can be quite challenging (Chow & Kritzman 2001, Chow at al 2001). In most instances, 

one has to resort to Monte Carlo simulations to obtain VaR decomposition as well as 

VaR itself. Fortunately, there exist analytic approximations to VaR based on moments of 

the return distribution, which in turn can also be used to estimate VaR contribution. 



4.2    Analytic approximation to VaR decomposition  

One such VaR approximation is based on Cornish-Fisher expansion (Mina & 

Ulmer 1999). It still retains the form of the mean plus a z score times the standard 

deviation  

 σµ αz~VaR += .     (6) 

But the z-score zα� incorporates the normal z-score zα and correction terms of higher 

moments 
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Equation (7) gives an approximation of the α-percentile of a distribution with mean 

µ, standard deviation σ, skewness s, and excess kurtosis k.  Substituting it into Equation 

(6) yields the ( )%1 α−  VaR.  As a numerical example, we calculate the 99% VaR of the 

60/40 balanced portfolio using the two equations and inputs from Table 1. For the 99% 

VaR, we choose 0.01α = . Then 2.33zα = − , and from Equation (7) we obtain 

z 3.81α = −� . Substituting it into Equation (6) yields –12.96% for the 99% VaR. As a 

comparison, the 99% VaR without considering the higher moments is only –7.62%. 

Therefore the excess kurtosis of the return distribution dramatically increases the VaR at 

99% level.  

Previous researches (Mina & Ulmer 1999, Jaschke 2002) have shown that the 

Cornish-Fisher approximation provides an efficient and sufficiently accurate way to 

obtain VaR. We note that it also offers a way to approximate VaR decomposition 

analytically. The calculation is straightforward but laborious. VaR given by Equation (6) 

is an algebraic function of security weights – the mean is a linear function of weights, the 



standard deviation is the square root of a quadratic function of weights, the skewness and 

kurtosis involve respectively third and fourth order polynomials of weights, with 

coefficients being third and fourth order co-moments between securities. For a given 

portfolio with multiple securities, once we have estimated the covariances and these 

higher order co-moments, for example, based on historical returns, Equation (6) becomes 

an explicit but cumbersome function of the security weights. We can then derive 

analytically its partial derivatives with respect to weights and contributions to VaR. 

Table 3   Predicted percentage contribution to VaR compared to prediction based 

on normal distribution and realized percentage contribution to losses  

Loss Predicted VaR % Predicted c 1 Realized c 1

-3.50% 84.90% 93.5% 89.8%
-4.50% 90.50% 92.8% 92.7%
-5.50% 94.20% 92.3% 88.1%
-6.50% 97.10% 92.0% 99.5%
-7.50% 99.20% 91.8% 90.1%
-8.50% 100.90% 91.3% 102.4%  

 We present percentage contribution to VaR for our balanced portfolio in Table 3. 

The detail of the calculation is omitted. As seen from Table 1, the skewness of the 

portfolio is only slightly positive6, but the excess kurtosis is significantly positive. Table 

3 reports the percentage contributions to different values of VaR. These values are chosen 

to coincide with the midpoints of loss ranges in Table 2, so that we can compare the 

results directly with the predictions made under normality assumption and the realized 

values.     

 A few observations can be made about the results. First, the predicted contribution 

from stocks to VaR increases as VaR increases, consistent with the general trend in the 

                                                 
6 For this reason, the last term in Equation (7) is negligible thus is omitted from our calculation.  



realized values. We have expected this because the stock returns have a higher kurtosis 

than the bond returns. In contrast, the prediction based on just standard deviation 

decreases, albeit slightly, as the loss increases. For this reason, the VaR approach offers a 

better risk contribution analysis when the loss is large, above two standard deviations in 

this case.  Second, when the loss is between one and two standard deviations, the 

standard deviation approach is competitive, possibly because in this range the effect of 

high kurtosis has yet been felt. Third, we note that while the VaR approach offers a better 

estimation for the expected contribution to loss, it does not provide a measure for the 

standard error, which, on the hand, is readily available for risk contribution with standard 

deviation.      

 

5.    Conclusion 

 Both theoretical proof and empirical evidence show that risk contribution has a 

sound economic interpretation – expected contribution to potential losses of a portfolio.  

When the underlying return distributions are normal, risk contribution in terms of 

standard deviation is easy to calculate and often depict adequately the loss contribution. 

Furthermore, it provides error estimation for the loss contribution.  Risk contribution in 

terms of VaR, on the other hand, is precise in theory, but hard to compute in practice. We 

show that the commonly used Cornish-Fisher expansion method for VaR approximation 

can also be employed to estimate VaR contribution. 

 When both approaches are applied to the balanced portfolio, we obtain predictions 

that are in general agreement with the actual results. While the standard deviation 

approach is adequate when the loss is confined to two standard deviations, the VaR 



approach proves to be more accurate in the extreme tail since it accounts for the effect of 

higher moments.  

 In addition to risk management, our results have important implications to risk 

budgeting. First and foremost, risk budgets do add up. Second, risk budget for the same 

portfolio will look different depending which approach is used. In case of standard 

deviation approach, the budget could just be percentage contribution to risk since in many 

situations, the size of the loss does not alter the budget a great deal. But, in case of VaR 

approach, the budget picture depends on the percentile of VaR. A 95% VaR and 99% 

VaR could lead to very different risk budgets. Therefore, selecting a combination of 

portfolio VaR and its associated VaR contributions becomes an integrated task of risk 

budgeting exercise.   

 Finally, it is worth pointing out the Cornish-Fisher expansion method hold 

promise to VaR contribution for other types of asset allocation portfolios, especially 

those including hedge funds, whose returns could have significant skewness and kurtosis. 

Risk budget without considering these high moments could seriously underestimate the 

risk in the hedge funds. The Cornish-Fisher expansion method provides an efficient way 

to tackle this problem.      

 

Appendix A Conditional Expectation and Conditional Variance 

  In this appendix we present general results concerning percentage contribution to 

loss of a portfolio with N assets, whose joint return distributions are normal. The results 

include both conditional expectations and conditional variances. The case with two assets 

in the main text is a specific example.  



 We denote the joint return as a multivariate normal distribution, i.e. ( )Σ,N~ µ��
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In the equation, ip  is percentage contribution to risk from security i, the same as the beta 

of its component return against the portfolio return. Several remarks can be made 

regarding the result. First, when the means are all zero, the expected contributions are 

always identical to ip , regardless of the size of the loss. Second, this is also true for non-

zero means if the portfolio is mean-variance optimal, i.e. if 
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The portfolio’s sub-optimality can be measured by the constants sDi ' . And when they 

are small compared to the loss, the contribution to the loss is approximated by ip .   

Using conditional distribution of normal variables, we also obtain the conditional 

standard deviation of percentage contribution to loss.  We have 

( )
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−
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.     (A3) 



The numerator is the square root of the conditional variance of the return component 

from security i, which equals the unconditional variance minus beta squared times the 

variance of the total portfolio. As the loss L increases, the conditional standard deviation 

thus decreases as 1 over L.  

For a portfolio with two securities, the two conditional standard deviations are the 

same 
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Equation (A4) is used to derive the results in Table 2. 

 

Appendix B VaR Decomposition 

 In this appendix, we show one can define contribution to risk in terms of VaR and 

the definition is amenable to the same financial interpretation as expected contribution to 

loss. The VaR decomposition is defined through the following identity 
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Equation (B1) holds true because VaR is a linear homogeneous function of weights. The 

VaR contribution or VaR decomposition is thus weight times the partial derivative of 

VaR with respect to the weight.  

There are at least two ways to arrive at the financial interpretation. First, 

Hallerbach (2002) realizes that VaR, when considered as a portfolio return, can be 

written as a sum of conditional expectations of component returns 
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Comparing Equation (B1) and (B2) leads to  
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Equation (B3) is the interpretation we have sought after – percentage contribution to VaR 

equals percentage contribution to a loss of the size given by VaR. 

 We next prove this result by a direct parametric approach. Without loss of 

generality, we again assume a portfolio of two securities, whose returns have a joint 

probability distribution ( )1 2,f r r  of rather arbitrary form. Then the cumulative probability 

of the portfolio return 1 1 2 2R w r w r= +  being less than VaR is 

( ) ( )
( )1 1 2VaR

1 1 2 2Prob VaR ,
w r w

R dr f r r dr α
−∞

−∞ −∞

≤ = =� � .      (B4) 

Equation (B4) defines the ( )%1 α−  VaR as an implicit function of weights 21, ww . To 

obtain the partial derivative of VaR with respect to weights, we differentiate both sides of 

Equation (B4) with respect to 1w . We have 
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VaR1VaR
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The right hand side of this equation is recognized exactly as the conditional expectation 

of 11rw  given the portfolio return 1 1 2 2 VaRR w r w r= + = . Thus, it established the financial 

interpretation for the VaR contribution. 
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