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Portfolio Risk Budgeting

• Additively decompose (slice and dice) portfolio risk measures into asset
contributions

• Allow portfolio manager to know sources of asset risk for allocation and
hedging purposes

• Allow risk manager to evaluate portfolio from asset risk perspective



Portfolio Calculations

Let 1      denote simple returns on  assets, and let 1      denote

portfolio weights such that
P
=1 = 1

Portfolio return:

R = (1     ) w = (1     )
0 1 = (1     1)0

 = w0R =
X
=1

 w
01 = 1

Portfolio mean and variance:

Let R be a random vector with

[R] = μ = (1     )
0

(R) = [(R− μ)(R− μ)0] = Σ =

⎛⎜⎜⎜⎜⎝
21 12 · · · 1
12 22 · · · 2
... ... . . . ...

1 2 · · · 2

⎞⎟⎟⎟⎟⎠
Then

 = w
0μ 2 = w0Σw and  =

³
w0Σw

´12



Example: Portfolio risk decomposition for 2 risky asset portfolio

 = 11 +22

2 = 21
2
1 +22

2
2 + 21212

 =
³
21

2
1 +22

2
2 + 21212

´12

To get an additive decomposition for 2 write

2 = 21
2
1 +22

2
2 + 21212

=
³
21

2
1 +1212

´
+
³
22

2
2 +1212

´


Here we can split the covariance contribution 21212 to portfolio variance

evenly between the two assets and define

21
2
1 +1212 = variance contribution of asset 1

22
2
2 +1212 = variance contribution of asset 2



We can also define an additive decomposition for 

 =
21

2
1 +1212


+
22

2
2 +1212



21
2
1 +1212


= sd contribution of asset 1

22
2
2 +1212


= sd contribution of asset 2

Euler’s Theorem and Risk Decompositions

• When we used  to measure portfolio risk, we were able to easily derive
an additive risk decomposition.

• If we measure portfolio risk by VaR or ES it is not so obvious how to define
individual asset risk contributions.

• For portfolio risk measures that are homogenous functions of degree one
in the portfolio weights, Euler’s theorem provides a general method for

additively decomposing risk into asset specific contributions.



Homogenous functions and Euler’s theorem

First we define a homogenous function of degree one.

Definition 1 homogenous function of degree one

Let (1     ) be a continuous and differentiable function of the variables

1       is homogeneous of degree one if for any constant   0 ( ·
1      · ) =  · (1     )

Note: In matrix notation we have (1     ) = () where

= (1     )
0 Then  is homogeneous of degree one if (·) = ·()

Examples

Let (1 2) = 1 +2 Then

( · 1  · 2) =  · 1 +  · 2 =  · (1 + 2) =  · (1 2)

Let (1 2) = 21 +22 Then

( · 1  · 2) = 221 +22
2 = 2(21 +22) 6=  · (1 2)

Let (1 2) =
q
21 +22 Then

( · 1  · 2) =
q
221 + 222 = 

q
(21 + 22) =  · (1 2)



Repeat examples using matrix notation

Define = (1 2)
0 and 1 = (1 1)0

Let (1 2) = 1 +2 =
01 = f() Then

( ·w) = ( ·w)0 1 =  · (w01) =  · (w)
Let (1 2) = 21 +22 =

0= () Then

( ·w) = ( ·w)0( ·w) = 2 ·w0w 6=  · (w)
Let (1 2) =

q
21 +22 = (

0)12 = () Then

( ·w) =
³
( ·w)0( ·w)

´12
=  ·

³
w0w

´12
=  · (w)

Consider a portfolio of  assets = (1     )
0 with initial value 0 and

let  ∈ (0 1) denote a confidence level
R = (1     )

0 w = (1     )
0

[R] = μ cov(R) = Σ R ∼ (μΣ)

Define

 = (w) = w
0R

 = (w) = w
0μ 2 = 2(w) = w

0Σw
 = (w) = (w

0Σw)12




1− = 


1−(w) = (w) + (w)× 1−
VaR(w) = −

1−(w)× 0

() = −0
⎛⎝(w) + (w)×

(1−)
1− 

⎞⎠



Result: Portfolio return (), expected return (), standard deviation

(), normal quantile 


1−() and normal VaR VaR() and normal ES
(w) are homogenous functions of degree one in the portfolio weight vector



Remarks

• Above results for VaR and ES are based on assuming normally distributed
returns

• It can be shown that linear homogeneity of VaR and ES holds for any
distribution of returns

Let (w) denote the risk measures    and  defined from returns

as functions of the portfolio weights w

Result: (w) is a linearly homogenous function of w for  =   

and  That is, ( ·w) = ·(w) for any constant  ≥ 0



Theorem 2 Euler’s theorem

Let (1     ) = () be a continuous, differentiable and homogenous

of degree one function of the variables = (1     )
0 Then

(w) = 1 ·
(w)

1
+2 ·

(w)

2
+ · · ·+ · (w)



= w0(w)
w



where

(w)

w
(×1)

=

⎛⎜⎜⎜⎝
(w)
1...
(w)


⎞⎟⎟⎟⎠

Verifying Euler’s theorem

The function (1 2) = 1 + 2 = () =01 is homogenous of degree
one, and

(w)

1
=

(w)

2
= 1

(w)

w
=

⎛⎜⎝ (w)
1
(w)
2

⎞⎟⎠ = Ã
1

1

!
= 1

By Euler’s theorem,

() = 1 · 1 + 2 · 1 = 1 + 2 = w
01



The function (1 2) = (
2
1+22)

12 = () = (0)12 is homogenous
of degree one, and

(w)

1
=

1

2

³
21 +22

´−12
21 = 1

³
21 +22

´−12


(w)

2
=

1

2

³
21 +22

´−12
22 = 2

³
21 +22

´−12


By Euler’s theorem

(w) = 1 · 1
³
21 +22

´−12
+2 · 2

³
21 +22

´−12
=

³
21 + 22

´ ³
21 +22

´−12
=

³
21 + 22

´12


Using matrix algebra we have

(w)

w
=

(w0w)12

w
=
1

2
(w0w)−12w

0w
w

=
1

2
(w0w)−122w = (w0w)−12 ·w

so by Euler’s theorem

(w) = w0(w)
w

= w0(w0w)−12 ·w
= (w0w)−12w0w = (w0w)12



General Risk Budgeting Result

Result: Because (w) is a linearly homogenous function of w by Euler’s

Theorem

(w) =
X
=1


(w)



= 1
(w)

1
+ · · ·+ 

(w)



Terminology

Asset  marginal contribution to risk

(w)



Asset  contribution to risk


(w)



Asset  percent contribution to risk


(w)



(w)



Analytic Results for (w) = (w)

 = w0R (R) = Σ

(w) =
³
w0Σw

´12
(w)

w
=

1

(w)
Σw

Note

Σw =

⎛⎜⎝ (1 )
...

()

⎞⎟⎠ =  (w)

⎛⎜⎝ 1
...



⎞⎟⎠
 = ()

2 (w)

Results for (w) =  (w) (w)

Gourieroux (2000) et al. and Scalliet (2002) showed that

 (w)


= [| =  (w)]  = 1     

(w)


= [| ≤  (w)]  = 1     

Remarks

• Intuitive interpretation as stress loss scenario

• Analytic results are available under normality



Intiution

The portfolio return is

 = 0 =
X
=1



Then

 (w) = [| =  ] =
X
=1

[| =  ]

(w) = [| ≤  ] =
X
=1

[| ≤  ]

Differentiating  (w) and (w) w.r.t.  then gives

 (w)


= [| =  ]

(w)


= [| ≤  ]



Reverse Optimization, Implied Returns and Tail Risk Budgeting

• Standard portfolio optimization begins with a set of expected returns and
risk forecasts.

• These inputs are fed into an optimization routine, which then produces
the portfolio weights that maximizes some risk-to-reward ratio (typically

subject to some constraints).

• Reverse optimization, by contrast, begins with a set of portfolio weights
and risk forecasts, and then infers what the implied expected returns must

be to satisfy optimality.

Optimized Portfolios

Suppose that the objective is to form a portfolio by maximizing a generalized

expected return-to-risk (Sharpe) ratio:

max
w

(w)

(w)

(w) = w0μ
(w) = linearly homogenous risk measure

The F.O.C.’s of the optimization are ( = 1     )

0 =




Ã
(w)

(w)

!
=

1

(w)

(w)


− (w)

(w)2
(w)





Reverse Optimization and Implied Returns

Reverse optimization uses the above optimality condition with fixed portfo-

lio weights to determine the optimal fund expected returns. These optimal

expected returns are called implied returns. The implied returns satisfy


implied
 (w) =

(w)

(w)
× (w)



Result: fund i’s implied return is proportional to its marginal contribution to

risk, with the constant of proportionality being the generalized Sharpe ratio of

the portfolio.

How to Use Implied Returns

• For a given generalized portfolio Sharpe ratio, implied (w) is large if
(w)



is large.

• If the actual or forecast expected return for fund  is less than its implied
return, then one should reduce one’s holdings of that asset

• If the actual or forecast expected return for fund  is greater than its implied
return, then one should increase one’s holdings of that asset


