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e Portfolio Calculations

e Risk Budgeting

e Reverse Optimization and Implied Returns

Portfolio Risk Budgeting

e Additively decompose (slice and dice) portfolio risk measures into asset
contributions

e Allow portfolio manager to know sources of asset risk for allocation and
hedging purposes

e Allow risk manager to evaluate portfolio from asset risk perspective




Portfolio Calculations

Let Ry, ..., Rn denote simple returns on n assets, and let wyq, ..., wy denote
portfolio weights such that 7' ; w; = 1.

Portfolio return:
R = (Ry,...,Ry), w=(wy,...,wp), 1=(1,...,1)

N
Ry = wR=) wR;, wl=1
1=1

Portfolio mean and variance:

Let R be a random vector with

E[R] = M= (:UJ17“ . a/'Ln)/

o o1z o ln
var(R) = E[R-p)R-p)]=%=| 712 72 7" %on
Oln O2n - 0'%

Then

Pp = w L, 022, = w'Xw and op = (W’ZW

)1/2




Example: Portfolio risk decomposition for 2 risky asset portfolio

Rp = wiR; +waRy

0127 = w%a% + w%a% + 2wiwoo12
1/2
op = (w%a% + w%a% + 2w1w2012)

To get an additive decomposition for a% write
0'}2) = w%a% + w%a% + 2wiwoo12

= (w%a% + w1w2012> + <w%a% + ’w]_’w20']_2) .

Here we can split the covariance contribution 2wjwyo15 to portfolio variance
evenly between the two assets and define

w%a% + wiwpo1o = variance contribution of asset 1

w%a% + wyqwpo1o = variance contribution of asset 2




We can also define an additive decomposition for op

w%a% + wiwo012 w%a% + wiwo012
Op = +
Op Op

2.2
wio] + wiwa0o12

— sd contribution of asset 1
Op
w202 + wiwoo
209> 1W2012

= sd contribution of asset 2
Op

Euler’'s Theorem and Risk Decompositions

e When we used op to measure portfolio risk, we were able to easily derive

an additive risk decomposition.

e If we measure portfolio risk by VaR or ES it is not so obvious how to define

individual asset risk contributions.

e For portfolio risk measures that are homogenous functions of degree one

in the portfolio weights, Euler's theorem provides a general method for

additively decomposing risk into asset specific contributions.




Homogenous functions and Euler’s theorem

First we define a homogenous function of degree one.

Definition 1 homogenous function of degree one

Let f(w1,...,wn) be a continuous and differentiable function of the variables
w1, ..., wn. f is homogeneous of degree one if for any constant ¢ > 0, f(c-
Wi, ...,c-wp) =c- flwy,...,wn).

Note: In matrix notation we have f(w1,...,wn) = f(w) where

w= (w1,...,wn) . Then f is homogeneous of degree one if f(c-w) = c- f(w)
Examples

Let f(wl, w2) = wy + wop. Then

flc-wy,c-wp) =c-wy+c-wy=c-(wg +wp) =c- f(wy,ws)

Let f(w1,wp) = w% + w%. Then

fle-wi,c-wp) = Pwd +wic® = A(wf +w3) # ¢ - flwy, wy)

Let f(wi,wp) = \/wl + w2 Then
fle-wi,c-wp) = \/Pw? + w3 = cyf(wF + w3) = c- f(wy, wp)




Repeat examples using matrix notation
Define w= (w1, w»)" and 1 = (1,1)".

Let f(w1,wp) = wi + wy =w'l = f(w). Then
flc-w)=(c-w)'1=c-(W1)=c- f(w).
Let f(wy,wp) = w% + w% =w/'w= f(w). Then
fle-w)=(c-w)(c-w)=c? ww#£c- f(w).
Let f(wy,wp) = \Jw? + w3 = (w'w)l/2 = f(w). Then

)1/2

fle-w) = ((e-w)(e-w)) /2 = c- (ww) " = c. f(w).

Consider a portfolio of n assets w= (w1,...,wy)" with initial value Vg and
let o € (0,1) denote a confidence level
R = (Ry,...,Rn), w=(wy,...,wpn)
ER] = p, cov(R) =%, R~ N(p, X)

Define
Rp = Rp(w)=wR,
pp = pp(w) = w'u, 01[2, = J]%(w) =w'Zw,
op = ap(w) = (w'Sw)/2
00 = 07 o(W) = (W) +op(w) x af
VaRa(w) = —g”,(w) x Vo

4
ESa(w) = —Vo (up(w)Jrap(w)xd)(ql—a))

11—«




Result: Portfolio return Rp(w), expected return p,(w), standard deviation

op(w), normal quantile qffa(w), and normal VaR VaRq(w), and normal ES
ESq(w) are homogenous functions of degree one in the portfolio weight vector

w.

Remarks

e Above results for VaR and ES are based on assuming normally distributed

returns

e It can be shown that linear homogeneity of VaR and ES holds for any

distribution of returns

Let RM(w) denote the risk measures o, VaRq and ES,, defined from returns
as functions of the portfolio weights w.

Result: RM(w) is a linearly homogenous function of w for RM = o, VaR,
and ESq. That is, RM(c-w) =c- RM(w) for any constant ¢ > 0




Theorem 2 Euler’s theorem

Let f(wq,...,wn) = f(w) be a continuous, differentiable and homogenous
of degree one function of the variables w= (w1, ..., wn)". Then
f(w) = wl.3f(W)+w2.m+”'+wn.af(W)
owy Owoy Own,
0f(w)
ow
where
of(w)
df(w) _ | 9w
U

Verifying Euler’s theorem

The function f(wq,ws) = wy +wy = f(w) =w'l is homogenous of degree

one, and
of(w) _ of(w) _
owq Owy
orw) _ (B (1) _,
ow ofw) | —\ 1)~
owo

By Euler's theorem,

fw)=wy-14+wy-1=wy +wp=w1




The function f(w1,w;) = (w? —|—w2)1/2 f(w) = (w'w)Y/2 is homogenous
of degree one, and

af(w) 1 —-1/2 -1/2
ow 2 (wf+wd) " 2wy = wy (wf +ud) T
af(w) 1 -1/2 —1/2
Ows 2 <w% + w§> 2wy = w) (w% T w%) '
By Euler’s theorem
—-1/2 —1/2
f(w) = wy-ws (w%—l—w%) / + wp - wo <w%+w%) /
1/2
= (u}+3) (u] +ud)"
1/2
= (wl + w2) .
Using matrix algebra we have
of(w) a(wfw)l/2 (W w)- 1/20W'W
ow ow ow

1
= E(W/W)_1/22W =(w W)_1/2 -W
so by Euler's theorem

fw) = w’%:w’(w'w)_lp-w
~1/2

= (w'w) ww = (w’w)l/2




General Risk Budgeting Result

Result: Because RM(w) is a linearly homogenous function of w, by Euler's

Theorem

" ORM(w)
RM(w) = w————=
(w) Z:ZI " ow,

= w
owq

ORM (w)

ORM (w)

8U)n

Terminology

Asset ¢ marginal contribution to risk
ORM (w)
8wi

Asset ¢ contribution to risk

w;

8wi

Asset 4 percent contribution to risk

w; 8RM(W)

Wj

RM(w)

ORM(w)




Analytic Results for RM(w) = o(w)
Ry = wR, var(R) =X

o(w) = (W’ZW) 12
do(w) 1 C
ow  o(w)
Note
cov(Ry, Rp) Bl,p
EW = : =0 (W) :
cov(Rn, Rp) Br.p

Bip = cov(R;, Rp)/o?(w)

Results for RM(w) = VaRn(W), ESa(W)

Gourieroux (2000) et al. and Scalliet (2002) showed that

M — E[RZ|Rp:VCLRa(W)]7Z:157n
ow;
E
0 aSoz(VV) _ E[R@|Rp < VaRa(W)], 1=1,...,n
Wy

Remarks

e Intuitive interpretation as stress loss scenario

e Analytic results are available under normality




Intiution

The portfolio return is

n
Rp=w'R=)Y wR;
=1
Then

n
1=1

n
=1

Differentiating VaRqa(W) and ESq(W) w.r.t. w; then gives

OV aRqy(W)
8wi
OESqa(w)
awz'




Reverse Optimization, Implied Returns and Tail Risk Budgeting

e Standard portfolio optimization begins with a set of expected returns and
risk forecasts.

e These inputs are fed into an optimization routine, which then produces
the portfolio weights that maximizes some risk-to-reward ratio (typically
subject to some constraints).

e Reverse optimization, by contrast, begins with a set of portfolio weights
and risk forecasts, and then infers what the implied expected returns must
be to satisfy optimality.

Optimized Portfolios

Suppose that the objective is to form a portfolio by maximizing a generalized
expected return-to-risk (Sharpe) ratio:

pp(W)
max ————
W RM(w)
:up(w) = W/ll'
RM(w) = linearly homogenous risk measure

The F.O.C.’s of the optimization are (i = 1,...,n)

0 (,pr(W) ) 1 a:up(w) _ Mp(w) ORM(w)

0 = =




Reverse Optimization and Implied Returns

Reverse optimization uses the above optimality condition with fixed portfo-
lio weights to determine the optimal fund expected returns. These optimal
expected returns are called implied returns. The implied returns satisfy

implied 0 pp(W) , ORM(w)

! RM(W) 8wi
Result: fund i's implied return is proportional to its marginal contribution to
risk, with the constant of proportionality being the generalized Sharpe ratio of

the portfolio.

How to Use Implied Returns

ORM (w)

e For a given generalized portfolio Sharpe ratio, ,uimp“ed(w) is large if =5
(3

is large.

e If the actual or forecast expected return for fund 7 is less than its implied
return, then one should reduce one’s holdings of that asset

e |f the actual or forecast expected return for fund 7 is greater than its implied
return, then one should increase one's holdings of that asset




