

Outline

- Portfolio Calculations
- Risk Budgeting
- Reverse Optimization and Implied Returns

Portfolio Risk Budgeting

- Additively decompose (slice and dice) portfolio risk measures into asset contributions
- Allow portfolio manager to know sources of asset risk for allocation and hedging purposes
- Allow risk manager to evaluate portfolio from asset risk perspective

Portfolio Calculations

Let R_1, \ldots, R_n denote simple returns on n assets, and let w_1, \ldots, w_n denote portfolio weights such that $\sum_{i=1}^n w_i = 1$.

Portfolio return:

$$\mathbf{R} = (R_1, \dots, R_N), \ \mathbf{w} = (w_1, \dots, w_n)', \ \mathbf{1} = (1, \dots, 1)'$$
 $R_p = \mathbf{w'R} = \sum_{i=1}^{N} w_i R_i, \ \mathbf{w'1} = 1$

Portfolio mean and variance:

Let ${f R}$ be a random vector with

$$E[\mathbf{R}] = \boldsymbol{\mu} = (\mu_1, \dots, \mu_n)'$$

$$var(\mathbf{R}) = E[(\mathbf{R} - \boldsymbol{\mu})(\mathbf{R} - \boldsymbol{\mu})'] = \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1n} & \sigma_{2n} & \cdots & \sigma_n^2 \end{pmatrix}$$

Then

$$\mu_p = \mathbf{w}' oldsymbol{\mu}, \ \sigma_p^2 = \mathbf{w}' oldsymbol{\Sigma} \mathbf{w} \ ext{and} \ \sigma_p = \left(\mathbf{w}' oldsymbol{\Sigma} \mathbf{w}
ight)^{1/2}$$

Example: Portfolio risk decomposition for 2 risky asset portfolio

$$R_p = w_1 R_1 + w_2 R_2$$

$$\sigma_p^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_{12}$$

$$\sigma_p = \left(w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_{12}\right)^{1/2}$$

To get an additive decomposition for σ_p^2 write

$$\begin{split} \sigma_p^2 &= w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_{12} \\ &= \left(w_1^2 \sigma_1^2 + w_1 w_2 \sigma_{12} \right) + \left(w_2^2 \sigma_2^2 + w_1 w_2 \sigma_{12} \right). \end{split}$$

Here we can split the covariance contribution $2w_1w_2\sigma_{12}$ to portfolio variance evenly between the two assets and define

$$w_1^2\sigma_1^2 + w_1w_2\sigma_{12} =$$
 variance contribution of asset 1 $w_2^2\sigma_2^2 + w_1w_2\sigma_{12} =$ variance contribution of asset 2

We can also define an additive decomposition for σ_p

$$\sigma_p = \frac{w_1^2 \sigma_1^2 + w_1 w_2 \sigma_{12}}{\sigma_p} + \frac{w_2^2 \sigma_2^2 + w_1 w_2 \sigma_{12}}{\sigma_p}$$

$$\frac{w_1^2 \sigma_1^2 + w_1 w_2 \sigma_{12}}{\sigma_p} = \text{ sd contribution of asset 1}$$

$$\frac{w_2^2 \sigma_2^2 + w_1 w_2 \sigma_{12}}{\sigma_p} = \text{ sd contribution of asset 2}$$

Euler's Theorem and Risk Decompositions

- When we used σ_p to measure portfolio risk, we were able to easily derive an additive risk decomposition.
- If we measure portfolio risk by VaR or ES it is not so obvious how to define individual asset risk contributions.
- For portfolio risk measures that are homogenous functions of degree one in the portfolio weights, Euler's theorem provides a general method for additively decomposing risk into asset specific contributions.

Homogenous functions and Euler's theorem

First we define a homogenous function of degree one.

Definition 1 homogenous function of degree one

Let $f(w_1, \ldots, w_n)$ be a continuous and differentiable function of the variables w_1, \ldots, w_n . f is homogeneous of degree one if for any constant c > 0, $f(c \cdot w_1, \ldots, c \cdot w_n) = c \cdot f(w_1, \ldots, w_n)$.

Note: In matrix notation we have $f(w_1, \ldots, w_n) = f(w)$ where

 $w=(w_1,\ldots,w_n)'$. Then f is homogeneous of degree one if $f(c\cdot w)=c\cdot f(w)$

Examples

Let
$$f(w_1,w_2)=w_1+w_2$$
. Then
$$f(c\cdot w_1,c\cdot w_2)=c\cdot w_1+c\cdot w_2=c\cdot (w_1+w_2)=c\cdot f(w_1,w_2)$$

Let
$$f(w_1, w_2) = w_1^2 + w_2^2$$
. Then
$$f(c \cdot w_1, c \cdot w_2) = c^2 w_1^2 + w_2^2 c^2 = c^2 (w_1^2 + w_2^2) \neq c \cdot f(w_1, w_2)$$

Let
$$f(w_1,w_2)=\sqrt{w_1^2+w_2^2}$$
 Then
$$f(c\cdot w_1,c\cdot w_2)=\sqrt{c^2w_1^2+c^2w_2^2}=c\sqrt{(w_1^2+w_2^2)}=c\cdot f(w_1,w_2)$$

Repeat examples using matrix notation

Define
$$w = (w_1, w_2)'$$
 and $1 = (1, 1)'$.

Let
$$f(w_1, w_2) = w_1 + w_2 = w'1 = \mathbf{f}(w)$$
. Then

$$f(c \cdot \mathbf{w}) = (c \cdot \mathbf{w})' \mathbf{1} = c \cdot (\mathbf{w}' \mathbf{1}) = c \cdot f(\mathbf{w}).$$

Let
$$f(w_1, w_2) = w_1^2 + w_2^2 = w'w = f(w)$$
. Then

$$f(c \cdot \mathbf{w}) = (c \cdot \mathbf{w})'(c \cdot \mathbf{w}) = c^2 \cdot \mathbf{w}' \mathbf{w} \neq c \cdot f(\mathbf{w}).$$

Let
$$f(w_1, w_2) = \sqrt{w_1^2 + w_2^2} = (w'w)^{1/2} = f(w)$$
. Then

$$f(c \cdot \mathbf{w}) = ((c \cdot \mathbf{w})'(c \cdot \mathbf{w}))^{1/2} = c \cdot (\mathbf{w}'\mathbf{w})^{1/2} = c \cdot f(\mathbf{w}).$$

Consider a portfolio of n assets $w = (w_1, \dots, w_n)'$ with initial value V_0 and let $\alpha \in (0,1)$ denote a confidence level

$$\mathbf{R} = (R_1, \dots, R_n)', \ \mathbf{w} = (w_1, \dots, w_n)'$$

 $E[\mathbf{R}] = \boldsymbol{\mu}, \ \mathsf{cov}(\mathbf{R}) = \boldsymbol{\Sigma}, \ \mathbf{R} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Define

$$R_{p} = R_{p}(\mathbf{w}) = \mathbf{w}'\mathbf{R},$$

$$\mu_{p} = \mu_{p}(\mathbf{w}) = \mathbf{w}'\boldsymbol{\mu}, \ \sigma_{p}^{2} = \sigma_{p}^{2}(\mathbf{w}) = \mathbf{w}'\boldsymbol{\Sigma}\mathbf{w},$$

$$\sigma_{p} = \sigma_{p}(\mathbf{w}) = (\mathbf{w}'\boldsymbol{\Sigma}\mathbf{w})^{1/2}$$

$$q_{1-\alpha}^{R_{p}} = q_{1-\alpha}^{R_{p}}(\mathbf{w}) = \mu_{p}(\mathbf{w}) + \sigma_{p}(\mathbf{w}) \times q_{1-\alpha}^{Z}$$

$$VaR_{\alpha}(\mathbf{w}) = -q_{1-\alpha}^{R_{p}}(\mathbf{w}) \times V_{0}$$

$$ES_{\alpha}(\mathbf{w}) = -V_{0}\left(\mu_{p}(\mathbf{w}) + \sigma_{p}(\mathbf{w}) \times \frac{\phi(q_{1-\alpha}^{Z})}{1-\alpha}\right)$$

Result: Portfolio return $R_p(w)$, expected return $\mu_p(w)$, standard deviation $\sigma_p(w)$, normal quantile $q_{1-\alpha}^{R_p}(w)$, and normal VaR VaR $_{\alpha}(w)$, and normal ES $ES_{\alpha}(\mathbf{w})$ are homogenous functions of degree one in the portfolio weight vector w.

Remarks

- Above results for VaR and ES are based on assuming normally distributed returns
- It can be shown that linear homogeneity of VaR and ES holds for any distribution of returns

Let $RM(\mathbf{w})$ denote the risk measures σ , VaR_{α} and ES_{α} defined from returns as functions of the portfolio weights \mathbf{w} .

Result: $RM(\mathbf{w})$ is a linearly homogenous function of \mathbf{w} for $RM = \sigma$, VaR_{α} and ES_{α} . That is, $RM(c \cdot \mathbf{w}) = c \cdot RM(\mathbf{w})$ for any constant $c \geq 0$

Theorem 2 Euler's theorem

Let $f(w_1, ..., w_n) = f(w)$ be a continuous, differentiable and homogenous of degree one function of the variables $w = (w_1, ..., w_n)'$. Then

$$f(\mathbf{w}) = w_1 \cdot \frac{\partial f(\mathbf{w})}{\partial w_1} + w_2 \cdot \frac{\partial f(\mathbf{w})}{\partial w_2} + \dots + w_n \cdot \frac{\partial f(\mathbf{w})}{\partial w_n}$$
$$= \mathbf{w}' \frac{\partial f(\mathbf{w})}{\partial \mathbf{w}},$$

where

$$\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}} = \begin{pmatrix} \frac{\partial f(\mathbf{w})}{\partial w_1} \\ \vdots \\ \frac{\partial f(\mathbf{w})}{\partial w_n} \end{pmatrix}$$

Verifying Euler's theorem

The function $f(w_1, w_2) = w_1 + w_2 = f(w) = w'1$ is homogenous of degree one, and

$$\frac{\partial f(\mathbf{w})}{\partial w_1} = \frac{\partial f(\mathbf{w})}{\partial w_2} = 1$$

$$\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}} = \begin{pmatrix} \frac{\partial f(\mathbf{w})}{\partial w_1} \\ \frac{\partial f(\mathbf{w})}{\partial w_2} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1$$

By Euler's theorem,

$$f(w) = w_1 \cdot 1 + w_2 \cdot 1 = w_1 + w_2 = \mathbf{w}' 1$$

The function $f(w_1, w_2) = (w_1^2 + w_2^2)^{1/2} = f(w) = (w'w)^{1/2}$ is homogenous of degree one, and

$$\frac{\partial f(\mathbf{w})}{\partial w_1} = \frac{1}{2} \left(w_1^2 + w_2^2 \right)^{-1/2} 2w_1 = w_1 \left(w_1^2 + w_2^2 \right)^{-1/2},$$

$$\frac{\partial f(\mathbf{w})}{\partial w_2} = \frac{1}{2} \left(w_1^2 + w_2^2 \right)^{-1/2} 2w_2 = w_2 \left(w_1^2 + w_2^2 \right)^{-1/2}.$$

By Euler's theorem

$$f(\mathbf{w}) = w_1 \cdot w_1 \left(w_1^2 + w_2^2 \right)^{-1/2} + w_2 \cdot w_2 \left(w_1^2 + w_2^2 \right)^{-1/2}$$
$$= \left(w_1^2 + w_2^2 \right) \left(w_1^2 + w_2^2 \right)^{-1/2}$$
$$= \left(w_1^2 + w_2^2 \right)^{1/2}.$$

Using matrix algebra we have

$$\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}} = \frac{\partial (\mathbf{w}'\mathbf{w})^{1/2}}{\partial \mathbf{w}} = \frac{1}{2} (\mathbf{w}'\mathbf{w})^{-1/2} \frac{\partial \mathbf{w}'\mathbf{w}}{\partial \mathbf{w}}$$
$$= \frac{1}{2} (\mathbf{w}'\mathbf{w})^{-1/2} 2\mathbf{w} = (\mathbf{w}'\mathbf{w})^{-1/2} \cdot \mathbf{w}$$

so by Euler's theorem

$$f(\mathbf{w}) = \mathbf{w}' \frac{\partial f(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{w}' (\mathbf{w}' \mathbf{w})^{-1/2} \cdot \mathbf{w}$$
$$= (\mathbf{w}' \mathbf{w})^{-1/2} \mathbf{w}' \mathbf{w} = (\mathbf{w}' \mathbf{w})^{1/2}$$

General Risk Budgeting Result

Result: Because $RM(\mathbf{w})$ is a linearly homogenous function of \mathbf{w} , by Euler's Theorem

$$RM(\mathbf{w}) = \sum_{i=1}^{n} w_{i} \frac{\partial RM(\mathbf{w})}{\partial w_{i}}$$
$$= w_{1} \frac{\partial RM(\mathbf{w})}{\partial w_{1}} + \dots + w_{n} \frac{\partial RM(\mathbf{w})}{\partial w_{n}}$$

Terminology

Asset i marginal contribution to risk

$$\frac{\partial RM(\mathbf{w})}{\partial w_i}$$

Asset *i contribution to risk*

$$w_i \frac{\partial RM(\mathbf{w})}{\partial w_i}$$

Asset i percent contribution to risk

$$\frac{w_i \frac{\partial RM(\mathbf{w})}{\partial w_i}}{RM(\mathbf{w})}$$

Analytic Results for $RM(\mathbf{w}) = \sigma(\mathbf{w})$

$$R_p = \mathbf{w}'\mathbf{R}, \ var(\mathbf{R}) = \mathbf{\Sigma}$$

$$\sigma(\mathbf{w}) = \left(\mathbf{w}'\mathbf{\Sigma}\mathbf{w}\right)^{1/2}$$

$$\frac{\partial \sigma(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{\sigma(\mathbf{w})}\mathbf{\Sigma}\mathbf{w}$$

Note

$$\Sigma \mathbf{w} = \begin{pmatrix} cov(R_1, R_p) \\ \vdots \\ cov(R_n, R_p) \end{pmatrix} = \sigma(\mathbf{w}) \begin{pmatrix} \beta_{1,p} \\ \vdots \\ \beta_{n,p} \end{pmatrix}$$
$$\beta_{i,p} = cov(R_i, R_p) / \sigma^2(\mathbf{w})$$

Results for $RM(\mathbf{w}) = VaR_{\alpha}(\mathbf{w}), ES_{\alpha}(\mathbf{w})$

Gourieroux (2000) et al. and Scalliet (2002) showed that

$$\frac{\partial VaR_{\alpha}(\mathbf{w})}{\partial w_{i}} = E[R_{i}|R_{p} = VaR_{\alpha}(\mathbf{w})], i = 1, \dots, n$$

$$\frac{\partial ES_{\alpha}(\mathbf{w})}{\partial w_{i}} = E[R_{i}|R_{p} \leq VaR_{\alpha}(\mathbf{w})], i = 1, \dots, n$$

Remarks

- Intuitive interpretation as stress loss scenario
- Analytic results are available under normality

Intiution

The portfolio return is

$$R_p = w'R = \sum_{i=1}^n w_i R_i$$

Then

$$VaR_{\alpha}(\mathbf{w}) = E[R_p|R_p = VaR_{\alpha}] = \sum_{i=1}^{n} w_i E[R_i|R_p = VaR_{\alpha}]$$
$$ES_{\alpha}(\mathbf{w}) = E[R_p|R_p \le VaR_{\alpha}] = \sum_{i=1}^{n} w_i E[R_i|R_p \le VaR_{\alpha}]$$

Differentiating $VaR_{\alpha}(\mathbf{w})$ and $ES_{\alpha}(\mathbf{w})$ w.r.t. w_i then gives

$$\frac{\partial VaR_{\alpha}(\mathbf{w})}{\partial w_{i}} = E[R_{i}|R_{p} = VaR_{\alpha}]$$
$$\frac{\partial ES_{\alpha}(\mathbf{w})}{\partial w_{i}} = E[R_{i}|R_{p} \leq VaR_{\alpha}]$$

Reverse Optimization, Implied Returns and Tail Risk Budgeting

- Standard portfolio optimization begins with a set of expected returns and risk forecasts.
- These inputs are fed into an optimization routine, which then produces the portfolio weights that maximizes some risk-to-reward ratio (typically subject to some constraints).
- Reverse optimization, by contrast, begins with a set of portfolio weights and risk forecasts, and then infers what the implied expected returns must be to satisfy optimality.

Optimized Portfolios

Suppose that the objective is to form a portfolio by maximizing a generalized expected return-to-risk (Sharpe) ratio:

$$\begin{aligned} &\max_{\mathbf{w}} \, \frac{\mu_p(\mathbf{w})}{RM(\mathbf{w})} \\ &\mu_p(\mathbf{w}) \; = \; \mathbf{w}' \boldsymbol{\mu} \\ &RM(\mathbf{w}) \; = \; \text{linearly homogenous risk measure} \end{aligned}$$

The F.O.C.'s of the optimization are $(i=1,\ldots,n)$

$$0 = \frac{\partial}{\partial w_i} \left(\frac{\mu_p(\mathbf{w})}{RM(\mathbf{w})} \right) = \frac{1}{RM(\mathbf{w})} \frac{\partial \mu_p(\mathbf{w})}{\partial w_i} - \frac{\mu_p(\mathbf{w})}{RM(\mathbf{w})^2} \frac{\partial RM(\mathbf{w})}{\partial w_i}$$

Reverse Optimization and Implied Returns

Reverse optimization uses the above optimality condition with fixed portfolio weights to determine the optimal fund expected returns. These optimal expected returns are called *implied returns*. The implied returns satisfy

$$\mu_i^{\text{implied}}(\mathbf{w}) = \frac{\mu_p(\mathbf{w})}{RM(\mathbf{w})} \times \frac{\partial RM(\mathbf{w})}{\partial w_i}$$

Result: fund i's implied return is proportional to its marginal contribution to risk, with the constant of proportionality being the generalized Sharpe ratio of the portfolio.

How to Use Implied Returns

- For a given generalized portfolio Sharpe ratio, $\mu_i^{\text{implied}}(\mathbf{w})$ is large if $\frac{\partial RM(\mathbf{w})}{\partial w_i}$ is large.
- ullet If the actual or forecast expected return for fund i is less than its implied return, then one should reduce one's holdings of that asset
- If the actual or forecast expected return for fund *i* is greater than its implied return, then one should increase one's holdings of that asset