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component value-at-risk 
(CVAR) originated in the 

papers of Garman (1996, 1997) and Litterman (1997a, 1997b), 
and has been used by banks as a practical risk analysis tool since 
at least Epperlein & Sondhi (1997). The goal is to calculate how 
much some component of a portfolio contributes to the total VAR 
of that portfolio. We denote the profit and loss (P&L) of the port-
folio as PL and the P&L of the ith component as PLi, so that:

 
PLi = PL

i
∑

Then the CVAR of the ith component is defined to be the expected 
value of PLi given that the portfolio P&L is equal to the VAR, 
that is:

  
CVARi = E PLi PL = VAR   

(1)

For notational simplicity, VAR is treated as the appropriate per-
centile of the P&L distribution, so VAR and CVAR will usually 
be negative. Component VAR has the desirable property of addi-
tivity: if we sum all the CVARs of a given portfolio we recover the 
portfolio VAR:

  
CVARi = VAR

i
∑

 
(2)

Also note that CVAR is always defined with respect to a parent 
portfolio PL and a child portfolio PLi. 

Our definition (1) is different from that often seen in the litera-
ture, where CVAR is defined as the incremental change in the 
portfolio VAR given a small change in the size of the ith exposure 
wi, times the size of that exposure, that is:

  

CVARi = wi

∂VAR

∂wi  
(3)

Subject to some technical conditions, the two definitions are 
equivalent (see Gourieroux, Laurent & Scaillet, 2000), but we 
consider (1) to be more intuitive, at least in the simulation setting 
we shall employ.

Estimators of component VAR
When all the components of a portfolio are elliptically distrib-
uted1, the CVAR can be calculated analytically, as shown by Car-
roll et al (2001):

   

CVARi = E PLi
  +

cov PL, PLi
 

var PL 
VAR − E PL ( )

 

(4)

The assumption of elliptically distributed P&L is of course very 
restrictive, and will be violated by a market risk portfolio con-
taining options, for example. 

A more general approach to VAR estimation is Monte Carlo 
simulation. We generate N random scenarios for the P&L of each 
component, and sum to find the portfolio P&L. We write the 
P&L of the ith component in the jth Monte Carlo scenario as 
PLi

( j), so that the simulated portfolio P&Ls are:

 
PL

j( ) = PLi

j( )
i

∑

Equation (1) then suggests an estimator of the form:

  
CVARi

S  = PLi

n( )
 

(5)

where n denotes the ‘VAR scenario’, that is, the scenario such that:

 PL
n( ) = VAR

In this approach, which we shall refer to as scenario extraction, the 
estimator will automatically satisfy the additivity property, that is: 

CVARi
S[ ] = VAR

i
∑

We shall see later that this estimator gives an unbiased estimate 
for CVAR but suffers badly from noise. 

We can ameliorate (5) by taking an average of the values of PLi 
around the nth value in the estimator, and weighting them accord-
ing to their distance from n. Ad hoc smoothers are used by Litter-
man (1997b) and Hallerbach (2002). We attempt to make the 
method more rigorous by using a kernel estimator to measure the 
distance from the nth scenario. A kernel is a function of the form:

K x;h( ) = K
x
h







which is symmetric about zero, takes a maximum at x = 0 and is 

Cracking 
VAR with 
kernels

Value-at-risk analysis has become a key measure 
of portfolio risk in recent years, but how can we 
calculate the contribution of some portfolio 
component? Eduardo Epperlein and Alan Smillie 
show how kernel estimators can be used to provide a 
fast, accurate and robust estimate of component VAR 
in a simulation framework

The notion of

1 Note that the multivariate normal distribution is an example of an elliptical distribution
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non-negative for all x. A particularly simple example is the trian-
gle kernel: 

K x;h( ) = max 1 −
x
h

, 0






which we have chosen for ease of implementation.2 A kernel esti-
mator of  CVAR can thus be constructed as:

 

CVARi
K[ ] =

K PL j( ) − VAR;h( )PLi
j( )

j=1

N

∑

K PL j( ) − VAR;h( )
j=1

N

∑
 

(6)

The numerator in the above expression can be seen as the weighted 
average of PLi, while the denominator is a normalisation factor. A 
similar approach is hinted at by Gourieroux, Laurent & Scaillet 
(2000), though these authors never make the use of kernels 
explicit nor conduct any statistical tests of the accuracy of the 
estimator in the finite sample.

Using (6) we find that the sum of the CVARs is not in general 
equal to the VAR, violating the additivity property (2). This is 
because the kernel estimator is biased low3 due to asymmetry in 
the P&L distribution around the point PL = VAR (there are more 
scenarios with loss ‘a little’ smaller than VAR than with loss ‘a 
little’ greater than VAR). We can correct for the bias by rescaling 
according to the bias in the kernel estimate of the VAR itself, 
which leads to a rescaled kernel estimator for CVAR:

 

CVARi
K ,R[ ] = VAR

K PL j( ) − VAR;h( )PLi
j( )

j=1

N

∑

K PL j( ) − VAR;h( )PL j( )

j=1

N

∑
 

(7)

Using estimator (7) guarantees that the additivity property holds 
and, as we see in the next section, that the estimate is unbiased. 

The performance of the kernel estimator depends on the choice 
of the smoothing parameter h: in our application, letting h = 0 
corresponds to the scenario extraction estimator (5), while letting  
h → ∞ corresponds to taking an unweighted average of PLi. It 
can be shown (see Silverman, 1986) that the optimal choice for h 
(in the sense of minimising the mean square error) for the trian-
gular kernel is:

h = 2.575σN − 1
5

where σ is the standard deviation of PL. We examine the per-
formance of the estimators (5) and (7) in what follows, but first 
we mention two alternative numerical approaches as a basis for 
comparison. 

The alternative definition of CVAR (3) suggests using numeri-
cal differentiation, as proposed by Epperlein (1998). Letting: 

VARi
+ = VAR PL + δPLi( )

and:

VARi
− = VAR PL − δPLi( )

be the estimates of VAR with the ith exposure perturbed upward 
and downward respectively, a finite difference estimator for 
CVARi is:

CVARi
D[ ] =

VARi
+ − VARi

−

2δ

The parameter δ controls the size of the perturbation, and plays a 
role analogous to h in the kernel estimator. This time it is not 
clear how to choose δ a priori, but numerical experimentation 
shows that a value of δ  = 0.1 achieves a reasonable compromise 
between bias and variance. Due to Monte Carlo error, the esti-
mated CVARs will again fail to sum to the VAR, but a rescaling 
method similar to (7) can be used to correct for this, yielding the 
rescaled finite difference estimator:

 

CVARi
D ,R[ ] = VAR

CVARi
D[ ]

CVARi
D[ ]

i
∑

 

(8)

Finally, we mention a very simple method to calculate CVAR 
from a simulated sample. If we are willing to assume that the 
P&Ls are approximately elliptically distributed, equation (4) 
suggests the semi-parametric estimator proposed by Carroll et 
al (2001):

CVARi
P[ ] =

PLi
j( )

j
∑

N
+

PLi
j( )PL j( )

j
∑

PL j( )2

j
∑

PL n( ) −
PL j( )

j
∑

N

















The semi-parametric estimator is additive by construction.

Statistical comparison of the estimators
We shall now compare the estimators (5), (7), (8) and (9) for a 
selection of sample portfolios. We  use Monte Carlo simulation 
with N = 10,000 and calculate VAR at a confidence level of 99%. 
The experiment is run 1,000 times, and the mean and standard 
deviation of the estimated CVAR is recorded. For comparison, 
we have also included results on the error in the Monte Carlo 
estimate of the VAR itself.
■ Example 1: linear portfolio. First, let us consider a very sim-
ple example where the portfolio risk factors are normally dis-
tributed with zero mean, zero correlation and unit variance, 
that is:

RF1

RF2







~ N 0,
1 0
0 1














We assume linear exposure to w1 and w2 units of RF1 and RF2 
respectively, so we have payout functions:

PL1 = w1RF1

PL2 = w2 RF2

While this may seem like a trivial example, it is of interest since in 
this case (4) can be used to calculate VAR, CVAR1 and CVAR2  
analytically as: 

VAR = Φ−1 0.01( ) w1
2 + w2

2

CVAR1 = Φ−1 0.01( ) w1
2

w1
2 + w2

2

CVAR2 = Φ−1 0.01( ) w2
2

w1
2 + w2

2

2 Numerical experiments (not shown) indicate that our conclusions are unaffected by the particular form 
of kernel function used
3 A referee has pointed out that this can be avoided by estimating the VAR itself using kernels. This will 
work, but only at the expense of inducing a similar bias in the VAR. Also note that this bias is not the 
same as the boundary bias observed when kernels are used for non-parametric density estimation
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where Φ–1 denotes the inverse standard normal distribution func-
tion. Monte Carlo simulations using (5), (7), (8) and (9) with w1 
= 1 and w2 = 2 yield the results in table A.

The mean estimates for CVAR1 and CVAR2 are close to their 
analytic values, indicating that the estimators are unbiased, and 
thanks to the rescaling procedure additivity holds exactly for each 
estimator. The main difference is in the noise of the estimate – the 
semi-parametric method gives the best results, followed by the 
kernel. The finite difference method is somewhat worse, and the 
scenario extraction approach leads to very significant noise even 
in this simple example. 

Notice how the size of the noise relative to the mean is greater for 
the smaller component – this behaviour is typical of numerical pro-
cedures to estimate CVAR. The relative noise can become very 
large for components that make a minimal contribution to the 
VAR, as illustrated in figure 1, where we have plotted the relative 
noise in CVAR1 (that is, standard deviation/mean) using each of 
the estimators for w1 = 0.02, 0.04, ... , 2 while w2 = 2. The very high 
levels of noise for low values of w1 may be of less concern than we 
might initially expect, however, since for such small exposures the 
position contributes a very small proportion of the total risk.
■ Example 2: non-linear portfolio. Next, we consider a portfo-
lio containing an instrument with non-linear payout function. 
The underlying risk factors are again standard normal and inde-
pendent, but this time we set: 

PL1 = −2 max −RF1 − 1,0( )
PL2 = RF2

PL1 represents an option-like payout, specifically a short position 
in out-of-the-money puts close to expiry. The non-linearity in PL1 
means that in this case we are unable to calculate VAR or CVAR 
analytically. Running the same test as before gives the results in 
table B.

The results for the scenario extraction, rescaled kernel and res-
caled finite difference estimators are roughly in agreement, and 
exhibit similar levels of noise to the previous example. The results 
for the semi-parametric method are very different to the rest, sug-
gesting that in this example estimator (9) does not provide a good 
approximation to the CVAR. This is unsurprising since PL1 and 
PL do not follow an elliptical distribution. Since it is not clear 
how this error could have been estimated ex ante and thus cor-
rected, the presence of such a large bias must be considered a seri-
ous flaw in the semi-parametric estimator.

We can use this portfolio to highlight another property of 
CVAR: its dependence on the VAR confidence level. In figure 2, 
we plot CVAR1 as a proportion of the total VAR for confidence 
levels from 90–99.9% using the kernel, finite difference and semi-
parametric estimators (we omit scenario extraction since the 
results are very close to the former two estimators). Notice how 
the non-linear component contributes a greater proportion of the 
VAR at higher confidence levels, but the semi-parametric estima-
tor fails to capture this.
■ Example 3: correlated portfolio. Finally, we examine a spe-
cial case where all the proposed estimators perform poorly. We 
return to the example of normally distributed P&L, but this time 
we have a correlation of ρ and set w1 = w2 = 1: 

A. Comparison of the estimators for linear, uncorrelated 
components

Mean Std dev Std dev/mean

Scenario extraction (5) CVAR
1

–1.03 0.928 89.49%

CVAR
2

–4.17 0.928 22.26%

Kernel (7) CVAR
1

–1.04 0.070 6.71%

CVAR
2

–4.16 0.093 2.23%

Finite difference (8) CVAR
1

–1.05 0.170 16.24%

CVAR
2

–4.15 0.178 4.28%

Semi-parametric (9) CVAR
1

–1.04 0.029 2.79%

CVAR
2

–4.16 0.072 1.73%

VAR –5.20 0.085 1.63%
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1 Noise in the CVAR estimators as a function of  
exposure size

B. Comparison of the estimators for non-linear 
components

Mean Std dev Std dev/mean

Scenario extraction (5) CVAR
1

–1.89 0.810 42.86%

CVAR
2

–1.35 0.804 59.56%

Kernel (7) CVAR
1

–1.88 0.155 8.24%

CVAR
2

–1.36 0.121 10.00%

Finite difference (8) CVAR
1

–1.92 0.201 10.47%

CVAR
2

–1.32 0.178 13.48%

Semi-parametric (9) CVAR
1

–0.79 0.040 2.05%

CVAR
2

–2.45 0.046 2.38%

VAR –3.24 0.073 2.27%
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RF1

RF2







~ N 0,
1 ρ
ρ 1














PL1 = RF1

PL2 = RF2

Using (3) we calculate: 
VAR = Φ−1 0.01( ) 2 + 2ρ

CVAR1 = Φ−1 0.01( ) 1 + ρ
2

CVAR2 = Φ−1 0.01( ) 1 + ρ
2

In this example, both of the CVARs are significant, in the sense 
that they are of the same order of magnitude as the VAR (indeed, 
they are each 50% of the VAR). 

Figure 3 shows the relative noise of each estimator for a range 
of values of ρ. Overall, the error is of an acceptable size, but for 
strong negative correlation between the components it increases 
substantially. Intuitively, this is because the noise in the CVAR 
estimator is affected by the magnitude of PLi, while the magni-
tude of the CVAR is proportional to the magnitude of the VAR. 
For strong negative correlation, the magnitude of the VAR falls 
but the magnitude of PLi does not, causing the relative noise to 
increase. Such an increase is observed in all the estimators, 
though the impact on the finite difference estimator seems to be 
a little smaller than for the others. For very strong negative cor-
relations (ρ < –0.95), the finite difference estimator actually 
gives a better performance than the kernel. It may seem that 
this is of purely academic interest since market factors will very 
rarely exhibit such strong negative correlation, but recall that 
components can comprise any subset of a portfolio. We could 
have, for example, two components of a trading portfolio that 
are constructed to hedge each other, where we would expect to 
see strong negative correlation between the components.

Implementation 
We have shown how the kernel method yields the most accurate 
and robust CVAR estimates for a general portfolio structure, but 
practioners will also be interested in practical issues such as com-
putational time. Computational times for CVAR using a desktop 
computer are given in table C, where ‘20 CVARs’ refers to the 
computation of the CVAR for 20 components of the same parent 
portfolio. Clearly the question of which method is fastest is of 
somewhat academic interest, since for all the approaches the time 
to compute CVAR is likely to be much less than the time to com-
pute the VAR itself. 

Scenario extraction is, unsurprisingly, the most efficient 
approach, since in this case the ‘computation’ amounts to looking 
up the nth scenario for PLi. The kernel and semi-parametric 
methods are also very efficient, particularly where we wish to cal-
culate multiple CVARs on the same parent portfolio. For the ker-
nel method, this is because the weights K(PL ( j) – VAR; h) depend 
only on the PL, so only have to be computed once for each parent 
portfolio. To speed up the calculation further, we have chosen to 
use a very simple form of kernel based on a ‘triangle function’, 
which means that most (typically 95% for a VAR confidence level 
of 99%) kernel weights are zero (in contrast to a Gaussian kernel, 
for example, where each scenario receives some finite positive 
weight). The finite difference estimator is a little less efficient, 

largely because it requires the computation of two new VARs for 
every CVAR that is required.

We might expect that the noise in the CVAR estimators will 
follow the usual Monte Carlo rule and fall as √N. We investigate 
this by computing the standard deviation in CVAR1 from exam-
ple 1 using increasing values of N. The results are recorded in fig-
ure 4. We see that the square-root rule does indeed apply for the 
kernel, finite difference and semi-parametric estimators, but not 
for scenario extraction. The reason for this is quite subtle: recall 
that CVAR is defined as the expectation of the component P&L, 
given that the parent P&L is equal to the VAR. Using estimator 
(5), one computes:

PLi PL = VAR
not:
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C. Computing time (in seconds) for the CVAR estimators
N = 10,000 N = 250,000

1 CVAR 20 CVARs 1 CVAR 20 CVARs

Scenario extraction (5) 0.0001 0.0020 0.0001 0.0020

Kernel (7) 0.0069 0.0113 0.2119 0.4505

Finite difference (8) 0.0080 0.1592 0.2413 4.9174

Semi-parametric (9) 0.0058 0.0356 0.1826 1.3305
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4 Noise in the CVAR estimators as the number of Monte 
Carlo scenarios is increased
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E PLi PL = VAR 

Thus, by using scenario extraction, we simply draw a single sam-
ple from a (conditional) probability distribution. The distribution 
will have some variance, which we cannot expect to reduce sim-
ply by increasing the number of Monte Carlo runs. 

The Monte Carlo error could also be reduced by applying one of 
the numerous variance reduction techniques available in the litera-
ture, but we consider a discussion of these methods to be beyond the 
scope of this article. Note that the bias in the semi-parametric esti-
mator when a portfolio contains non-linear instruments (such as in 
example 2) cannot be reduced by increasing the number of Monte 
Carlo scenarios or by applying a variance reduction technique.

Traded portfolios
We conclude by presenting two examples of CVAR applied to real-
istic trading portfolios, analysed using internal risk models. We 
look at market risk on a portfolio of 1,500 US corporate bonds and 
credit risk on a portfolio of 700 credit default swaps (CDSs). In 
both cases we aim to assess the VAR contribution by risk rating, 
and report the mean and standard deviation of CVAR as a percent-
age of the total portfolio VAR. The composition of the portfolios 
and the details of the risk models used are proprietary, but the key 
point is that since the bond portfolio contains only linear exposures 
the P&L will be approximately elliptical, while the credit loss dis-
tribution on the CDS portfolio will exhibit fat tails and non-Gaus-
sian dependence. The market risk model uses 10,000 simulations, 
while the credit loss model uses 250,000.

CVARs (standard deviation in parenthesis) for the bond portfolio 
are given in table D. We can see that most of the risk in the bond 
portfolio comes from BBB and BB rated issuers, and that in this case 
the semi-parametric estimator yields the best estimate of CVAR.

Results for the CDS portfolio are shown in table E. This port-

folio is mainly comprised of exposures to AA, A and BBB grade 
issuers, but almost all the default risk comes from the latter due to 
the small probability of default on the AA and A rated issuers. 
The loss distribution of this portfolio is fat-tailed, which means 
the CVAR estimates suffer more from noise than for an elliptical 
portfolio, even given the far higher number of Monte Carlo simu-
lations used. The violation of the elliptical distribution assump-
tion means that the semi-parametric estimator mis-estimates the 
CVARs considerably, failing, for example,  to detect the negative 
CVAR that indicates a hedge position in CCC issuers.

Summary
The rescaled kernel exhibits the best performance overall, since it is 
robust in the presence of non-linearity, is less noisy than the finite 
difference method for all portfolios without strong negative corre-
lation, and is highly efficient, particularly where we wish to com-
pute many CVARs from a single portfolio. Where we can be sure 
that all the components follow an elliptical distribution (for exam-
ple, when we have linear exposures to multivariate normal risk fac-
tors), the semi-parametric estimator is more effective, but in this 
case both VAR and CVAR can be computed analytically so there is 
little reason to use Monte Carlo simulation at all. 

We remark that although we have focused on parametric Monte 
Carlo simulation, the proposed methods could also be used to 
decompose the risks in a historical simulation-based risk engine, 
though here the relatively low number of scenarios may be prob-
lematic. Kernel-based estimators can also be applied to compute 
component expected shortfall (see Scaillet, 2004). ■
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D. CVARs and errors for market risk on the bond 
portfolio (% of portfolio VAR)
Risk 
rating

Scenario 
extraction

Kernel Finite difference Semi-parametric

AAA 4.4 (1.0) 4.7 (0.1) 4.8 (0.5) 4.7 (0.1)

AA 12.0 (1.8) 11.8 (0.3) 12.0 (1.0) 11.8 (0.2)

A 7.8 (1.8) 8.2 (0.3) 7.9 (0.8) 8.2 (0.1)

BBB 44.5 (5.8) 46.2 (1.0) 45.6 (2.4) 46.4 (0.7)

BB 33.7 (5.7) 32.5 (0.6) 32.7 (2.2) 32.6 (0.6)

B –12.5 (5.7) –13.1 (0.5) –12.8 (2.4) –13.3 (0.2)

CCC 10.1 (3.4) 9.6 (0.5) 9.7 (2.0) 9.7 (0.2)

E. CVARs and errors for credit risk on the CDS portfolio 
(% of portfolio VAR)
Risk 
rating

Scenario 
extraction

Kernel Finite difference Semi-parametric

AAA 0.4 (7.7) 0.1 (0.2) 0.2 (0.2) 0.2 (0.2)

AA 1.2 (13.8) 1.4 (0.9) 1.4 (1.2) 3.1 (0.7)

A 5.4 (27.3) 5.4 (1.7) 5.5 (2.3) 5.8 (0.5)

BBB 94.1 (57.5) 93.5 (4.2) 94.6 (5.3) 40.2 (1.1)

BB 5.2 (19.4) 5.4 (1.2) 5.2 (2.4) 10.3 (0.3)

B 9.5 (32.9) 10.7 (1.9) 10.0 (3.5) 30.5 (0.7)

CCC –15.8 (32.6) –16.5 (1.9) –16.9 (3.5) 9.9 (0.6)
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